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Dynamics of a movable micromirror in a nonlinear optical cavity
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We consider the dynamics of a movable mirror (cantilever) of a nonlinear optical cavity. We show that a χ (3)

medium with a strong Kerr nonlinearity placed inside a cavity inhibits the normal mode splitting (NMS) due
to the photon blockade mechanism. This study demonstrates that the displacement spectrum of the micromirror
could be used as a tool to detect the photon blockade effect. Moreover the ability to control the photon number
fluctuation by tuning the Kerr nonlinearity emerges as a new handle to coherently control the dynamics of the
micromirror, which further could be useful in the realization of tuneable quantum-mechanical devices. We also
found that the temperature of the micromechanical mirror increases with increasing Kerr nonlinearity.
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I. INTRODUCTION

The interaction between a movable mirror and the radiation
field of an optical cavity has recently been the subject of
extensive theoretical and experimental investigations. These
optomechanical systems couple the mechanical motion to an
optical field directly via radiation pressure buildup in a cavity.
The coupling of mechanical and optical degrees of freedom
via radiation pressure has been a subject of early research
in the context of laser cooling [1–3] and gravitational-wave
detectors [4]. Recently there has been a great surge of
interest in the application of radiation forces to manipulate
the center-of-mass motion of mechanical oscillators covering
a huge range of scales from macroscopic mirrors in the
Laser Interferometer Gravitational Wave Observatory (LIGO)
project [5,6] to nanomechanical cantilevers [7–12], vibrating
microtoroids [13,14], membranes [15], and Bose-Einstein
condensates [16–18]. The quantum optical properties of a
mirror coupled via radiation pressure to a cavity field show
interesting similarities to an intracavity Kerr-like interaction
[19]. Recently, in the context of classical investigations of
nonlinear regimes, the dynamical instability of a driven
cavity having a movable mirror has been investigated [20].
Theoretical work has proposed to use the radiation-pressure
coupling for quantum nondemolition measurements of the
light field [21]. A robust stationary entanglement between the
mechanical resonator and the output fields of the cavity can
be generated, and that this entanglement can be transferred to
atomic ensembles placed within the cavity [22].

It has been shown that ground state cooling of microme-
chanical mirror is possible only in the resolved side band
regime (RSB) where the mechanical resonance frequency
exceeds the bandwidth of the driving resonator [20,21]. The
cooling of mechanical oscillators in the RSB regime at high
driving power can entail the appearance of normal mode
splitting (NMS) [23]. Recently, it was shown that an optical
parametric amplifier inside a cavity considerably improves the
cooling of a micro-mechanical mirror by radiation pressure
[24].

Giant optical Kerr nonlinearities are obtained by placing a
χ (3) medium inside a cavity [25]. This gives rise to a strong
nonlinear interaction between photons. A single photon in a
cavity can block the injection of a second photon due to a
photon blockade effect. This dispersive interaction could be

useful to realize a single-photon turnstile device for possible
use in quantum computation [25]. Greentree et al. [26],
have shown that by adding photons to a two-dimensional
array of coupled optical cavities each containing a single
two-level atom in the photon-blockade regime, polaritons are
formed that are both long-lived and strongly interacting. They
proposed that this system could be extremely beneficial for
quantum information processing. In this paper, we consider
the dynamics of a movable mirror interacting with a nonlinear
optical cavity mode in the light of these new and exciting
developments and predict novel properties of the dynamics
of the system. We show that due to the photon blockade
mechanism, as the Kerr nonlinearity is increased, the NMS
progressively decreases. The Kerr medium is found to be a
new handle to efficiently control the micromirror dynamics
and this suggests a possible quantum device.

II. THE MODEL

We consider an optical Kerr medium with χ (3) nonlinearity
inside a Fabry-Perot cavity with one fixed partially transmitting
mirror and one movable totally reflecting mirror in contact with
a thermal bath in equilibrium at temperature T , as shown in
Fig. 1. The movable mirror is treated as a quantum mechanical
harmonic oscillator with effective mass m, frequency �m, and
energy decay rate �m. The system is also coherently driven by
a laser field with frequency ωL through the cavity mirror with
amplitude ε. It is well known that high-Q optical cavities
can significantly isolate the system from its environment,
thus strongly reducing decoherence and ensuring that the
light field remains quantum-mechanical for the duration of
the experiment. We also assume that the induced resonance
frequency shift of the cavity and the nonlinear interaction
coefficient η are much smaller than the longitudinal mode
spacing, so that we restrict the model to a single longitudinal
mode ωc. We also assume that �m � πc/L (adiabatic limit);
c is the speed of light in vacuum and L the cavity length in the
absence of the cavity field. The total Hamiltonian of the system
in a frame rotating at the laser frequency ωL can be written as

H = h̄(ωc − ωL)a†a − h̄gma†aq + 1

2

(
p2

m
+ m�2

mq2

)
+ ih̄ε(a† − a) + h̄ηa†2a2. (1)
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FIG. 1. (Color online) Optomechanical realization of parametric
coupling of a mechanical oscillator to a optical mode of a nonlinear
cavity.

Here a and a† are the annihilation and creation operators for
the cavity field, respectively. Also q and p are the position and
momentum operators for the movable mirror. The parameter
gm = ωc/L is the coupling parameter between the cavity field
and the movable mirror and η is the anharmonicity parameter
and is proportional to the third-order nonlinear susceptibility
χ (3) of the Kerr medium: η = 3h̄ω2

cRe[χ (3)]/2ε0Vc, ε0 is the
dielectric constant of the medium and Vc is the volume of the
cavity. The input laser field populates the intracavity mode
which couples to the movable mirror through the radiation
pressure. The field in turn is modified by the back-action of the
cantilever. It is important to notice the nonlinearity in Eq. (1)
arising from the coupling between the intracavity intensity
and the position operator of the mirror. The system we are
considering is intrinsically open as the cavity field is damped
by the photon-leakage through the massive coupling mirror
and the mirror is connected to a bath at finite temperature. In
the absence of the radiation-pressure coupling, the cantilever
would undergo a pure Brownian motion driven by its contact
with the thermal environment. The motion of the system can
be described by the following quantum Langevin equations:

q̇ = p

m
, (2)

ṗ = −m�2
mq + h̄gma†a − �mp + ξ, (3)

ȧ = i(ωL − ωc)a + igmqa + ε − 2iηa†a2 − κa +
√

2κain.

(4)

Here ain is the input vacuum noise operator and it obeys
the following correlation functions:

〈δain(t)δa†
in(t ′)〉 = δ(t − t ′), (5)

〈δain(t)δain(t ′)〉 = 〈δa†
in(t)δa†

in(t ′)〉 = 0. (6)

The force ξ is the Brownian noise operator resulting from
the coupling of the movable mirror to the thermal bath, whose
mean value is zero, and has the following correlation function
at temperature T :

〈ξ (t)ξ (t ′)〉 = h̄�mm

2π

∫
ωe−iω(t−t ′)

[
coth

(
h̄ω

2kBT

)
+ 1

]
dω,

(7)

where kB is the Boltzmann constant and T is the thermal bath
temperature. The steady state values of p, q, and a are obtained

as
ps = 0, (8)

qs = h̄gm|as |2
m�2

m

, (9)

as = ε

κ + i(� + 2η|as |2)
, (10)

where � = ωc − ωL − gmqs is the effective cavity detuning
which includes the radiation pressure effects. Here qs denotes
the new equilibrium position of the mirror while as denotes
the steady state amplitude of the cavity field. Both qs and as

displays multistable behavior due to the nonlinear interaction
between the mirror and the cavity field. From the above
equations we clearly see how the mirror dynamics affects the
steady state of the intracavity field. The coupling to the mirror
shifts the cavity resonance frequency and changes the field
inside the cavity in a way to induce a new stationary intensity.
The change occurs after a transient time depending on the
response of the cavity and strength of the coupling to the mirror.

III. DYNAMICS OF SMALL FLUCTUATIONS

Here we show that the coupling of the mechanical oscillator
and the cavity field fluctuations in the presence of the Kerr
medium leads to modification of the normal mode splitting
(NMS) spectra. As evident from Eqs. (2)–(4), the problem
is nonlinear but we assume that the nonlinearity is small.
The optomechanical NMS however involves driving two para-
metrically coupled nondegenerate modes out of equilibrium.
The NMS does not appear in the steady state spectra but
rather manifests itself in the fluctuation spectra of the mirror
displacement. To this end, we write each canonical operator
of the system as a sum of its steady-state mean value and a
small fluctuation with zero mean value, a → as + δa, p →
ps + δp, q → qs + δq and linearize to obtain the following
Heisenberg-Langevin equations for the fluctuation operators:

δ̇q = δp

m
, (11)

δ̇p = −m�2
mδq + h̄gm(asδa

† + a∗
s δa) − �mδp + ξ, (12)

δ̇a = − i�δa + igmasδq − 2iη
(
2|as |2δa − a2

s δa
†)

− κδa +
√

2κδain. (13)

Here we will always assume �m � κ . Equations (11), (12),
(13), and their Hermitian conjugates constitute a system of
four first-order coupled operator equations, for which the
Routh-Hurwitz criterion implies that the system is stable for
the following conditions:

(� + 4η|as |2)2 + κ2 + �2
m + 2�mκ + 2iη

(
a2

s − a∗2
s

)
× (κ + �m) − 2η2

(
a4

s + a∗4
s

)
> 0, (14)

�m(� + 4η|as |2)2 + 2�2
m

{
κ + iη

(
a2

s − a∗2
s

)}
−�mη2(a2

s + a∗2
s

)2
> 0, (15)

�2
m

{[
κ + iη

(
a2

s − a∗2
s

)]2 + [� + 4η|as |2]2
}

+ h̄g2
mη

m

(
a2

s + a∗2
s

)2 − �2
mη2

(
a2

s + a∗2
s

)2

− 2h̄g2
m|as |2
m

(� + 4η|as |2) > 0. (16)
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The study of these conditions reveals the point at which
the system enters an unstable regime. Here, we will restrict
ourselves to the stable regime.

We now transform to the quadratures: δx = δa† + δa, δy =
i(δa† − δa), δxin = δa

†
in + δain, and δyin = i(δa†

in − δain).
The position fluctuations of the movable mirror in Fourier
space is given by

δq(ω) = 1

d(ω)
{[(κ − iω)2 + δ′2]ξ (ω) − ih̄gm

√
2κ[(ω + iκ

+ δ)a∗
s δain + (ω + iκ − δ)asδa

†
in]}, (17)

where d(ω) = m[�2
m − ω2 − iω�m][(κ − iω)2 + δ′2] −

2h̄g′2
mδ′′, δ′2 = �′2 − 4η′2, �′ = � + 4η′, η′ = η|as |2,

δ = � + 2η′, δ′′ = �′ − η′, and g′
m = gm|as |. In the above

equation for δq, the term proportional to ξ (ω) arises from ther-
mal noise, while the term proportional to gm originates from
radiation pressure. The displacement spectrum is obtained
from

Sq(ω) = 1

4π

∫
d�e−i(ω+�)t 〈δq(ω)δq(�) + δq(�)δq(ω)〉,

(18)

together with the correlation functions:

〈δain(ω)δa†
in(�)〉 = 2πδ(ω + �), (19)

〈ξ (ω)ξ (�)〉 = 2πh̄�mmω

[
1 + coth

(
h̄ω

2kBT

)]
δ(ω + �).

(20)

The displacement spectrum in Fourier space is finally
obtained as

Sq(ω) = h̄|χ |2
{
m�mω coth

(
h̄ω

2kBT

)

+ 4h̄κg′2
m(ω2 + κ2 + δ2)

(κ2 + δ′2 − ω2)2 + 4κ2ω2

}
, (21)

where

χ−1(ω) = m
[
�2

eff − ω2
] − iω�eff, (22)

�2
eff = �2

m − 2h̄g′2
mδ′′(κ2 + δ′2 − ω2)

m[(κ2 − ω2 + δ′2)2 + 4κ2ω2]
, (23)

�eff = m�m + 4h̄g′2
mδ′′κ

(κ2 − ω2 + δ′2)2 + 4κ2ω2
. (24)

Any information about the mirror’s modified motion can be
obtained from the study of Sq(ω). An immediate observation
reveals that Sq(ω) is peaked at a frequency �eff . In the
expression for Sq(ω), the first term represents the contribution
due to the thermal contact with the bath while the second term
is attributed to the contribution due to radiation pressure. In
the absence of radiation pressure any dependence from the
effective detuning � vanishes and the resulting spectrum is
simply that of a harmonic oscillator undergoing Brownian
motion at temperature T . In Fig. 2, we show the plot of
Sq(ω) as a function of ω/�m for η′/�m = 0, 0.04, 0.08 with
successively increasing thickness of plot. In the absence of
Kerr nonlinearity, a NMS is observed in the displacement
spectrum with small amplitude. The NMS is associated to
a mixing between the mechanical mode and the fluctuation
around the steady state of the cavity field. With increasing Kerr
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1.0

S q
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FIG. 2. (Color online) Plot of the displacement spectrum Sq (ω)
with nonlinear coefficients, η′/�m = 0, 0.04, 0.08 with progres-
sively increasing thickness of the plot. Parameters used are �m/�m =
0.01, κ/�m = 0.1, g′

m/�m = 0.4, and �/�m = 1. Clearly with in-
creasing Kerr nonlinearity, the NMS slowly becomes less prominent.

nonlinearity, we notice that one of the peak increases while the
other peak decreases. The progressive increase in amplitude
of one peak and decrease in amplitude of the other peak
with increasing Kerr nonlinearity is understood as follows:
If η � κ, ε, the applied field will couple the vacuum state to
the Fock state with single photon resonantly. The higher lying
photon-number states may be neglected since they are out of
resonance. Now if initially a photon from the driving field
is injected in the cavity with a probability determined by the
drive strength, injection of a second photon will be blocked,
since the presence of two photons in the cavity will require
an additional h̄η energy, which cannot be provided by the
pump laser. Only after the first photon leaves the cavity can a
second photon be injected. The strong interaction between the
photons therefore causes a photon (Kerr) blockade of cavity
transmission and this drastically reduces the photon number
fluctuation. A decrease in photon number fluctuation implies a
reduced mixing between the mechanical mode and the cavity
field fluctuation. In the limit of high nonlinearity, NMS would
be negligibly small. In any case if η < κ, ε, the cavity would
contain more than one photon and the above argument is
still valid due to the photon-photon repulsion. We now return
to the linearized Heisenberg-Langevin equations (11), (12),
(13) and calculate the corresponding eigenfrequencies that
determine the dynamics of NMS. In particular, we focus on the
following: (i) κ < �m/2, (ii) gm < �m/2, (iii) �m � κ , and
(iv) � − �m � �m. The two eigenfrequencies are found to be

ω± = �η + �m − iκ − i�m

2

±
√

g2
m,eff − [i(�η − �m) + (κ − �m)]2

4
, (25)

where �η = �m + 6η′ and gm,eff = 2gmas

√
h̄

m�m
. There is

another pair of eigenfrequencies −ω∗
±. For η′ = 0, � = �m

and κ � �m, the square root term of ω± is real for gm,eff > κ/2
and shows NMS. On the other hand, for η′ 	= 0, NMS is
exhibited for � = �m − 6η′.
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FIG. 3. (Color online) Plot of n/(kT /h̄�m) as a function
of η′/�m. Parameters used are �m/�m = 0.01, κ/�m = 0.1,
g′

m/�m = 0.4, and �/�m = 1.

Next we analyze the influence of the Kerr nonlinearity
on the backaction cooling of the movable mirror. The
effective temperature is defined by the total energy of
the movable mirror, kBT = 1

2m�2
m〈q2〉 + 〈p2〉

2m
[24], where

〈q2〉 = 1
2π

∫
Sq(ω) dω, 〈p2 = 1

2π

∫
Sp(ω) dω〉, and Sp(ω) =

m2ω2Sq(ω). This basically means that the effective tempera-
ture is proportional to the displacement spectrum. From Fig. 2,
we observe that the displacement spectrum for η 	= 0 is
always more than that for η = 0. From this we conclude that
Teff(η 	= 0) > Teff(η = 0). We can come to this conclusion
also from the fact that there is a reduction in the number
of photons (hence radiation pressure) in the cavity due to
photon-photon repulsion in the presence of the Kerr medium
and hence an increase in the temperature of the movable mirror.
However, in order to make a more rigorous analysis, we refer
to the definition of temperature given in [27]. Starting from
temperature T the number of quanta [27]

n = kT

h̄�m

�m

�eff

(
�m

�eff

)3

(26)

have to be reduced to bring the temperature below T . A plot
of n/(kT /h̄�m) as a function of η′/�m is shown in Fig. 3.

The temperature of the cantilever is found to increase with
the Kerr nonlinearity as concluded earlier from Fig. 2. An
important point to note is that in order to observe the NMS,
the energy exchange between the two modes(mechanical and
photon number fluctuation) should take place on a time scale
faster than the decoherence of each mode. Also the parameter
regime in which NMS may appear implies cooling. On the
negative detuning side, the observation of NMS is prevented
by the onset of parametric instability.

To demonstrate that the dynamics investigated here are
within experimental reach, we discuss the experimental pa-
rameters from [28]: the mechanical frequency �m = 2π ×
73.5 MHz and �m = 2π × 1.3 kHz. The coupling rate
gm = 2π × 2.0 MHz. From [25], the Kerr nonlinearity is
numerically estimated to be about η = 100 MHz for ex-
tremely strong photon-photon repulsion. The energy of the
cavity mode decreases due to the photon loss through the
cavity mirrors, which leads to a reduced atom-field coupling.
Photon loss can be minimized by using high-Q cavities. Our
proposed detection scheme relies crucially on the fact that
coherent dynamics dominate over the losses. It is important
that the characteristic time-scales of coherent dynamics are
significantly faster than those associated with losses (the
decay rate of state-of-art optical cavities is typically 17 kHz
[29]).

IV. CONCLUSIONS

In summary we have analyzed the influence of a Kerr
medium on the dynamics of a micromechanical movable
mirror. We have shown that as the Kerr nonlinearity in-
creases, the normal mode splitting (NMS) progressively
weakens. This is attributed to the photon blockade mechanism
which decreases the photon fluctuations due to photon-
photon repulsion. Further we found that the temperature
of the micromechanical mirror is enhanced in the presence
of the Kerr medium. The present study demonstrates that
the Kerr medium emerges as a new handle to coherently
control the dynamics of the micromirror and hence could
be useful in the realization of tuneable quantum-mechanical
devices.
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