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Fundamental modes of a trapped probe photon in optical fibers conveying periodic pulse trains
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Wave modes induced by cross-phase reshaping of a probe photon in the guiding structure of a periodic train
of temporal pulses are investigated theoretically with emphasis on exact solutions to the wave equation for the
probe. The study has direct connection with recent advances on the issue of light control by light, the focus
being on the trapping of a low-power probe by a temporal sequence of periodically matched high-power pulses
of a dispersion-managed optical fiber. The problem is formulated in terms of the nonlinear optical fiber equation
with averaged dispersion, coupled to a linear equation for the probe including a cross-phase modulation term.
Shape-preserving modes which are robust against the dispersion are shown to be induced in the probe, they form
a family of mutually orthogonal solitons the characteristic features of which are determined by the competition
between the self-phase and cross-phase effects. Considering a specific context of this competition, the theory
predicts two degenerate modes representing a train of bright signals and one mode which describes a train of
dark signals. When the walk-off between the pump and probe is taken into consideration, these modes have
finite-momentum envelopes and none of them is totally transparent vis-à-vis the optical pump soliton.
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I. INTRODUCTION

Optical solitons have been the subject of intense investiga-
tions in variable-dispersion media because of the great poten-
tial they offer for both fundamental research and technological
applications in optical communications [1]. Particularly inter-
esting are the techniques of dispersion management [1] and
wavelength-division multiplexing (WDM), the first stands for
means to design optical fiber lines with a periodically varying
dispersion where the peak power of the dispersion-managed
(DM) soliton, as a steady pulse [2], can be made larger so that
the signal-to-noise ratio is improved. As for the second, the
large gain bandwidth of modern amplifiers favors multiplexing
of several DM pulse solitons onto a single fiber link using
WDM. DM solitons have demonstrated evident potentials
for WDM and are thus a very attractive choice as robust
transmission mode in all-optical, long-distance transmission
lines.

One promising application which exploits the stability of
optical solitons is the gating communication process [3–8],
where DM pulses are expected to provide a robust bench
for optical beam traps and reshaping. A key factor making
such a process feasible is the possibility to vary the separation
between multiplexed pulses due to their mutual interactions
via the DM technique [9], such that a sequence of mutually
interacting DM pulses can imprint a periodic structure [6,10]
within the fiber acting like a lattice of optical waveguides
(i.e., traps). Since some pioneer works [11] reporting a
possible reshaping of probe photons by means of cross-phase
modulation, in recent years a large amount of experiments
has been performed on various materials and gives evidence
that solitons are prime candidates for controlling light by
light [12–15]. Quite interesting, via this control it is possible
to trap low-power signals which are essentially dispersives
(i.e., linear) with high-power pulses that are robust against
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the dispersion. In this last respect optical-soliton-guided
photon implementations can be very beneficial in the storage,
transport, and routing of qubits [16,17], where the reshaped
photon beams can acquire solitonic properties (which we refer
to as photosolitons) thus increasing bit rates and propagation
distances. In particular the soliton-guiding implementation
offers the possibility to design self-reconfigurable waveguide
circuits which are able to convey shape-preserving photonic
waves of wavelengths equal or different from the pump
solitons, as envisaged e.g. in all-optical switching [18] and
beam-steering waveguide devices.

Here we address the problem from the standpoint of
fundamental physics, considering a photon trapped in the
waveguiding structure of a periodic sequence of temporal
pulses delivered by an optical fiber. As this issue is of great
current interest, it is of primary importance to highlight
salient features of the system predicted by an exact treatment
of the theoretical models suggested for this phenomenon
[3,4,8,19,20].

II. THE MODEL AND FUNDAMENTAL SOLITON
SOLUTIONS OF THE PROBE EQUATION

The generic wave equations for the pump-probe system are
represented by the coupled set [3–5,8]

i
∂q

∂z
− 1

2
D(z)

∂2q

∂t2
+ ξ |q|2q = 0, (1)

i
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− 1

2
Dp(z)

∂2A

∂t2
+ iλ

∂A

∂t
+ β|q|2A = 0, (2)

where Eq. (1) is the variable-dispersion optical fiber equation
[10] and Eq. (2) is the equation for the photon probe
[3–5,8]. The quantities q and A are envelopes of the pump
and probe, respectively, D(z) and Dp(z) are their respective
group velocity dispersions, and ξ is the nonlinear coupling
coefficient of the pump source. λ in the second equation is
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the walk-off between the probe and optical pump while β

measures the strength of the cross-phase interaction between
the pump and probe.

As we are interested in optical signals generated in the
anomalous regime of the group-velocity dispersions, it should
be stressed that Eq. (1) is not integrable and so provides no
exact analytical solution [21]. For this last reason, variational
approaches have been suggested, such as the collective-
variable method [22] in which a known trial function is
used to describe analytically the pulse propagation along the
fiber. In particular, the variational method has been recently
employed [23–26] to derive the evolution equations for the
amplitude, width, and chirp of DM solitons considering the
lowest modes of the Hermite-Gaussian profile [27]. However,
Gaussian pulses are actually not robust enough to retain a
full solitonic shape [28,29] and hence represent very crude
approximations of the exact solution to the nonlinear optical
fiber equation (1). The recognition of this shortcoming recently
motivated new considerations for more appropriate variational
pulses of the variable-dispersion nonlinear fiber equation,
based on seeking for the exact solution to this equation but
with a constant dispersion. The last picture is known as the
averaged-dispersion approach and furnishes an efficient way
of managing the fiber variable dispersion without sacrificing
the fundamental feature of the signal, related principally to its
solitonic properties [30–33].

Here we shall follow this last picture, averaging the wave
Eqs. (1) and (2) over one map of the periodic dispersion in
order to find exact expressions of the DM pulse solitons for the
optical pump, and in turn for the probe. Setting 〈D(z)〉 = −1,
we obtain the following steady-state DM soliton solution for
the pump [10,34,35]:

q(z, t) = Q√
ξ
dn[Q(t − t0 − ωz), κ]ei[ωt+ κ2ω2

2 z+ Q2−2ω2

2 z], (3)

in this expression dn is the Jacobi elliptic function of modulus
κ while Q is the amplitude and ω is the characteristic frequency
of the soliton. The Jacobi elliptic function dn is periodic in its
arguments (z, t) and for the solution (3), the temporal period
is T = 2K(κ)/Q where K(κ) is the elliptic integral of the first
kind.

The many physical virtues of the Jacobi elliptic waves, con-
nected with the problem of soliton transmission in nonlinear
optical fibers, have been discussed at length [10,30,34,35]. Its
main distinctive feature resides in the balance between the
fiber dispersion and self-phase modulation (or nonlinearity)
that guarantees the existence of such a shape preserving, well
matched, yet interacting multiple pulses signal profile in the
optical fiber. As for the question of which specific physics
of the averaged-dispersion optical fiber is best described by
such periodic structure, this issue has been addressed in
Ref. [30] from the standpoint of fundamental mathematical
physics by solving the averaged-dispersion equation for the
single optical fiber, with appropriate boundary conditions.
Thus the author established that the dn solution may be
a suitable simplified representation of the state of inline
time-division-multiplexing of co-propagating pulses [30], a
fact which can be emphasized by more elementary arguments
exploiting Fourier series representations of the dn function.
Indeed, let us assume an optical fiber with an input signal

consisting of a massive injection of single pulses at equal
time interval τ0 in a multiplexer at the fiber entry z0. Suppose
the amplitude of the time-multiplexed pulses can readily be
represented by the formal expression [9]:

|qs(z0, t)| = Qn

N∑
n=1

sechQn (t − tn − ωnz0), (4)

where N is the number of injected pulses, Qn and ωn are the
amplitude and central frequency of the nth pulse, respectively,
while tn = t0 + nτ0 is its initial temporal position. As pulses
in the soliton lattice are equally separated, the multiplexing
should be collisionless such that no frequency shift occurs.
However, this is possible provided all pulses have same
central frequency ω0 and equal amplitude Q0. With these
considerations, the sum over n in Eq. (4) becomes exact and the
amplitude of the initial input signal after multiplexing, reduces
exactly to a dn function [36–38] of time coordinate. It is worth-
while underlining that this one-to-one equivalence between the
dn solution and the sum over the constituent individual pulses,
can enhance substantially our theoretical ability to formulate
the multiplexing of identical pulse signals. Namely it offers
the possibility to express characteristic parameters of the dn

soliton as functions of parameters of individual pulses, hence
permitting a better control of the stability of the dn-form pulse
multiplex by judiciously choosing characteristic parameters of
the constituent individual pulses.

Returning to the set of equations (1) and (2), we next look
for shapes and characteristic parameters of the probe waves
governed by Eq. (2). In this purpose, remark that since the
nonlinearity in this equation is entirely related to the cross-
phase term, any nonlinear wave that may be induced in the
probe should be considered as a degenerate mode of the pump
signal acting like an optical trap. To ensure full account of the
time-multiplexing of the input pump at the fiber entry, we must
then express the envelope of the probe as

Ak(z, t) = u(t)e−i[kz−φ(t)], (5)

where u(t) is the core of the probe wave envelope, k is the
wave vector associated with its spatial modulations, and φ(t)
is a characteristic temporal phase. Inserting Eq. (5) in Eq. (2)
and taking Dp = −d(d > 0) we obtain

−∂2u

∂τ 2
+

[
β

ξd
κ2sn2(τ ) − h(k)

]
u = 0, φt = −λ

d
, (6)

τ = Q(t − t0), h(k) = β

ξd
− ε

Q2d
, ε = k − 3λ2

2d
. (7)

By setting


(
 + 1) = β

ξd
, (8)

Eq. (6) becomes

uττ + [h(k) − 
(
 + 1)κ2sn2(τ )]u = 0, (9)

which is Lamé’s equation [39–41]. Note that when κ = 1, this
equation can be reduced to the associated Legendre equation
as obtained in [8] in the case of a photon trapped by two
interacting pulses which retain their individual shapes.
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The Lamé equation possesses a rich spectrum with a great
variety of eigenmodes [42], but the most interesting to us are
those displaying a permanent profile in accordance with their
solitonic properties. These modes are more exactly the bound
states of the Lamé equation, and because their formation via
the cross-phase effect involves low cost to the pump in terms
of momentum transfers they can be looked out like the ground-
state modes of the spectrum of trapped states in the probe. The
discrete states of Lamé’s equation form a complete set of finite
orthogonal modes which population depends on the integer
quantum number 
 [40,41]. Quite remarkably, according to
formula (8) the value of 
 is determined by the competition
between the self-phase-modulation effect responsible for the
fiber nonlinearity and the cross-phase modulation effect on the
probe exerted by the pump trap. We consider the lowest value
of 
, corresponding to the condition β = 2ξd and for which

 = 1. This leads to the following family of modes:

u(1)(τ ) = u1cn(τ − τ0), k(1) = kλ + Q2d, (10)

u(2)(τ ) = u2dn(τ − τ0), k(2) = kλ + (2 − κ2)Q2d, (11)

u(3)(τ ) = u3sn(τ − τ0), k(3) = kλ + (1 − κ2)Q2d. (12)

In addition, to form a complete set of mutually orthogonal
states, the three probe modes (10)–(12) equally display a
number of interesting physical properties the most striking
being their shape preserving property. However, unlike the
pump soliton which shape-preserving feature and periodic
pulse matchings are entirely governed by the balance between
the fiber dispersion and nonlinearity, for the probe the com-
petition between the self-phase and cross-phase interactions
is the governing factor of both the existence and stability of
periodic structures in the probe.

The quantity kλ = 3λ2/2d appearing in Eqs. (10)–(12)
introduces a finite low-energy cutoff in characteristic momenta
of the three modes, and reflects the walk-off preventing
fully transparent (i.e., dispersionless) modes in the probe.
Physically, this means it costs a finite amount of energy to
the pump to create each of the three modes in the presence of
the walk-off.

In Fig. 1, intensity profiles of the three fundamental modes
are sketched for arbitrary values of their constant amplitudes
ui=1,2,3 and for the value κ = 0.95 of the Jacobi elliptic
modulus. It is quite noticeable that all of them represent
nonlinear signals, but with distinct solitonic features. Indeed, if
we proceed to an analysis of the three Jacobi elliptic functions
in Eqs. (10)–(12) via their Fourier series representations
similar to Eq. (4), we realize that the two first modes mimic
two sequences of pulse signals with different characteristic
momenta, while the third mode is equivalent to a periodic train
of kink-shaped (i.e., dark) solitons. Moreover, the two first
modes are of higher momenta as formulas (10)–(12) suggest,
and in addition represent two mutually degenerate states in
the probe ground state in which energies and shapes coincide
in the limit κ → 1. We note about this last observation that
in the limit κ → 1, both cn and dn transform to sech (i.e.,
a single bright soliton mode) while sn becomes tanh (i.e.,
a single dark soliton mode). Also instructive to point out,
in the absence of the walk-off the probe mode describing a
dark soliton lattice has a vanishing momentum and hence is
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FIG. 1. Temporal profiles of the intensities |Ak(0, t)| of the cn

(top), dn (middle), and sn (bottom) photosoliton modes for the value
κ = 0.95 of the Jacobi elliptic modulus.

totally transparent vis-à-vis the optical bright soliton lattice
constituting the pump.

III. CONCLUDING REMARKS

In summary, we carried out a systematic investigation of the
low-energy modes of a probe photon trapped in the periodic
sequence of temporal pulses delivered by an optical fiber
with averaged dispersion. Our interest to these specific modes
stems from their expected shape-preserving property which is
desired to stabilize trapped states with long lifetime in the
probe via the cross-phase modulation. We established that
from the standpoint of fundamental physics, these fundamental
modes are discrete states of the Lamé equation forming a com-
plete set of mutually orthogonal photosoliton modes, which
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characteristic parameters are determined by the competition
between the self-phase-modulation effect of the pump and the
cross-phase-modulation effect of the optical pump on the probe
photon. In particular, this competition governs the spectral
broadening of the states associated with the photon trapping
thus fixing the exact number of induced photosoliton modes.

In Ref. [8], using the model Eqs. (1) and (2) the authors
proposed an implementation describing the trapping of one
photon by an optical soliton from a Kerr nonlinear medium.
They have shown that the equation governing modes induced
in the probe by cross-phase modulation could be represented as
the associated Legendre eigenvalue equation, and determined
conditions for the existence of a mode with a robust shape
profile in the case of a pulse soliton trap. They established
numerically that because of the robustness of this probe-
carrying wave mode, the photon could be transferred between
the captor soliton and another soliton with a minimum
detrimental effect on the shape of the trapped photon mode,
except possible energy losses from the phase shifts induced by
collisions between the two interacting Kerr optical solitons.

It is nowadays widely established that the propagation
of a photon packet can significantly impact their emission
and transfer, due to parametric recombinations and down
conversions of the input photons in a nonlinear waveguiding
structure. This manifests itself in several aspects of the
emission and transfer processes, including the correlations of

the matched modes and, depending on the phase-matching
conditions, in the output spectrum which can be radically
altered by multiple collisions between the guiding pulses.
The degree of entanglement within a multisoliton signal is
thus highly dependent on the robustness of the multiplexing
process, and in the case of matched soliton signals forming
a waveguiding structure the photon transfer can become
seriously embedded by processes like quantum phase noises,
alteration of the waveguiding structure [6,8], and so on, if
collisions between the guiding solitons are not controllable.
In this last respect, the perfect matching of interacting pulses
within the dn soliton multiplex stands for a very powerful mean
for overcoming several of these shortcomings, in particular the
robustness of this periodic structure is a relevant minimizing
factors of energy loss which is one of most important
detrimental processes to be expected during the photon-
mode transfer in an optical waveguide involving multiple
interacting pulses.
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