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Measuring arbitrary-order coherences: Tomography of single-mode multiphoton
polarization-entangled states
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A scheme is discussed for measuring N th-order coherences of two orthogonally polarized light fields in a single
spatial mode at very limited experimental cost. To implement the scheme, the only measurements needed are
the N th-order intensity moments after the light beam has passed through two quarter-wave plates, one half-wave
plate, and a polarizing beam splitter for specific settings of the wave plates. It is shown that this method can be
applied for arbitrarily large N . A set of explicit values is given for the settings of the wave plates, constituting
an optimal measurement of the N th-order coherences for any N . For Fock states the method introduced here
corresponds to a full state tomography. Applications of the scheme to systems other than polarization optics are
discussed.
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I. INTRODUCTION

In recent years, interest in entangled states has grown
significantly. One of the most successful experimental imple-
mentations has been achieved by entangling the polarization
degrees of freedom of two photons in spontaneous parametric
down conversion [1]. Since then, a lot of effort has been
devoted to producing entangled states with an ever higher
photon number [2–6]. For the most part, entangled photon
states are generated by postselection in such a way that every
photon is found to have occupied an individual spatial mode
[7]. In that kind of setup, a quantum state tomography is usually
conducted with the help of quarter-wave plates and half-wave
plates, which operate on every output port separately in such
a way that each mode is analyzed along different orthogonal
bases. The theory behind this method is intuitive and has been
described exhaustively [8]. However, there exist experiments
that generate polarization-entangled states of higher photon
numbers in a single spatial mode [9,10]. Here, it is possible to
split the beam into as many spatial modes as there are photons
to conduct a full state tomography as in [8], but for higher
photon numbers, this approach is experimentally very costly
and inefficient.

In this paper, we discuss a method that does not require
the beam to be separated in different spatial modes. It is
based on a very general theorem, formulated by Mukunda
and Jordan, which states that it is always possible to calculate
the coherences of a photon field from photon correlation
measurements in several different bases [11]. This theorem has
been used in proposals to measure all second-order coherences
of a field, corresponding to the variances of the so-called
quantum Stokes parameters [12,13]. Here we show that it
is possible to measure all N th-order coherences in a light
beam consisting of two polarization modes with an arbitrary
and unknown amount of photons in each mode. For this
measurement, we only require two quarter-wave plates, one
half-wave plate, and a polarizing beam splitter, all acting on
the same single spatial mode. The N th-order intensity moment
of that mode is measured after passage of the photons through
the mentioned optical elements [14]. If the incoming field is in
a Fock state of N photons, this procedure corresponds to a full

state tomography of that state [15]. We note that the scheme
is not limited to polarization optics, but may also be applied
to other two-mode systems where the necessary operations
can be implemented, for example photons in two different
Laguerre-Gaussian modes [16,17].

II. THE BASIS OF THE METHOD

An often-used description for the polarization state of
light are the Stokes parameters, which describe the state of
a polarized light beam as a point on the Poincaré sphere. For a
classical coherent beam, the parameters are defined by

S0 = |α1|2 + |α2|2, S1 = |α1|2 − |α2|2,
(1)

S2 = α∗
1α2 + α1α

∗
2 , S3 = −i(α∗

1α2 − α1α
∗
2 ),

where α1 and α2 represent the amplitude of the beam in
two orthogonal linear polarizations. The quantum Stokes
parameters are derived from the classical description by
replacing the amplitudes and their complex conjugates with
the annihilation and creation operators of the electric field
components. This leads to the following definition for the
quantum Stokes parameters:

S0 = a
†
1a1 + a

†
2a2, S1 = a

†
1a1 − a

†
2a2,

(2)
S2 = a

†
1a2 + a

†
2a1, S3 = −i(a†

1a2 − a
†
2a1).

As usual, for the electric field operators the bosonic com-
mutation relation [ai, a

†
j ] = δij holds. The measurement of

the quantum Stokes parameters involves the four averages
〈a†

1a1〉, 〈a†
1a2〉, 〈a†

2a1〉, and 〈a†
2a2〉. Schemes to measure

these four quantities are standard textbook material [18],
since the procedure is equivalent to determining the po-
larization of a light beam and their values equal those of
their classical counterparts. However, the variances of the
quantum Stokes parameters, defined by the difference of two
anticommutators

Vij = 1
2 (〈{Si, Sj }〉 − {〈Si〉, 〈Sj 〉}) (3)

with i, j = {0, 1, 2, 3}, are not equal to their classical coun-
terparts. For example, for a coherent beam, in the classical
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picture all variances should vanish, whereas the analysis of
the quantized fields shows that the variances actually obey an
uncertainty relation and cannot all vanish at the same time [19].
They can be described in terms of all nine normally or-
dered second-order field correlations: 〈a†

1a
†
1a1a1〉, 〈a†

1a
†
1a1a2〉,

〈a†
1a

†
2a1a1〉, 〈a†

1a
†
2a1a2〉, 〈a†

1a
†
1a2a2〉, 〈a†

1a
†
2a2a2〉, 〈a†

2a
†
2a1a2〉,

〈a†
2a

†
2a1a1〉, and 〈a†

2a
†
2a2a2〉. Out of those, only the three field

correlations 〈a†
1a

†
1a1a1〉, 〈a†

1a
†
2a1a2〉, and 〈a†

2a
†
2a2a2〉, which

correspond to second-order intensity moment measurements,
are directly accessible in experiments.

Korolkova et al. first proposed a way to measure the
diagonal variances Vii by using a half-wave plate and a
quarter-wave plate [19]. Later, in [12] it was shown that it
is possible to measure the variances of all quantum Stokes
parameters (i.e., all second-order coherences of light) by
conducting measurements of intensity-intensity correlations
after the light has passed two quarter-wave plates and one
half-wave plate for a set of nine specific positions of the
three wave plates, a setup which constitutes a universal SU(2)
gadget for polarized light and implements a general rotation
in SU(2) space [20]. The knowledge of �S and V̂ already gives
a good idea of the nature of the quantum state; however, the
measurement of higher-order coherences may add even more
information about that state. In particular, if the measured
beam is in a photon-number state with N photons, that is, if
the photonic state is of the form

N∑
n=0

cn|n〉1|N − n〉2,

N∑
n=0

|cn|2 = 1, (4)

the density matrix of that state has a size of (N + 1) × (N + 1)
and its (N + 1)2 elements correspond to all N th-order coher-
ences. Thus, for an N -photon Fock state, the measurement
of all N th-order coherences is equivalent to a full state
tomography. In the following, we show that with the setup
depicted in Fig. 1, which is slightly modified with respect
to the one discussed in [12], it is possible to determine all
N th-order coherences for arbitrary N by measuring only
N th-order intensity moments.

The action of the SU(2) gadget on two orthogonally
polarized modes, â1 and â2, can be parametrized by two angles
θ and φ

(
b1

b2

)
= U (θ, φ)

(
a1

a2

)
(5)

FIG. 1. (Color online) A sketch of the setup with two quarter-
wave plates (QP1 and QP2), one half-wave plate (HP), and a polarizing
beam splitter (PBS). At the detector (D), the N th-order intensity
moment is measured.

with

U (θ, φ) =
(

cos θ eiφ sin θ

−e−iφ sin θ cos θ

)
, (6)

where θ and φ are abstract parameters determined by the
orientation of the three wave plates. The exact functional
dependence is given in Sec. IV. Using this parametrization
of the unitary transformation, we can express the most general
case of measuring the N th-order correlation – defined by the
correlation of the ith intensity moment in mode b̂1 with the
(N − i)th intensity moment in mode b̂2 – behind the SU(2)
gadget as
〈
b
†i
1 b

†N−i

2 bi
1b

N−i
2

〉

=
i∑

w,y=0

N−i∑
x,z=0

(
i

w

)(
i

y

)(
N − i

x

)

×
(

N − i

z

)
(cos θ )2N−w−x−y−z(sin θ )w+x+y+z(−1)x+z

× eiφ(x+y−w−z)
〈
a
†i+x−w

1 a
†N−i−x+w

2 a
i+z−y

1 a
N−i−z+y

2

〉
. (7)

To solve for the (N + 1)2 independent real variables in the den-
sity matrix, we must perfom at least (N + 1)2 measurements.
Hereby, we must be sure that the values of θ and φ chosen
for these measurements lead to a system of independent linear
equations; from Eq. (7), it is not obvious that this is possible
for arbitrary N . In the following, a set of values for θ and φ are
given for which we show that the measurement of N th-order
intensity moments leads to a solvable system of equations.
In the course of this proof, a natural recipe is developed that
describes how the measurement results can be easily related
to the coherences and populations of the initial state.

III. A SET OF SOLUTIONS FOR EQ. (7)

The results of this section show that it suffices to measure
photons of just one polarization, either b̂1 or b̂2, to determine all
coherences. For this reason, it suffices to set up a measurement
apparatus behind only one of the two output ports of the
polarizing beam splitter (cf. Fig. 1). In a random pick, we
choose to measure the N th-order intensity in mode b̂1 (i.e.
i = N ) and can therefore drop the summation over x and z in
Eq. (7), which consequently simplifies to

〈
b
†N
1 bN

1

〉 =
N∑

w,y=0

(
N

w

)(
N

y

)
(cos θ )2N−w−y(sin θ )w+y

× eiφ(y−w)
〈
a
†N−w

1 a
†w
2 a

N−y

1 a
y

2

〉
. (8)

Experimentally, 〈b†N1 bN
1 〉 corresponds to a measurement of the

N th-order intensity moment. Note that the number of terms in
Eq. (8) is (N + 1)2 and the expectation value of each coherence
and population appears exactly once. Thus, the system of
linear equations generated from this equation by (N + 1)2

measurements of 〈b†N1 bN
1 〉 for different φ and θ has exactly

one solution if and only if we can choose the values of every
pair (φ, θ ) such that all equations are independent. To arrive
at such a choice, we first introduce new indices of summation,
α and β, such that we can rewrite Eq. (8) in a form where the
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phase eiβφ factors out of one sum:

〈
b
†N
1 bN

1

〉 =
N∑

β=−N

eiβφ
∑
α∈Gβ

(
N

α+β

2

)(
N

α−β

2

)
(cos θ )2N−α(sin θ )α

× 〈
a
†N− α−β

2
1 a

† α−β

2
2 a

N− α+β

2
1 a

α+β

2
2

〉
, (9)

with α = y + w, β = y − w, and

Gβ = {2(N − κ) − |β|} with κ ∈ {0, 1, . . . , N − |β|}.
(10)

Equation (9) is the starting point for our analysis. Please note
that for all k − 1 kth roots of unity rl (except unity itself),
the equation

∑k−1
κ=0(rl)κ = 0 holds.1 This useful identity is

exploited by choosing φ adequately to simplify Eq. (9) further
and to introduce an inductive proof which shows that, for
suitable choices of φ and θ , Eq. (7) can be solved. However,
in order to arrive at a complete solution, we must distinguish
in the following between measuring coherences of an odd or
an even order N .

A. N even

If N is even, we choose for φ the values φk = 2πk
N+1

with k ∈ {1, 2, . . . , N + 1}. Consequently, e±iφk corresponds
to all (N + 1)th roots of unity. For every choice of φ, we
perform a measurement for N + 1 different values of θ ,
with θj = j

N+2
π
2 and j ∈ {1, 2, . . . , N + 1}, thus carrying

out (N + 1)2 measurements and obtaining (N + 1)2 different
equations from Eq. (9). By summing all equations of equal
θj , all terms from Eq. (9) with β �= 0 cancel because of the
mentioned property of the roots of unity, and the sum over β

contracts to β = 0. Thus, we are left with N + 1 equations
(one for every value of j ) containing only the N + 1 diagonal
terms, each depending on a different power of cos θj :

1

N + 1
xθj

=
∑
α∈Gβ

(
N
α
2

)(
N
α
2

)
(cos θj )2N−α(sin θj )α

× 〈
a
†N− α

2
1 a

† α
2

2 a
N− α

2
1 a

α
2

2

〉
, (11)

where xθj
= ∑

φk
x

φk

θj
and x

φk

θj
is the result of the N photon

measurement 〈b†N1 bN
1 〉 for setting φ = φk and θ = θj . This set

of equations can now be solved for the diagonal terms.
We need not make more measurements to determine the

other coherence terms. By first multiplying Eq. (9) by eiφk ,
and then adding all measurements for identical θj , only terms
with β = −k and β ′ = N − k + 1 survive and we arrive at

eiφk

N + 1
xθj

=
∑
α∈Gβ

(
N

α+β

2

)(
N

α−β

2

)
(cos θj )2N−α(sin θj )α

× 〈
a
†N− α−β

2
1 a

† α−β

2
2 a

N− α+β

2
1 a

α+β

2
2

〉

1This can be seen instantaneously from the formula for the
geometric series:

k−1∑
i=0

qi = 1 − qk

1 − q
.

+
∑

α′∈Gβ′

(
N

α′+β ′
2

)(
N

α′−β ′
2

)
(cos θj )2N−α′

× (sin θj )α
′ 〈
a
†N− α′−β′

2
1 a

† α′−β′
2

2 a
N− α′+β′

2
1 a

α′+β′
2

2

〉
.

(12)

Since N is even, all α are odd, while all α′ are even or
vice versa [cf. Eq. (10)], leaving a total sum, in which each
coherence term again depends on a different power of cos θj .2

Furthermore, the total number of coherence terms appearing
in Eq. (12) is given by |Gβ | + |Gβ ′ | which is equal to N + 1
for every choice of k. Thus, the system of linear equations
generated from Eq. (12) by inserting all N + 1 values of θj

is solvable. Furthermore, φk determines the coherences that
appear in the system. It is enough to generate a system of linear
equations for every φk with k ∈ {1, 2, . . . , N/2} to solve for all
coherences. Since the total number of measurements is equal
to the total number of unknown variables, the presented set of
values describes an optimal set of measurements.

B. N odd

If N is odd, the previously described approach does not
work, since α and α′ in Eq. (12) are both even or odd. Because
of this, different coherence terms will depend on the same
power of cos θ and it is consequently only possible to solve for
their sum. Therefore, we modify the choice of our values of φ

and θ slightly: we choose N + 2 settings for φ, with φk = 2πk
N+2 ,

k = {1, 2, . . . , N + 2}, so that eiφk describes all (N + 2)th
roots of unity. For every φk , we conduct measurements for N

different values of θ , with θj = j

N+1
π
2 and j ∈ {1, 2, . . . , N}.

For this set of N (N + 2) measurements, we proceed as in the
case for even N : the sum of all measurements for constant θ

yields

1

N + 2
xθj

=
∑
α∈Gβ

(
N
α
2

)(
N
α
2

)
(cos θj )2N−α(sin θj )α

× 〈
a
†N− α

2
1 a

† α
2

2 a
N− α

2
1 a

α
2

2

〉
, (13)

which is identical to Eq. (11). However, we have only N

equations to solve for N + 1 terms, so we must conduct one
more measurement [e.g., for (θ, φ) = (0, 0)] to solve for all
unknowns. At this point, the total number of measurements
is again N (N + 2) + 1 = (N + 1)2 and, thus, also optimal. In
the following, we need not make more measurements but can
directly solve for the remaining unknown variables. In a first
step, we multiply all equations by eiφ1 before summation and
arrive at

eiφ1

N + 2
xθj

=
∑
α∈Gβ

(
N

α−1
2

)(
N

α+1
2

)
(cos θj )2N−α(sin θj )α

× 〈
a
†N− α+1

2
1 a

† α+1
2

2 a
N− α−1

2
1 a

α−1
2

2

〉
. (14)

In contrast to the case for even N , we can arrive at a system
of equations similar to Eq. (13) with only N different terms,

2Remember that each coherence term appears only once in Eq. (8)
and thus also maximally once in Eq. (12).

013826-3



U. SCHILLING, J. VON ZANTHIER, AND G. S. AGARWAL PHYSICAL REVIEW A 81, 013826 (2010)

which we can solve immediately. Multiplying all equations
with eiφk with 2 � k � (N + 1)/2 gives all other necessary
equations in a form equivalent to Eq. (13):

eiφk

N + 2
xθj

=
∑
α∈Gβ

(
N

α+β

2

)(
N

α−β

2

)
(cos θj )2N−α

× (sin θj )α
〈
a
†N− α−β

2
1 a

† α−β

2
2 a

N− α+β

2
1 a

α+β

2
2

〉

+
∑

α′∈Gβ′

(
N

α′+β ′
2

)(
N

α′−β ′
2

)
(cos θj )2N−α′

× (sin θj )α
′ 〈
a
†N− α′−β′

2
1 a

† α′−β′
2

2 a
N− α′+β′

2
1 a

α′+β′
2

2

〉
,

(15)

again with β = k, but β ′ = N − k + 2. Since N is odd, all
terms now depend on a different power of N , so that the system
of linear equations again corresponds to a solvable (N + 1) ×
(N + 1) matrix, making it possible to determine all remaining
coherences. For N = 1 (i.e., simply a polarization measure-
ment), this leads to the choice of measuring the averages

〈a†
1a1〉,

〈a†
1a1〉 + 〈a†

2a2〉 + ei 2π
3 〈a†

1a2〉 + e−i 2π
3 〈a†

2a1〉,
〈a†

1a1〉 + 〈a†
2a2〉 + ei 4π

3 〈a†
1a2〉 + e−i 4π

3 〈a†
2a1〉,

〈a†
1a1〉 + 〈a†

2a2〉 + 〈a†
1a2〉 + 〈a†

2a1〉, (16)

which is different from what is discussed in standard
textbooks [18], but equally optimal.

IV. EXAMPLE AND MORE GENERAL APPLICATIONS

In this section, we discuss the simplest nontrivial example,
namely measuring all second-order coherences (case N = 2).
For this task, we start by using the notation of Simon and
Makunda [20] and write the unitary transformation of Eq. (5)
in terms of three Euler angles ξ, η, ζ :

U (ξ, η, ζ ) = exp

(
−i

ξσ2

2

)
exp

(
i
ησ3

2

)
exp

(
−i

ζσ2

2

)
,

(17)

where σ2 and σ3 are Pauli matrices. Simon and Makunda show
that the relation of the Euler angles to the actual angles of the
three birefringent plates is then given by [20]

αQP1
= ξ

2
+ π

4
, (18a)

αQP2
= ξ + η

2
+ π

4
, (18b)

αHP = ξ + η − ζ

4
− π

4
, (18c)

with the Euler angles ξ , η, and ζ a function of the abstract
angles θ and φ:

cos
η

2
=

√
a2 + c2,

exp

(
i
ξ + ζ

2

)
= c − ia√

a2 + c2
,

exp

(
i
ξ − ζ

2

)
= ib

|b| ,

TABLE I. All nine values of the Euler angles ξ , η, and ζ and the
angles of the three wave plates in dependence of the parameters θ

and φ for measuring second-order coherences.

(θ, φ) Euler angles (ξ, η, ζ ) (αQP1 ,αQP2 ,αHP)

( 1
8 π, 2

3 π ) (1.775, 0.676, 4.197) (1.673, 2.011, 0.169)

( 1
4 π, 2

3 π ) (2.034, 1.318, 5.176) (1.802, 2.461, 0.329)

( 3
8 π, 2

3 π ) (−3.833, 1.855, −0.692) (2.010, 2.938, 0.464)

( 1
8 π, 4

3 π ) (4.917, 0.676, 1.775) (0.102, 0.440, 1.740)

( 1
4 π, 4

3 π ) (−1.107, 1.318, −4.249) (0.232, 0.891, 1.900)

( 3
8 π, 4

3 π ) (5.591, 1.855, 2.450) (0.439, 1.367, 2.034)

( 1
8 π, 0) (0, 0, − 1

4 π ) ( 1
4 π, 1

4 π, 13
16 π )

( 1
4 π, 0) (0, 0, − 1

2 π ) ( 1
4 π, 1

4 π, 7
8 π )

( 3
8 π, 0) (0, 0, − 3

4 π ) ( 1
4 π, 1

4 π, 15
16 π )

where a = Re(eiφ) sin θ , b = Im(eiφ) sin θ , and c = cos θ . In
the case that a = c = 0, which occurs for θ, φ = ±π

2 , the
corresponding Euler angles may be chosen as η = ξ = 0 and
ζ = 2φ, while in case that b = 0, which occurs for φ = 0, π ,
the corresponding Euler angles may be chosen as η = ξ = 0
and ζ = −2θ (ζ = 2θ ) for φ = 0 (φ = π ).

With this translation of two abstract parameters into
experimental quantities, it is now straightforward to calculate
the settings for our wave plates for any arbitrary measurement.
For example, if we wish to measure the nine variances of
the Stokes parameters [Eq. (3)], the recipe from the previous
section tells us to measure the second-order intensity after ap-
plication of the nine unitary transformations that arise from all
possible combinations of θ = 1

8π, 1
4π, 3

8π and φ = 2
3π, 4

3π, 0.
According to Eqs. (18), every pair (θ, φ) corresponds to a
certain triple of Euler angles (ξ, η, ζ ) and this in turn to a
certain triple of angles for the wave plates (QP1,QP2,HP), all
of which are given in Table I.

From this set of measurements of the second-order intensity
moment, it is possible to calculate all variances of the Stokes
parameters. In the case of a two-photon Fock state, this
corresponds to all density matrix elements (i.e., to a full
state tomography). However, our method also serves for the
determination of higher-order coherences of other (classical
or nonclassical) states. For example, recently the covariance
matrix of a Gaussian output state of an optical parametric
oscillator has been measured [21]. If one would want to
verify the Gaussian property of this state, the measurement of
higher-order coherences like the ones discussed in the present
work is required.

The scheme presented here is also not limited to photons of
linear polarization: â1 and â2 may just as well correspond to any
other pairwise orthogonal photon polarization modes. In fact,
the general idea is applicable to any kind of bosonic multiqubit
state where the equivalents to the needed devices exist: a
universal SU(2) gadget, a filter which transmits only one of
the two qubit states, and a detector capable of performing a
correlation measurement on the incident qubits. For example,
one possible application could be the characterization of
Laguerre-Gaussian beams with photons distributed among
two different LGnm modes [16,17]. In this case, Agarwal
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discussed the SU(2) structure of their Poincaré sphere [22]; the
equivalent of a polarizing beam splitter can be implemented
with holograms [23], and Ref. [24] points at the possibility of
constructing an SU(2) gadget consisting of astigmatic lenses.

V. CONCLUSION

In conclusion, it was shown that a very simple experimental
setup consisting of two quarter-wave plates, one half-wave
plate, a polarizing beam splitter, and a measurement of
higher-order intensity moments allows for an optimal measure-
ment of arbitrary-order coherences between two orthogonally
polarized modes in a single light beam. Explicit formulas
are given for the settings of the three involved wave plates.
With these settings, the measurements allow the coherences
to be obtained by a solvable system of linear equations. The
concept has been exemplified for the case N = 2, whereby,
in the case of a Fock state, the capability of the method to
perform a full state tomography has been demonstrated. The
scheme could also be extended to include the measurement

of phase-sensitive moments like 〈a1a2〉; however, in this case,
one would need to add a local oscillator before the detector
in Fig. 1. In a recent paper [21], the measurement of such
phase-sensitive expectation values was reported for a Gaussian
state. For the verification of the Gaussian property of such a
state, the measurement of the N th-order intensity moments
like the ones presented in this paper is required. Finally, it
was outlined that the method can be fruitfully applied to other
systems as the general idea is not limited to linear polarization
optics but is applicable to all bosonic systems where a universal
SU(2) gagdet and the analogs to a polarizing beam splitter and
an intensity moment measurement can be constructed. This
property might make the present work interesting for a large
range of similar topics.
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