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80, 033840 (2009)] is extended to account for discrete jumps in the classical random process to be estimated,
discrete variables in the quantum system, such as spin, angular momentum, and photon number, and Poisson
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Hardy’s paradox in phase space.
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I. INTRODUCTION

In previous papers [1–3], I have proposed a quantum
smoothing theory, which is a generalization of the time-
symmetric approach to quantum mechanics pioneered by
Aharonov et al. [4] and Barnett et al. [5] and can be used
to optimally estimate classical signals coupled to quantum
sensors under continuous measurements, such as gravitational
wave detectors and atomic magnetometers. Smoothing can
be significantly more accurate than current quantum filtering
methods [6–14] when the classical signal is a stochastic
process and delay is permitted in the estimation. The ac-
curacy improvement due to smoothing for quantum optical
phase estimation via phase-locked loops has recently been
experimentally demonstrated by Wheatley et al. [15].

While Refs. [1–3] focus on diffusive classical random pro-
cesses, quantum systems with continuous degrees of freedom,
and Gaussian measurements, the aim of this paper is to extend
the theory to account for discrete variables in the systems
and the measurements. In particular, I shall consider discrete
jumps in the classical random process, discrete variables in the
quantum system, such as spin, angular momentum, and photon
number, and Poisson measurements, such as photon counting.
Such extensions are especially important for the modeling of
atomic magnetometry [11–14,16–18].

In the case of atomic magnetometry, the importance of
estimation delay was discovered by Petersen and Mølmer [18],
who found that the estimation of a fluctuating magnetic field
modeled as an Ornstein-Uhlenbeck process becomes more
accurate when the estimation is delayed and observations
at later times are taken into account. I shall generalize their
results using the quantum smoothing theory, derive the optimal
strategy of delayed estimation for atomic magnetometry, and
discuss practical methods of implementing the strategy.

A different kind of estimation problem comes up in Hardy’s
paradox [19], in which one tries to estimate the positions of
an electron and a positron in two overlapping interferometers
based on the initial conditions and measurement outcomes.
While this kind of retrodictive estimation is not allowed in
conventional predictive quantum theory, it can be regarded
as a smoothing problem from the perspective of estimation
theory, and I shall demonstrate that the salient features of the
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paradox can be reproduced mathematically using the quantum
smoothing theory in discrete phase space. It is shown that
the negativity of the predictive Wigner distribution can be
regarded as the culprit for the disagreement between classical
reasoning and quantum mechanics. This phase-space approach
is somewhat different from Aharonov et al.’s weak value
approach [4,20], but more similar to Feynman’s attempt to
formulate quantum mechanics in terms of negative probabil-
ities [21]. Whether the two can be reconciled remains to be
seen.

This paper is organized as follows. Section II reviews the
classical filtering and smoothing equations when the system
process has jumps and the observations have Poisson statistics,
as derived by Snyder [22,23] and Pardoux [24]. Section III
generalizes such equations to the quantum regime for smooth-
ing of classical random processes coupled to quantum systems.
Sec. IV converts the quantum equations to equivalent phase-
space equations for discrete Wigner distributions. Sec. V
studies the application of the theory to atomic magnetometry.
Sec. VI studies Hardy’s paradox using quantum smoothing in
discrete phase space.

II. CLASSICAL FILTERING AND SMOOTHING FOR
POISSON OBSERVATIONS

Define xt as the classical system random process, the
a priori probability density of which satisfies the differential
Chapman-Kolmogorov equation [25]

∂P (x, t)

∂t
= LCP (x, t), (2.1)

LCP (x, t) ≡ −
∑

µ

∂

∂xµ

[AµP (x, t)]

+ 1

2

∑
µ,ν

∂2

∂xµ∂xν

[BµνP (x, t)]

+
∫

dx ′[J (x|x ′, t)P (x ′, t)

− J (x ′|x, t)P (x, t)], (2.2)

where J (x|x ′, t) is the probability density per unit time that xt

will jump from x ′ to x. For an observation with Poisson noise,
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the observation probability density is

P (δ�µt |xt ) = [λµ(xt , t)δt]δ�µ

δ�µ!
exp [−λµ(xt , t) δt]. (2.3)

The a posteriori density given an observation δ�µt is then
determined by the Bayes theorem:

P (xt |δ�µt ) = P (δ�µt |xt )P (xt )∫
dxt (numerator)

. (2.4)

In the continuous-time limit,

d�2
µt = d�µt , (2.5)

P (d�µt = 0|xt ) = 1 − λµ(xt , t) dt, (2.6)

P (d�µt = 1|xt ) = λµ(xt , t) dt. (2.7)

Defining the observation record in the time interval t0 � t < t

as

d�[t0,t) = {d�t , t0 � t < t}, (2.8)

and the filtering probability density as the probability density
of xt conditioned upon past observations, given by

F (x, t) ≡ P (xt = x|d�[t0,t)), (2.9)

the Itō stochastic differential equation for F (x, t) can be
derived by evolving F (x, t) according to the Chapman-
Kolmogorov equation given by Eq. (2.1) in discrete time,
applying the Bayes theorem given by Eq. (2.4), and then taking
the continuous limit. The result is called the Snyder equation
and is given by [22,23]

dF = dtLCF +
∑

µ

(d�µt − 〈λµ〉F dt)

(
λµ

〈λµ〉F − 1

)
F,

(2.10)

〈λµ〉F ≡
∫

dxλµ(x, t)F (x, t). (2.11)

To derive a linear stochastic equation for an unnormalized
F (x, t), rewrite the observation density in Eq. (2.3) as

P (δ�µt |xt ) = P̃ (δ�µt )

(
λµ

αµ

)δ�µ

exp [−(λµ − αµ) δt]

= P̃ (δ�µt )

[
1 + δ�µt

(
λµ

αµ

− 1

)

− δt(λµ − αµ) + o(δt)

]
, (2.12)

P̃ (δ�µt ) ≡ (αµδt)δ�µt

δ�µt !
exp (−αµδt), (2.13)

where αµ is an arbitrary positive parameter and o(δt) are
terms asymptotically smaller than δt . When this form of the
observation density is used in the Bayes theorem given by
Eq. (2.4), P̃ (δ�µt ) appears in both the numerator and the
denominator and cancels itself, so it can be neglected in the
filtering dynamics. If one does not insist on the normalization
of the a posteriori density, the denominator of Eq. (2.4),
which does not depend on xt , can also be neglected. The
resulting stochastic equation for f (x, t) ∝ P (xt = x, d�[t0,t))

is given by [24]

df = dtLCf +
∑

µ

(d�µt − αµdt)

(
λµ

αµ

− 1

)
f. (2.14)

f (x, t) is related to the joint probability density P (xt , d�[t0,t))
by factors of P̃ (d�µt ). The filtering density is thus

F (x, t) = f (x, t)∫
dxf (x, t)

. (2.15)

For the optimal estimation of xτ at time τ , one should also
take into account the observations after time τ and perform
smoothing. To perform smoothing in the time-symmetric form
[24], first solve for an unnormalized retrodictive likelihood
function P (d�[t,T )|xt = x) ∝ g(x, t) using the adjoint of
Eq. (2.14),

−dg = dtL∗
Cg +

∑
µ

(d�µt − αµdt)

(
λµ

αµ

− 1

)
g, (2.16)

to be solved backward in time with final condition g(x, T ) ∝ 1.
Similar to f (x, t), g(x, t) is related to P (d�[t,T )|xt ) by factors
of P̃ (d�µt ). The smoothing probability density at time τ given
the observation record d�[t0,T ) in the time interval t0 � τ � T

is then

P (xτ = x|d�[t0,T )) = g(x, τ )f (x, τ )∫
dxg(x, τ )f (x, τ )

. (2.17)

III. HYBRID CLASSICAL-QUANTUM FILTERING AND
SMOOTHING FOR POISSON OBSERVATIONS

Using the same approach as Refs. [2,3], it is not difficult
to generalize the above classical equations to the quantum
regime for hybrid classical-quantum filtering and smoothing.
I shall first consider the problem in discrete time before taking
the appropriate continuous limit. Define xt as the classical
system process that one wishes to estimate, which is coupled
to a quantum system under measurements. As before, the
quantum backaction from the quantum system to the classical
one is assumed to be negligible. Define the hybrid density
operator that describes the joint statistics of the classical
and quantum systems [26] as ρ̂(x, t), so that the marginal
probability distribution of xt is tr[ρ̂(x, t)] and the quantum
density operator is

∫
dxρ̂(x, t). The a priori evolution of

ρ̂(xt , t) is governed by

∂ρ̂(x, t)

∂t
= Lρ̂(x, t), (3.1)

Lρ̂(x, t) ≡ L0ρ̂(x, t) + LI (x)ρ̂(x, t) + LCρ̂(x, t), (3.2)

where L0 is the superoperator that governs the evolution of
the quantum system, LI is the superoperator that describes the
coupling of the classical system to the quantum system, via an
interaction Hamiltonian for example, and LC is the Chapman-
Kolmogorov operator defined by Eq. (2.2). The measurement,
on the other hand, is described by the quantum Bayes theorem

ρ̂(xt |δ�µt ) = M̂(δ�µt |xt )ρ̂(xt )M̂†(δ�µt |xt )∫
dxt tr(numerator)

, (3.3)
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where the measurement operator with Poisson statistics is

M̂ = [L̂µ(xt , t)
√

δt]δ�µt√
δ�µt !

exp

[
−δt

2
L̂†

µ(xt , t)L̂µ(xt , t)

]
.

(3.4)

L̂µ(xt , t) is a hybrid operator, an annihilation operator for
example, and can also depend on xt . In the continuous-time
limit, the stochastic differential equation for the filtering hybrid
density operator, defined as

F̂ (x, t) ≡ ρ̂(xt = x|d�[t0,t)), (3.5)

is given by [8,27]

dF̂ = dtLF̂ + dt
∑

µ

(
L̂µF̂ L̂†

µ − 1

2
L̂†

µL̂µF̂ − 1

2
F̂ L̂†

µL̂µ

)

+
∑

µ

(d�µt − 〈L̂†
µL̂µ〉F̂ dt)

(
L̂µF̂ L̂†

µ

〈L̂†
µL̂µ〉F̂

− F̂

)
,

(3.6)

where

〈L̂†
µL̂µ〉F̂ ≡

∫
dx tr [L̂†

µ(x, t)L̂µ(x, t)F̂ (x, t)]. (3.7)

Equation (3.6) is a quantum generalization of the Snyder
equation [Eq. (2.10)]. To derive a linear version of Eq. (3.6)
for an unnormalized filtering operator, analogous to Eq. (2.14),
rewrite M̂ as

M̂ =
√

P̃ (δ�µt )

(
L̂µ√
αµ

)δ�µt

exp

[
−δt

2
(L̂†

µL̂µ − αµ)

]

=
√

P̃

[
1̂ + δ�µt

(
L̂µ√
αµ

− 1̂

)
− δt

2
(L̂†

µL̂µ − αµ)

+ o(δt)

]
. (3.8)

Similar to the classical case, the a posteriori state calculated
using Eq. (3.3) does not depend on P̃ (δ�µt ), as it appears in
both the numerator and denominator of Eq. (3.3) and cancels
itself. The denominator of Eq. (3.3) can also be omitted if one
does not insist on normalization. The resulting equation in the
continuous limit is [27]

df̂ = dtLf̂ + dt
∑

µ

(
L̂µf̂ L̂†

µ − 1

2
L̂†

µL̂µf̂ − 1

2
f̂ L̂†

µL̂µ

)

+
∑

µ

(d�µt − αµdt)
(
α−1

µ L̂µf̂ L̂†
µ − f̂

)
, (3.9)

F̂ (x, t) = f̂ (x, t)∫
dx tr [f̂ (x, t)]

. (3.10)

The classical incoherent limit of Eq. (3.9) is obviously
Eq. (2.14) and Eq. (3.9) can be verified against Eq. (3.6)
by normalizing the former using Itō calculus. The derivation
of Eq. (3.9) can be made more rigorous using the reference
probability approach [27].

To perform optimal estimation of xτ at time τ , one also
needs to solve for the unnormalized hybrid effect operator

Ê(d�[τ,T )|xτ = x) ∝ ĝ(x, τ ) using the adjoint of Eq. (3.9)
and observations after time τ [2,3]:

−dĝ = dtL∗ĝ + dt
∑

µ

(
L̂†

µĝL̂µ − 1

2
ĝL̂†

µL̂µ − 1

2
L̂†

µL̂µĝ

)

+
∑

µ

(d�µt − αµdt)
(
α−1

µ L̂†
µĝL̂µ − ĝ

)
, (3.11)

where the final condition is ĝ(x, T ) ∝ 1̂ and the adjoint
is defined with respect to the hybrid Hilbert-Schmidt inner
product

〈ĝ(x, t), f̂ (x, t)〉 ≡
∫

dx tr [ĝ(x, t)f̂ (x, t)], (3.12)

〈ĝ(x, t),Lf̂ (x, t)〉 = 〈L∗ĝ(x, t), f̂ (x, t)〉. (3.13)

The smoothing probability density is then

h(x, τ ) ≡ P (xτ = x|d�[t0,T )) = tr[ĝ(x, τ )f̂ (x, τ )]∫
dx tr [ĝ(x, τ )f̂ (x, τ )]

.

(3.14)

Incorporating the Gaussian measurements considered in
Refs. [2,3] into the equations above is straightforward. This is
useful, for example, when both photon counting and homodyne
detection are performed in a quantum optics experiment [28].
With Poisson observations d�t and Gaussian observations dyt ,
the resulting filtering equation for F̂ (x, t) is

dF̂ = dtLF̂ + dt
∑

µ

(
L̂µF̂ L̂†

µ − 1

2
L̂†

µL̂µF̂ − 1

2
F̂ L̂†

µL̂µ

)

+ dt

8

(
2ĈT R−1F̂ Ĉ† − Ĉ†T R−1ĈF̂ − F̂ Ĉ†T R−1Ĉ

)
+

∑
µ

(
d�µt − 〈L̂†

µL̂µ〉F̂ dt
) (

L̂µF̂ L̂†
µ

〈L̂†
µL̂µ〉F̂

− F̂

)

+ 1

2
[(Ĉ − 〈Ĉ〉F̂ )T R−1dηt F̂ + H.c.], (3.15)

dηt ≡ dyt − dt

2
〈Ĉ + Ĉ†〉F̂ , (3.16)

where Ĉ = Ĉ(x, t) is a vector of hybrid operators, R = R(t) is
a positive-definite matrix, dηt is a vectoral Wiener increment
with covariance matrix R(t)dt , and H.c. denotes Hermitian
conjugate.

The equation for f̂ (x, t) is

df̂ = dtLf̂ + dt
∑

µ

(
L̂µf̂ L̂†

µ − 1

2
L̂†

µL̂µf̂ − 1

2
f̂ L̂†

µL̂µ

)

+ dt

8
(2ĈT R−1f̂ Ĉ† − Ĉ†T R−1Ĉf̂ − f̂ Ĉ†T R−1Ĉ)

+
∑

µ

(d�µt − αµdt)
(
α−1

µ L̂µf̂ L̂†
µ − f̂

)

+ 1

2
(ĈT R−1dyt f̂ + H.c.), (3.17)
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and for ĝ(x, t),

−dĝ = dtL∗ĝ + dt
∑

µ

(
L̂†

µĝL̂µ − 1

2
ĝL̂†

µL̂µ − 1

2
L̂†

µL̂µĝ

)

+ dt

8
(2Ĉ†T R−1ĝĈ − ĝĈ†T R−1Ĉ − Ĉ†T R−1Ĉĝ)

+
∑

µ

(d�µt − αµdt)
(
α−1

µ L̂†
µĝL̂µ − ĝ

)

+ 1

2
(ĝĈT R−1dyt + H.c.). (3.18)

IV. QUANTUM SMOOTHING IN PHASE SPACE

One method of solving Eqs. (3.14), (3.17), and (3.18) for
hybrid smoothing is to use Wigner distributions [2,3]. For a
quantum system with discrete degrees of freedom, such as spin,
angular momentum, or an N -level system, one may define the
discrete Wigner distribution, according to Feynman [21] and
Wootters [29], as

f (q, p, x, t) ≡ 1

N
tr [f̂ (x, t)Ŵ (q, p)], (4.1)

q ∈ {0, 1, . . . , N − 1}, (4.2)

p ∈ {0, 1, . . . , N − 1}. (4.3)

The operator Ŵ (q, p) for prime N is

Ŵ (q, p)

≡
{ 1

2 [(−1)q σ̂z + (−1)pσ̂x + (−1)q+pσ̂y + 1̂], N = 2;∑
q1,q2

δ2q,q1+q2 exp
[

2πi
N

p(q1−q2)
] |q1〉〈q2|, N > 2.

(4.4)

σ̂x , σ̂y , and σ̂z are Pauli matrices, |q1〉 and |q2〉 are eigenstates
of q̂, and modular arithmetic with modulus N is implicitly
assumed. For a nonprime N , the system can be decomposed
into subsystems with prime N ’s and the Wigner distribution
can be defined using Ŵ (q, p) for each subsystem [29].

An alternative definition in a 2N × 2N phase space, first
suggested by Hannay and Berry [30], is

f̃ (q, p, x, t) ≡ 1

2N
tr [f̂ (x, t)ŵ(q, p)],

q ∈
{

0,
1

2
, . . . , N − 1

2

}
,

p ∈
{

0,
1

2
, . . . , N − 1

2

}
,

ŵ(q, p) ≡
∑

u

exp

(
4πipu

N

)
|q + u〉〈q − u|,

u ∈
{
−N

2
+ 1

2
,−N

2
+ 1, . . . ,

N

2

}
, (4.5)

where the matrix elements with noninteger indices are assumed
to be zero. One may also use either Wigner function to describe
the energy level n and phase φ of a harmonic oscillator by
letting n = q, φ = 2πp/N , and taking the N → ∞ limit at
the end of a calculation [31,32].

Both definitions have a particularly desirable property for
the purpose of smoothing, namely,

tr [ĝ(x, t)f̂ (x, t)] = N
∑
q,p

g(q, p, x, t)f (q, p, x, t),

= 2N
∑
q,p

g̃(q, p, x, t)f̃ (q, p, x, t), (4.6)

so the smoothing probability density can be written in terms
of the Wigner distributions as

h(x, τ ) =
∑

q,p g(q, p, x, τ )f (q, p, x, τ )∫
dx

∑
q,p g(q, p, x, τ )f (q, p, x, τ )

(4.7)

or

h(x, τ ) =
∑

q,p g̃(q, p, x, τ )f̃ (q, p, x, τ )∫
dx

∑
q,p g̃(q, p, x, τ )f̃ (q, p, x, τ )

. (4.8)

Equations (4.7) and (4.8) become equivalent to the classical
smoothing density given by Eq. (2.17), with the quantum
degrees of freedom marginalized, if f and g or f̃ and g̃

are non-negative and can be regarded as classical probability
densities. The hybrid smoothing problem can then be solved
using classical filtering and smoothing techniques.

If one would like to apply smoothing to quantum degrees
of freedom, Eqs. (4.7) and (4.8) also motivate the definition of
a quantum smoothing quasiprobability distribution as

h(q, p, x, τ ) = g(q, p, x, τ )f (q, p, x, τ )∫
dx

∑
q,p g(q, p, x, τ )f (q, p, x, τ )

(4.9)

or

h̃(q, p, x, τ ) = g̃(q, p, x, τ )f̃ (q, p, x, τ )∫
dx

∑
q,p g̃(q, p, x, τ )f̃ (q, p, x, τ )

.

(4.10)

From the perspective of estimation theory, these definitions
of quantum smoothing distributions are arguably the most
natural, for they both give the correct classical smooth-
ing distribution when the quantum degrees of freedom are
marginalized, are equivalent to the smoothing distributions in
classical smoothing theory when f and g or f̃ and g̃ are
nonnegative, and are explicitly normalized.

There are many other qualified definitions of the Wigner
distribution in discrete or periodic phase space [33]. Choosing
which definition to use depends on the application. The
Feynman-Wootters distribution is defined only on the eigen-
values of q̂ and p̂, so it appears more physical, but the
Hannay-Berry definition is easier to calculate analytically for
arbitrary N and, as shown in the Appendix, naturally arises
from the statistics of weak measurements.

V. ATOMIC MAGNETOMETRY

A. Optimal smoothing

An important application of quantum estimation theory
is atomic magnetometry [11–14,16–18]. Consider the setup
described in Refs. [12–14,16] and depicted in Fig. 1. An atomic
spin ensemble is initially prepared in a coherent state with the
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FIG. 1. (Color online) Left: basic setup of atomic magnetometer
as considered in Refs. [12–14,16]. Right: the spherical phase space
for spin.

mean collective spin vector along the x axis. Let the magnetic
field be polarized along y axis and given by

bt ≡ x1t , (5.1)

a component of the classical system process to be estimated.
The magnetic field introduces Larmor precession to the spin
via the interaction Hamiltonian

ĤI (x) = −γ bŜy, (5.2)

LI (x)F̂ (x, t) = − i

h̄
[ĤI (x), F̂ (x, t)] = iγ

h̄
b[Ŝy, F̂ ], (5.3)

where Ŝy is the y component of the spin vector operator and γ is
the gyromagnetic ratio. Under continuous optical polarimetry
measurements, the stochastic equation for the filtering density
operator F̂ (x, t) has been derived by Bouten et al. [14] and is
given by

dF̂ = dt

{
LCF̂ + iγ

h̄
b[Ŝy, F̂ ] + |a|2[cos(κm̂)F̂ cos(κm̂)

+ sin(κm̂)F̂ sin(κm̂) − F̂ ]

}

+
∑

µ=+,−
(d�µt − 〈L̂†

µL̂µ〉F̂ dt)

(
L̂µF̂ L̂†

µ〈
L̂
†
µL̂µ

〉
F̂

− F̂

)
,

(5.4)

which is in the form of Eq. (3.6), with

m̂ ≡ Ŝz

h̄
, L̂± = a√

2
[cos(κm̂) ± sin(κm̂)] , (5.5)

κ is the light-spin coupling parameter and a is the normal-
ized optical envelope. The linear predictive and retrodictive

equations for f̂ (x, t) and ĝ(x, t) become

df̂ = dt

{
LCf̂ + iγ

h̄
b[Ŝy, f̂ ] + |a|2[cos(κm̂)f̂ cos(κm̂)

+ sin(κm̂)f̂ sin(κm̂) − f̂ ]

}

+
∑

µ=+,−

(
d�µt − |a|2

2
dt

) (
2

|a|2 L̂µf̂ L̂†
µ − f̂

)
,

(5.6)

−dĝ = dt

{
L∗

Cĝ − iγ

h̄
b[Ŝy, ĝ] + |a|2[cos(κm̂)ĝ cos(κm̂)

+ sin(κm̂)ĝ sin(κm̂) − ĝ]

}

+
∑

µ=+,−

(
d�µt − |a|2

2
dt

) (
2

|a|2 L̂†
µĝL̂µ − ĝ

)
.

(5.7)

After solving Eq. (5.6) forward in time for f̂ (x, τ ) and Eq. (5.7)
backward in time for ĝ(x, τ ), the smoothing probability
distribution is given by

h(x, τ ) = tr [ĝ(x, τ )f̂ (x, τ )]∫
dx tr [ĝ(x, τ )f̂ (x, τ )]

, (5.8)

which can be used to produce the optimal estimate and
the associated error of the system process xτ , including the
magnetic field bτ ≡ x1τ .

B. Smoothing in phase space

The usual strategy of solving the quantum estimation
problem is to take the Sx � Sy , Sx � Sz limit, assume Ŝy and
Ŝz are continuous, and approximate the conditional quantum
state as a Gaussian state [11–13,16,18]. This is akin to
approximating the spherical phase space with a flat one near
S = (Sx, 0, 0). While the Gaussian approximation is probably
the most practical, in order to illustrate the discrete phase-space
formalism proposed in Sec. IV, I shall first attempt to convert
Eqs. (5.6) and (5.7) to stochastic equations for discrete Wigner
distributions in the 2N × 2N phase space before making
further approximations.

Let

m̂ = q̂ − s, N = 2s + 1, (5.9)

where s is the total spin number. Then

φ̂ ≡ 2πp̂

N
(5.10)

is the operator for the azimuthal angle of the spin vector. I shall
use m and φ as the phase-space variables instead of q and p,
and let

f (m,φ) = f̃

(
q = m + s, p = Nφ

2π

)
. (5.11)
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First consider the measurement-induced decoherence term in
Eq. (5.6), which can be rewritten as

LMf̂ ≡ 1
2 (eiκq̂ f̂ e−iκq̂ + e−iκq̂ f̂ eiκq̂) − f̂ . (5.12)

Using the discrete Wigner function in 2N × 2N phase space

given by Eqs. (4.5) and
ŵ→ to denote the transform to the

2N × 2N phase space, it can be shown that

LMf̂
ŵ→ ∑

φ′ J (φ − φ′)f (m,φ′, x, t) − f (m,φ, x, t),

(5.13)

where

J (φ − φ′) ≡ 1

4N

{
sin[N (φ − φ′ − κ)]

tan[(φ − φ′ − κ)/2]

+ sin[N (φ − φ′ + κ)]

tan[(φ − φ′ + κ)/2]

}
. (5.14)

While Eq. (5.13) has the appearance of the jump term in the
Chapman-Kolmogorov equation [Eq. (2.2)], J (φ − φ′), which
plays the role of a jump probability density, can become
negative. In the special case of κ = πµ/N , where µ is an
integer, however, J (φ − φ′) is simplified to

J (φ − φ′) = 1
2 (δφ−φ′,κ + δφ−φ′,−κ ), (5.15)

and the measurement-induced decoherence introduces random
azimuthal jumps in steps of κ to the spin vector around the
z axis. In the limit of N → ∞, φ becomes approximately
continuous, κ ≈ πµ/N , and Eq. (5.13) can be rewritten as

LMf̂
ŵ→ 1

2 [f (m,φ + κ, x, t) + f (m,φ − κ, x, t)]

− f (m,φ, x, t). (5.16)

The N → ∞ limit is akin to approximating the spin system
as a harmonic oscillator [31] and the spherical phase space as
a cylindrical one. If κ 
 〈�φ̂2〉1/2, we can further make the
diffusive approximation:

LMf̂
ŵ→ κ2

2

∂2

∂φ2
f (m,φ, x, t). (5.17)

Next, consider the Larmor precession term (iγ /h̄)b[Ŝy, f̂ ].
In terms of m̂ and φ̂,

Ŝy = h̄

2i
[exp(−iφ̂)

√
s(s + 1) − m̂(m̂ + 1)

− exp (iφ̂)
√

s(s + 1) − m̂(m̂ − 1)]. (5.18)

With this form, it is difficult to convert the Larmor pre-
cession term to the phase-space picture analytically, so we
again make the cylindrical phase-space approximation with
s � 〈m̂〉, 〈�m̂2〉1/2, so that the spin vector distribution is
concentrated near the equator. This approximation is valid
when the magnetic field is small and fluctuating around zero,
or a control, such as an applied magnetic field [11–13] or an
adjustable direction of the optical beam, is present to realign

the spin vector with respect to the optical beam propagation
direction. Then

Ŝy ≈ −h̄s sin φ̂, (5.19)

LI f̂
ŵ→ −γ bs cos φ

[
f

(
m+ 1

2 , φ, x, t
)

−f
(
m− 1

2 , φ, x, t
)]

. (5.20)

Although this looks like the jump term in Eq. (2.2), the
apparent jump probability density is again negative. To make
the classical connection, assume that m is continuous and
approximate the difference as a derivative:

LI f̂
ŵ→ −γ bs cos φ

∂

∂m
f (m,φ, x, t), (5.21)

which becomes equivalent to the drift term in Eq. (2.2) with
Am = γ bs cos φ.

Finally, let us consider the terms L̂±f̂ L̂
†
± in Eq. (5.6). It is

not difficult to show that, in the continuous φ limit,

L̂±f̂ L̂
†
±

ŵ→ |a|2
2

{
1

2
[f (m,φ + κ, x, t) + f (m,φ − κ, x, t)]

± sin(2κm)f (m,φ, x, t)

}
. (5.22)

These terms do not have exact analogs in the corresponding
classical equation [Eq. (2.14)], unless we make the κ 

〈�φ̂2〉1/2 approximation, which gives

L̂±f̂ L̂
†
±

ŵ→ |a|2
2

{
f (m,φ, x, t) + κ2

2

∂2

∂φ2
f (m,φ, x, t)

± sin(2κm)f (m,φ, x, t)

}
(5.23)

≈ |a|2
2 [1 ± sin(2κm)] f (m,φ, x, t). (5.24)

Summarizing, a classical model of atomic magnetometry can
be obtained if we approximate the spherical phase space as a
cylindrical one near the equator, assume m is continuous, and
let κ 
 〈�φ̂2〉1/2. The resulting equations for f (m,φ, x, t)
and g(m,φ, x, t) are

df = dt

(
LCf − γ bs cos φ

∂f

∂m
+ |a|2κ2

2

∂2f

∂φ2

)

+
∑

µ=+,−

(
d�µ − |a|2

2
dt

) (
2λµ

|a|2 − 1

)
f, (5.25)

−dg = dt

(
L∗

Cg + γ bs cos φ
∂g

∂m
+ |a|2κ2

2

∂2g

∂φ2

)

+
∑

µ=+,−

(
d�µ − |a|2

2
dt

) (
2λµ

|a|2 − 1

)
g, (5.26)

λ± = |a|2
2

[1 ± sin(2κm)] . (5.27)

The equivalent system equation for mt is then

dmt = dtγ bt s cos φt , (5.28)

where φt is a Wiener process with dφ2
t = |a|2κdt . Unlike the

Gaussian model [12,13,18], this slightly more general model
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shows that the z component of the spin is coupled to φt

via Larmor precession, as one would expect from classical
dynamics, since Sx ≈ h̄s cos φ when s � m. The diffusion of
φ would therefore reduce the estimation accuracy in the long
run.

To make the Gaussian approximation, let 〈φ̂t 〉, 〈�φ̂2
t 〉1/2 


1, so that cos φt ≈ 1, and let xt be a Gaussian random
process, such as the Ornstein-Uhlenbeck process [13,18]. If
κ〈m̂〉, κ〈�m̂2〉1/2 
 1, and the effective noise covariances
are 〈λ±〉 ≈ |a|2/2, one can use the linear Mayne-Fraser-
Potter smoother [1,3,34], which combines the estimates and
covariances from a predictive Kalman filter and a retrodictive
Kalman filter, to produce the optimal estimate of xt . Other
equivalent linear smoothers may also be used [1].

VI. HARDY’S PARADOX IN PHASE SPACE

In this section, I shall study Hardy’s paradox [19] in
phase space using the quantum smoothing quasiprobability
distribution defined by Eq. (4.9), which allows one to estimate
quantum degrees of freedom given past and future observations
in a way closely resembling classical estimation theory. The
more physical and intuitive Feynman-Wootters distribution is
used, since its elements all correspond to actual paths in the
setup.

As a brief review of the paradox, consider two Mach-
Zehnder interferometers, one for a positron and one for
an electron, depicted in Fig. 2. If the interferometers are

physically separate, then the setup can be configured so
that the particles always arrive at the C+ and C− detectors,
respectively. Now let us make one arm of an interferometer to
overlap with an arm of the other. After the first pair of beam
splitters, the two particles may meet in the overlapping arms,
in which case they annihilate each other with probability 1.
With this overlapping setup, there is a 1/16 probability that
the particles will arrive at D+ and D−, respectively, according
to quantum theory.

The paradox arises when one tries to use classical reasoning
to estimate which arms the particles went through. If D+
detects a positron, then the electron must have been in the
overlapping arm to somehow influence the positron to go to
D+ instead of C+. The same reasoning can be applied when
D− detects an electron, which should mean that the positron
was in the overlapping arm. But if both particles went through
the overlapping arms, they should have annihilated each other
and would not have been detected.

Denote the position of a particle in one arm as 0 and that
in the other arm as 1, as shown in Fig. 2. At the time instant
labeled 0,

|�〉0 = |0, 0〉, (6.1)

where the first number in the ket denotes the position of the
positron, the second number denotes that of the electron, and
the subscript is the time label. The corresponding two-particle
Wigner distribution using Eqs. (4.1) and (4.4) is

f0(q+, q−, p+, p−) =

⎛
⎜⎜⎜⎝

f0(0, 0, 0, 0) f0(0, 0, 0, 1) f0(0, 0, 1, 0) f0(0, 0, 1, 1)

f0(0, 1, 0, 0) f0(0, 1, 0, 1) f0(0, 1, 1, 0) f0(0, 1, 1, 1)

f0(1, 0, 0, 0) f0(1, 0, 0, 1) f0(1, 0, 1, 0) f0(1, 0, 1, 1)

f0(1, 1, 0, 0) f0(1, 1, 0, 1) f0(1, 1, 1, 0) f0(1, 1, 1, 1)

⎞
⎟⎟⎟⎠ (6.2)

= 1

4

⎛
⎜⎜⎜⎝

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠ . (6.3)

After the first pair of beam splitters,

|�〉1 = 1

2
(|0, 0〉 + |0, 1〉 + |1, 0〉 + |1, 1〉) , (6.4)

f1(q+, q−, p+, p−) = 1

4

⎛
⎜⎝

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎠ . (6.5)

There is a 1/4 chance that an annihilation of the particles
occurs. If the annihilation does not occur, the a posteriori

quantum state is

|�〉2 = 1√
3

(|0, 0〉 + |0, 1〉 + |1, 0〉) , (6.6)

f2(q+, q−, p+, p−) = 1

12

⎛
⎜⎝

4 0 0 0
2 0 2 0
2 2 0 0
1 −1 −1 1

⎞
⎟⎠ . (6.7)

The Wigner distribution has negative elements and can no
longer be regarded as a classical phase-space probability
distribution. The negative elements, as one shall see later,
can be regarded as the culprits that cause the paradox.
The predictive marginal distributions are still non-negative,
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FIG. 2. (Color online) Setup of Hardy’s paradox.

however. In particular,

f2(q+, q−) ≡
∑

p+,p−
f2(q+, q−, p+, p−) (6.8)

=

⎛
⎜⎜⎜⎝

f2(0, 0)

f2(0, 1)

f2(1, 0)

f2(1, 1)

⎞
⎟⎟⎟⎠ = 1

3

⎛
⎜⎜⎜⎝

1

1

1

0

⎞
⎟⎟⎟⎠ , (6.9)

which correctly predicts the a posteriori position probability
distribution if one measures the positions of the particles at
that instant using strong measurements. Most importantly,
f2(1, 1) = 0, and the probability that one measures both
particles in the overlapping arms with strong measurements
is zero. After the second pair of beam splitters, the quantum
ket is

|�〉3 = 1

2
√

3
(−|0, 0〉 + |0, 1〉 + |1, 0〉 + 3|1, 1〉) , (6.10)

and the Wigner distribution becomes

f3(q+, q−, p+, p−) = 1

12

⎛
⎜⎜⎜⎝

0 0 0 1

0 2 0 −1

0 0 2 −1

4 2 2 1

⎞
⎟⎟⎟⎠ , (6.11)

f3(q+, q−) = 1

12

⎛
⎜⎝

1
1
1
9

⎞
⎟⎠ , (6.12)

which again correctly predicts the probability distribution of
detection outcomes, conditioned upon the observation that
annihilation did not occur.

Now let us perform retrodiction and calculate the retro-
dictive Wigner distribution conditioned upon the detection
outcomes. Given that D+ and D− click, it can be shown that

g2(q+, q−, p+, p−) = 1

4

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

⎞
⎟⎟⎟⎠ , (6.13)

which estimates that the particles had definite momenta
(p+, p−) = (1, 1) at time instant 2. Combining prediction
and retrodiction, the smoothing quasiprobability distribution
at time instant 2 becomes

h2(q+, q−, p+, p−) ∝ f2(q+, q−, p+, p−)g2(q+, q−, p+, p−)

=

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ , (6.14)

h2(q+, q−) =

⎛
⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎠ . (6.15)

Hence, given that the annihilation did not occur and D+
and D− click, the particles must both have been in the
overlapping arms according to quantum smoothing. This result
contradicts with the fact that annihilation did not occur and
the particles could not have met, but is consistent with the
classical reasoning that leads one to the same paradoxical
conclusion. Mathematically, the paradox arises because the
predictive estimation according to f2(q+, q−) contradicts the
smoothing estimation according to h2(q+, q−), with the former
ascertaining that the particles cannot both be in the overlapping
arms, while the latter insisting the opposite.

To see why this cannot happen in classical estimation
theory, assume for the time being that f2(q+, q−, p+, p−)
is nonnegative and therefore a qualified joint probability
distribution for (q+, q−, p+, p−). Then

f2(1, 1) =
∑

p+,p−
f2(1, 1, p+, p−) = 0 (6.16)

if and only if

f2(1, 1, p+, p−) = 0 for all (p+, p−). (6.17)

If f2(1, 1, p+, p−) is zero, the smoothing probability
h2(1, 1, p+, p−) must also be zero,

h2(1, 1, p+, p−) ∝ f2(1, 1, p+, p−)g2(1, 1, p+, p−) = 0,

(6.18)

h2(1, 1) =
∑

p+,p−
h2(1, 1, p+, p−) = 0, (6.19)

and smoothing would also conclude that the particles could
not have both been in the overlapping arms. In other words,
in classical estimation, if the predictive theory estimates
with certainty that the two particles cannot both be in the
overlapping arms, then no amount of measurements afterwards
can alter the certainty of this fact.

Quantum smoothing, on the other hand, contradicts
with quantum prediction because some elements of
f2(1, 1, p+, p−) are negative. This way f2(1, 1) can still
be zero with nonzero f2(1, 1, p+, p−) elements, and
h2(1, 1, p−, p+) and h2(1, 1), conditioned upon the detection
outcomes, can become nonzero. The negative elements of
f2(q+, q−, p+, p−) thus cause prediction and smoothing to
produce contradictory trajectories.

013824-8



OPTIMAL WAVEFORM . . . . II. APPLICATIONS TO . . . PHYSICAL REVIEW A 81, 013824 (2010)

If the detection outcomes are different, say, C+ and D−
click, then

g2(q+, q−, p+, p−) = 1

4

⎛
⎜⎜⎜⎝

0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0

⎞
⎟⎟⎟⎠ , (6.20)

h2(q+, q−, p+, p−) =

⎛
⎜⎜⎜⎝

0 0 0 0

0 0 0 0

0 2 0 0

0 −1 0 0

⎞
⎟⎟⎟⎠ , (6.21)

h2(q+, q−) =

⎛
⎜⎜⎜⎝

0

0

2

−1

⎞
⎟⎟⎟⎠ , (6.22)

and we have a negative “probability.” Leaving aside the
question of interpreting a negative probability [21], h2(q+, q−)
still suggests that the most likely positions are (q+, q−) =
(1, 0), which are consistent with classical reasoning. Similarly,
when C+ and C− click, the most likely (q+, q−) according to
h2(q−, q+) is (0, 0), which is again what one would expect
from a classical argument. In this example at least, the most
likely positions suggested by quantum smoothing therefore
coincide with the ones obtained by qualitative classical
reasoning, as depicted in Fig. 3.

FIG. 3. (Color online) The most likely paths undertaken by
the particles indicated by quantum smoothing given the detection
outcomes, provided that annihilation did not occur. These paths
coincide with those suggested by qualitative classical reasoning.
When D+ and D− click, the estimated paths, as shown in the
bottom-right figure, contradict with the fact that annihilation did not
occur and the two particles could not have both been in the overlapping
arms.

To summarize, the quantum phase-space smoothing ap-
proach is able to reproduce the salient features of Hardy’s
paradox and identify the negativity of f2(q+, q−, p+, p−)
as the culprit that makes the classical phase-space picture
and quantum theory incompatible. f2(q+, q−, p+, p−) should
be measurable experimentally, as it is simply the expected
value of the operator Ŵ (q+, p+)Ŵ (q−, p−)/4 for the quantum
state |�〉2. In light of the paradox, one might be tempted to
dismiss the quantum smoothing distribution as meaningless,
but its usefulness for sensing applications and correspondence
with classical reasoning suggests that it is still a valuable
computational and conceptual tool for quantum information
processing applications and offers an alternative view of the
quantum reality.

VII. CONCLUSION

In conclusion, the time-symmetric smoothing theory is
extended to account for discrete variables in classical systems,
quantum systems, and observations. To illustrate the extended
theory, atomic magnetometry and Hardy’s paradox are stud-
ied using quantum phase-space smoothing. The generalized
smoothing theory outlined in this paper is expected to be
useful in future quantum sensing and information processing
applications.
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APPENDIX: OBTAINING THE QUANTUM SMOOTHING
DISTRIBUTION BY WEAK MEASUREMENTS

In the case of continuous variables, the quantum smoothing
distribution can be obtained from the statistics of weak position
and momentum measurements, conditioned upon past and
future observations [3]. One may also apply a similar method to
the discrete-variable case. Interestingly, the statistics of weak
measurements naturally lead to a 2N × 2N phase space.

Consider consecutive q and p measurements of a quantum
system. Let the measurement operators be

M̂(yq) = √
Cq

N−1∑
q=0

exp

[
εq

2
cos

2π

N
(yq − q)

]
|q〉〈q|, (A1)

M̂(yp) = √
Cp

N−1∑
p=0

exp

[
εp

2
cos

2π

N
(yp − p)

]
|p〉〈p|, (A2)

where Cq,p are normalization constants and εq,p parametrize
the measurement strengths and accuracies. The probability
distribution of yq and yp, conditioned upon past and future
observations, is

P (yq, yp)

= tr [ĝM̂(yp)M̂(yq)f̂ M̂†(yq)M̂†(yp)]

tr(ĝf̂ )
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= CqCp

N tr(ĝf̂ )

∑
q,q ′,p,p′

exp

[
2πi(p′q ′ − pq)

N

+ εq

2
cos

2π (yq − q)

N
+ εq

2
cos

2π (yq − q ′)
N

+ εp

2
cos

2π

N
(yp − p) + εp

2
cos

2π

N
(yp − p′)

]
×〈p′|ĝ|p〉〈q|f̂ |q ′〉. (A3)

Let

q̄ = q + q ′

2
, u = q ′ − q

2
, p̄ = p + p′

2
, v = p′ − p

2
.

(A4)

Applying trigonometric identities, one obtains

P (yq, yp)

= CqCp

N tr(ĝf̂ )

∑
q,q ′,p,p′

exp

[
4πi(vq̄ + p̄u)

N

+ εq cos
2π (yq − q̄)

N
+ εp cos

2π (yp − p̄)

N

− 2εq cos
2π (yq − q̄)

N
sin2 πu

N

− 2εp cos
2π (yp − p̄)

N
sin2 πv

N

]

×〈p̄ + v|ĝ|p̄ − v〉〈q̄ − u|f̂ |q̄ + u〉. (A5)

Utilizing the periodic nature of the above expression, one can
change the sum in terms of (q, q ′) to a sum in terms of (q̄, u),

N−1∑
q=0

N−1∑
q ′=0

→ 1

2

∑
q̄,u

, (A6)

q̄ ∈
{

0,
1

2
, . . . , N − 1

2

}
, (A7)

u ∈
{
−N

2
+ 1

2
,
N

2
+ 1, . . . ,

N

2

}
, (A8)

likewise for (p, p′) and (p̄, v), and the matrix elements
〈p̄ + v|f̂ |p̄ − v〉 and 〈q̄ − u|ĝ|q̄ + u〉 are assumed to be zero
whenever p̄ + v, p̄ − v, q̄ − u, or q̄ + u is not an integer.

Thus,
P (yq, yp)

= NCqCp

tr(ĝf̂ )

∑
q̄,p̄

exp

[
εq cos

2π (yq − q̄)

N

+ εp cos
2π (yp − p̄)

N

]
g̃(q̄, p̄)f̃ (q̄, p̄), (A9)

where

f̃ (q̄, p̄) = 1

2N

∑
v

exp

[
−2εq cos

2π (yq − q̄)

N
sin2 πu

N

]

× exp

(
4πip̄u

N

)
〈q̄ − u|f̂ |q̄ + u〉, (A10)

g̃(q̄, p̄) = 1

2N

∑
u

exp

[
−2εp cos

2π (yp − p̄)

N
sin2 πv

N

]

× exp

(
4πivq̄

N

)
〈p̄ + v|ĝ|p̄ − v〉. (A11)

In the limit of infinitesimally weak measurements and
εq,p 
 1,

f̃ (q̄, p̄) ≈ 1

2N

∑
v

exp

(
4πip̄u

N

)
〈q̄ − u|f̂ |q̄ + u〉, (A12)

g̃(q̄, p̄) ≈ 1

2N

∑
u

exp

(
4πivq̄

N

)
〈p̄ + v|ĝ|p̄ − v〉, (A13)

which are precisely the discrete Wigner distributions in the
2N × 2N phase space. Equation (A9) becomes

P (yq, yp) = CqCp

∑
q̄,p̄

exp

[
εq cos

2π (yq − q̄)

N

+ εp cos
2π (yp − p̄)

N

]
h̃(q̄, p̄), (A14)

and can be regarded, from the perspective of classical
probability theory, as the probability distribution for noisy
q and p measurements, when the system has a phase-space
distribution given by the quantum smoothing distribution
h̃(q̄, p̄). h̃(q̄, p̄) can therefore be obtained in an experiment
with small εq,p by measuring P (yq, yp) for the same ĝ and f̂

and deconvolving Eq. (A14).
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Gisin, and W. T. Strunz, Phys. Rev. A 61, 022108 (2000).

[27] A. S. Holevo, Statistical Structure of Quantum Theory (Springer-
Verlag, Berlin, 2001); L. Bouten, R. van Handel, and M. R.
James, SIAM J. Control Optim. 46, 2199 (2007).

[28] G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J.
Carmichael, Phys. Rev. Lett. 85, 3149 (2000); H. Nha and
H. J. Carmichael, ibid. 93, 020401 (2004); R. Garcı́a-Patrón,
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