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Optical pulse propagation with minimal approximations
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Propagation equations for optical pulses are needed to assist in describing applications in ever more extreme
situations—including those in metamaterials with linear and nonlinear magnetic responses. Here I show how
to derive a single first-order propagation equation using a minimum of approximations and a straightforward
“factorization” mathematical scheme. The approach generates exact coupled bidirectional equations, after which
it is clear that the description can be reduced to a single unidirectional first-order wave equation by means
of a simple “slow evolution” approximation, where the optical pulse changes little over the distance of one
wavelength. It also allows a direct term-to-term comparison of an exact bidirectional theory with the approximate
unidirectional theory.
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I. INTRODUCTION

In recent years, the propagation of optical pulses under ever
more extreme conditions has been the subject of significant
attention. This situation has arisen primarily because of the
multitude of applications [1]: e.g., where ultrashort pulses are
relied on to act as a kind of strobe lamp to image ultrafast
processes [2,3] or where the electric field profile of a pulse [4,5]
is engineered to excite specific atomic or molecular responses.
Other motivations are systems where strong nonlinearity is
used to construct equally wide-band but also temporally
extended pulses—i.e., (white light) supercontinua [6–8]—or
even come full circle and use the strong nonlinearity to
generate substructure that is again temporally confined, as
in optical rogue waves [9], or even the temporally and
spatially localized filamentation processes [10,11]. Further,
developments in electromagnetic metamaterials [12–14] lead
to a requirement for including magnetic dispersion or even
magnetic nonlinearity [15].

It is clear, therefore, that progress toward shorter pulse
durations as well as their increasing spectral bandwidths
and higher pulse intensities—as well as exotic propagation
media—are all factors either stretching existing pulse propa-
gation models to their limits or breaking them. In such regimes,
we need to be sure that our numerical models still work and
have a clear idea of what has been neglected and what the
side effects of those approximations are. Most existing pulse
propagation models make sequential approximations that can
have unforeseen side effects. In contrast, in this article, I show
how a straightforward and relatively simple derivation allows a
side-by-side comparison of exact and approximate propagation
equations, while still providing the numerical and analytical
convenience of a first-order wave equation.

The analysis of optical pulse propagation traditionally
involves describing a pulse in terms of a complex field
envelope, while neglecting the underlying rapid oscillations at
its carrier frequency. The resulting “slowly varying envelope
approximation” (SVEA) (see, e.g., Ref. [16]), which reduces
second-order differential equations to first order, is valid when
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the envelope encompasses many cycles of the optical field and
varies slowly. Starting with the second-order wave equation,
other auxiliary assumptions are required to get the final result
of a first-order wave equation: the introduction of a comoving
frame, and the neglect of usually negligible second-order
spatial derivatives. Although it is now easily possible to choose
to solve Maxwell’s equations numerically instead (see, e.g.,
Refs. [17–21]), the approach lacks the intuitive picture of a
pulse “envelope” and tends to be computationally demanding.

Many attempts have been made to generalize the SVEA
style of derivation, and perhaps the most notable of these
was that of Brabec and Krausz [19]. By slightly relaxing
one assumption, they derived corrections to the SVEA, which
they included in their “slowly evolving wave approximation”
(SEWA). This enabled the few-cycle regime to be modeled
with improved accuracy, and the SEWA has subsequently
been applied in different situations, including ultrashort IR
laser pulses in fused silica [22,23], the filamentation of
ultrashort laser pulses in air [24], and even in microstructured
optical fibers [25]. Later, Porras [26] proposed a slightly
different “slowly evolving envelope approximation” (SEEA)
that included corrections for the transverse behavior of the
field; and Kinsler and New [27] took the process as far as it
would go with their “generalized few-cycle envelope approx-
imation” (GFEA). Although the wave equation generated by
the GFEA was generally too complicated for practical use,
its derivation exposes one important point: extending SVEA
style derivations into wide-band situations exposes the user to
a number of poorly controlled side effects [28]. Many other
styles of dervivation also exist (see, e.g., Refs. [29–31]), but
most use similar approximations and apply them sequentially.

Here I will show that an alternative “factorization” style
of derivation we can achieve the simplicity of a first-order
wave equation for optical pulse propagation but avoid the
unpleasant side effects of the traditional approach. Early but
rather limited examples are by Shen [16], Blow and Wood [32],
and perhaps Husakou and Herrmann [33]; more recently (and
more rigorously) we have Ferrando et al. [34] and Genty
et al. [35]. The mathematical basis of the factorization shown
in this article relies on Ferrando et al. [34], but here I make a
point of generating wave equations incorporating most optical
effects—both electric and magnetic dispersion, diffraction,

1050-2947/2010/81(1)/013819(12) 013819-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.013819


PAUL KINSLER PHYSICAL REVIEW A 81, 013819 (2010)

second- and third-order nonlinearity, angle-dependent refrac-
tive indices, and so on. In particular, prior to any approxima-
tions being applied, there is an (explicitly bidirectional) stage
where two counterpropagating wave equations are coupled
together. This provides us with an important insight: that a
simple “slow evolution” approximation is all that is needed to
obtain a unidirectional first-order wave equation, irrespective
of the origin of the coupling.

In this article I give a description of a modern approach
to optical pulse propagation applicable to most situations
that occur in nonlinear optics. This is a regime where we
want to model the most general situations possible, while
avoiding having to do a full numerical simulation of Maxwell’s
equations. Starting with a general form of the second-order
wave equation in Sec. II, I follow with discussion the important
role of the choice of propagation direction in Sec. III, which
in nonlinear optics is usually in space and not in time. In
Sec. IV, I introduce the method of factorization that allows us
to construct an explicitly bidirectional model and which is then
reduced to the unidirectional limit in Sec. V, where nonlinear
pulse propagation is typically applied. Section VI discusses
typical modifications that can be applied to the equations given
in Secs. IV and V in order to and simplify them appropriately
and compare them to existing models; while Sec. VII gives
specific examples for the common cases of propagation media
with second- and third-order nonlinearities. The article is then
summarized in Sec. VIII.

II. SECOND-ORDER WAVE EQUATION

Most optical pulse problems consider a uniform and source
free dielectric medium. In such cases a good starting point
is the second-order wave equation for the electric field,
which results from the substitution of the �∇ × �H = ∂t

�D + �J
Maxwell’s equation into the �∇ × �E = −∂t

�B one (see, e.g.,
Ref. [36]), although here I also allow for free currents �J .
Magnetic effects can also be incorporated—easily so in the
case of linear magnetic dispersion, but also it is possible to
retain a term for more general magnetic effects. However,
cases where either the permittivity ε(ω) or the permeability
µ(ω) are negative are not excluded.

A sufficiently general model of the dielectric response in
the time domain is

�D(�r, t) = ε(t) � �E(�r, t) (1)

= ε0εL(�r, t) � �E(�r, t) + ε0 �Pε( �E, �r, t), (2)

where the scalar εL contains the linear response of the material
that is both isotropic1 and lossless (or gainless); since here it is
a time-response function, it is convolved with the electric field
�E. Note that the field vectors �E, �D, and indeed the material
parameter εL are all functions of time t and space �r = (x, y, z);
the polarization �Pε is a function of time t , space �r , and field
�E. The following derivation also allows for magnetoelectric
polarizations, i.e., those where �Pε also depends on �H , although
I do not explicitly include such a dependence in the notation.

1The isotropy of εL (and later of µL) is both important and useful.

Similarly, the magnetization response is

�B(�r, t) = µ(t) � �H (�r, t) (3)

= µ0µL(�r, t) � �H (�r, t) + µ0 �Mµ( �H, �r, t), (4)

where the scalar µL contains the linear response of the material
that is both isotropic and lossless (or gainless). Note that �H ,
�B, and µL are all functions of time t and space �r = (x, y, z);
the magnetization �Mε is a function of time t , space �r , and field
�H . The following derivation also allows for magnetoelectric

magnetizations, i.e. those where �Mµ also depends on �E,
although I do not explicitly include such a dependence in the
notation.

Since here I have chosen to incorporate the “simple” linear
responses of the propagation medium in εL and µL, the
remaining parts �Pε , �Mµ will usually be in part electric and
magnetic field dependent, and incorporate effects such as
birefringence, angle dependence, and nonlinearity; it should
also incorporate any loss [37]. For example, �Pε might contain
a scalar nonlinearity such as third-order Kerr nonlinearity with
Pnl ∝ ( �E · �E) �E, or a (vector) second-order nonlinearity. Note
that it is not always necessary or desirable to include all the
simple linear responses in εL and µL, some may be left in �Pε ,
�Mµ; as will be discussed later. Alternatively, and in accordance

with [37] we could choose to pick εL and µL such that εLµL is
real, rather than each being real valued on its own. However,
this would alter the handling of the �J , �Pε , and �Mµ terms.

Defining �∇ = (∂x, ∂y, ∂z) and ∂a ≡ ∂/∂a, ε0µ0 = 1/c2,
and current density �J , we can write the exact second-order
wave equation as

c2 �∇ × �∇ × �E(t) = −∂2
t [µL(t) � εL(t) � �E(t)]

− ∂2
t [µL(t) � �Pε(t)] − µ0µL(t) � ∂t

�J

−∂t

[ �∇ × �Mµ(t)

ε0

]
. (5)

Here I have suppressed the space coordinates and electric field
dependence for notational simplicity. The (usual) next step is to
replace �∇ × �∇ × �E above with the identity �∇ �∇ · �E − �∇2 �E,
where as usual �∇2 = ∂2

x + ∂2
y + ∂2

z . Initially this might look

overcomplicated, since �∇ �∇ · �E adds in some extra terms (e.g.,
a ∂2

z Ez) which are then canceled by the same term from �∇2 �E.
However, since the field divergence is an important Maxwell’s
equation, splitting the double curl operation in this way turns
out to be advantageous.

For the case of a free charge density ρ, and with the same
separation of the material response as used above, Maxwell’s
equations tell us that

�∇ · �D = ρ = ε0 �∇ · [εL � �E + �Pε] (6)

= ε0εL � �∇ · �E + ε0[ �∇εL] · � �E + ε0 �∇ · �Pε (7)

=⇒ εL � �∇ · �E = −�∇ · �Pε − ρ, (8)

so for an isotropic εL, we can use �∇εL = 0; note that
isotropy also implies field independence. The frequency
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domain changes convolutions into products, so that we have

ε0εL(ω) �∇ · �E(ω) = ρ(ω) − �∇ · �Pε(ω) (9)

�∇ · �E(ω) = ρ(ω)

ε0εL(ω)
−

�∇ · �Pε(ω)

εL(ω)
. (10)

Note that the left-hand side of this equation (i.e., �∇ · �E) seems
to be potentially large, since it consists of field derivatives.
However, the divergence condition reveals that with no free
charge it is simply �∇ · �Pε/εL, which merely is of the order of
the nonlinearity or anisotropy of ε; both of which are small
in typical systems. Since �∇[ �∇ · �E] is typically much smaller
than �∇2 �E, it can reasonably be considered as a correction to a
propagation dominated by �∇2 �E.

As a result, we find that the replacement of �∇ × �∇ × �E by
−�∇2 �E + �∇ �∇ · �E not only achieves this valuable minimiza-
tion, but it also reduces the remaining spatial derivatives to the
simple �∇2 �E. The side effect is that we now need to compute
�∇ �∇ · �Pε , which may well be a complicated function of �E; it
also gives rise to phenomena such as nonlinear diffraction term
(see, e.g., Ref. [38]).

The second-order wave equation is best written in the
frequency domain, because of the need to divide the divergence
term by the frequency dependent εL; and so is

−c2 �∇2 �E(ω) = ω2∂2
t εL(ω)µL(ω) �E(ω) + ω2µL(ω) �Pε(ω)

+ ıωµL(ω) �J (ω) + ı
ω

ε0

�∇ × �Mµ

− c2

εL(ω)
�∇

[
�∇ · �Pε(ω) − ρ(ω)

ε0

]
. (11)

For plane polarized pulses, a scalar version allowing for
just one of the linear polarization components is sufficient.
However, for materials that couple the horizontal and per-
pendicular polarizations together, such as the χ (2) interaction
relied on by optical parametric amplifiers (OPA) or oscillators
(see, e.g., Ref. [39]), we could write one equation for each
polarization and then find that they were coupled together by
the nonlinearity.

The wave equation in Eq. (11) contains both current �J
and charge density ρ terms, which are usually interdependent.
These terms are not often important in pulse propagation, so
I do not discuss their modeling; appropriate treatments can
be seen in the literature on optical filamentation (see, e.g.,
Ref. [40]).

III. PROPAGATION DIRECTION

In this article I will not be considering strong reflections
from material modulations or interfaces. Nevertheless, con-
sidering simple reflections is an excellent way of clarifying
some important issues that arise when we choose whether to
propagate pulses forward in time or forward in space.

Temporal propagation is the usual choice in finite difference
time domain (FDTD) modeling of Maxwell’s equations
[41,42], where fields �E(x, y, z), �H (x, y, z) are stepped for-
ward in time t ; exitations of the field (i.e., optical pulses)
then evolves backward or forwards in the space coordinates
(x, y, z). We therefore set up initial conditions covering each
point in space at a chosen initial time ti ; likewise we read out
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FIG. 1. (Color online) An ordinary reflection at an interface
between media with permittivities ε1 and ε2, in a t-propagated picture.
An incoming pulse propagates forward (in t) and evolves forward (in
z) until it reaches an interface, whereupon it splits into a transmitted
pulse and a normal reflected pulse; the reflected pulse then evolves
backward in space as both transmitted and reflected pulses continue
to propagate forward in time.

our final state for each point in space at a chosen final time tf , as
shown in Fig. 1. This choice requires a time-response treatment
of dispersion, perhaps involving convolutions; however, as also
shown by Fig. 1, it provides natural reflections.

Spatial propagation is the usual choice in nonlinear
optics and optical pulse propagation, where fields
�E(t, x, y), �H (t, x, y) are stepped forward in a chosen spatial

direction (z); exitations of the field (i.e., optical pulses) then
evolves backward or forwards in time and space coordinates
(t, x, y). We therefore set up initial conditions covering each
point in time at a chosen point in space zi ; likewise we read
out our final state for each point in time at a chosen point in
space zf , as shown in Fig. 2. Comparison of figs. 1 and 2 also
show that to be correctly modeled, an ordinary reflection from
the interface back to our initial point must be included in our
initial conditions. Unfortunately, we will usually not know the
properties of this reflection in advance, so we will not include it
in the initial conditions. As a result, our solution of Maxwell’s
equations at the interface creates the mirror image pulse that
is needed to exactly cancel out the ordinary reflection. Next,
since we have chosen to propagate solely toward larger z, this
mirror image “‘reverse reflection” pulse now evolves forward
in space z but backward in time t , as shown in Fig. 2.

We see, therefore, that if we want to take advantage of the
benefits of spatial propagation, notably the eficient handling
of dispersion, we will also not want to be modeling systems
containing significant reflections. Indeed, this issue motivated
the time-propagated model of Scalora et al. [30,43,44], which
are based on the second-order wave equation; however, that
approach suffers some of the same drawbacks as other
tradition pulse propagation techniques. To handle a temporally
propagated model based on a second-order wave equation, it
is best to use that for the displacement field �D rather than for
�E; since time derivatives of �D appear directly in Maxwell’s

equations, whereas those for �E are complicated by the material
response.
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FIG. 2. (Color online) A reflection at an interface between media
with permittivities ε1 and ε2, in a z-propagated picture. An incoming
pulse propagates forward (in z) and evolves forward (in t) until it
reaches an interface, whereupon it splits into a transmitted pulse
and its reverse reflection; the reverse reflected pulse then evolves
backward in time as both transmitted and reflected pulses continue
to propagate forward in space. A reverse reflection is the means by
which a spatially propagated system represents a pulse propagating
backward in z so it cancels the ordinary reflection missing from the
initial conditions.

A. Spatial propagation

The first step to achieving a first-order wave equation
containing the necessary physics but without unnecessarily
complex approximations is to reorganize the wave Eq. (5)
to emphasize contributions that by themselves can freely
propagate forward and backward without interacting. To do
this I choose a specific propagation direction (e.g., along the z

axis) and then denote the orthogonal components (i.e., along
x and y) as transverse behavior; many situations are also
cylindrically symmetric, allowing simplification of the two
transverse dimensions x, y into a single radial coordinate r .
I therefore rearrange Eq. (11) into

[
∂2
z + β2(ω)

] �E(ω) = −�∇2
⊥ �E(ω) − k2

0µL
�Pε(ω)

− ık0µLc−1 �J (ω) − ık0c �∇ × �Mµ

+ 1

εL(ω)
�∇

[
�∇ · �Pε(ω) − ρ(ω)

ε0

]
,

(12)

where k2
0 = ω2/c2 and β2(ω) = k2

0n
2 = ω2ε0µ0εL(ω)µL(ω);

k2
0 = ω2/c2. Here all the simple linear response (e.g., the

isotropic refractive index and dispersion) has been moved
to the left-hand side as a (possibly) frequency dependent
propagation wave vector; the residual responses (i.e., �Pε and
�Mµ) contain any non-ω dependence, angle-dependent terms,

nonlinearity or spatial variation. Note that defining β(ω) is a
matter of choice, in some cases we may find it convenient to
define it to be frequency independent; in others we might (e.g.)
even decide to retain some angle dependence, perhaps even to
the point of generating a spherical “in-out” bidirectional model
rather than a linear forward-backward one.

IV. FACTORIZATION

I now factorize the wave equation, a process which, while
used in optics for some time [32] has only recently been used
to its full potential [34,35,45]. Factorization neatly avoids
almost all of the approximations necessary in the standard
approach and its extensions [19,27,31,39] (etc.)—which are
in fact much more complicated than they first appear, as has
been shown by detailed analysis [27,28]. A major advantage
of factorization is that we can directly compare the exact
bidirectional and approximate unidirectional theories term for
term, whereas in other approaches the backward parts simply
vanish and are not directly available for comparison. Perhaps
the clearest recent description of the approximations made in a
standard (nonfactorization) derivation of a unidirectional wave
equation is by Berge and Skupin [40]. That work discussed the
filamentation resulting from nonlinear self-focusing effects,
so that they incorporated the role of the longitudinal field
components and included a model for a plasma connecting the
�J and ρ contributions—here I retain these terms, but the reader

is referred to Berge and Skupin [40] for a specific model.
Factorization takes its name from the fact that the left-hand

side of Eq. (12) is a simple sum of squares which might
be factorized, indeed this is what was done in 1989 in a
somewhat ad hoc fashion by Blow and Wood [32]. Since the
factors are just (∂z ∓ ıβ), each by itself looks like a forward
(or backward) directed wave equation. A rigorous factoriza-
tion procedure [34,46], of which some basics are given in
Appendix A, allows us to define a pair of counterpropagating
Greens functions and so divide the second-order wave equation
into a bidirectional pair of coupled first-order wave equations.
That these factorized equations are equivalent to the original
second-order wave equation is proven by taking their sum
and differences, then substituting one into another with the
assistance of a derivative with respect to z, as explained by
the authors of Ref. [34].2 Further, even in the approximate
unidirectional limit, the factorized wave equations have been
shown by Genty et al. [35] to give a stunning level of agreement
with pseudospectral spatial domain (PSSD) [21] Maxwell
equations simulations.

Before proceeding, it is worth reiterating an important
point—the choice of εL(ω) and µL(ω), and therefore of β(ω)
in Eq. (12), defines the specific Greens functions used; it
therefore also defines the underlying basis on which we will
then propagate the electric field �E.

As an aside, the interested reader may wish to examine
the mathematical “wave-splitting” work of Weston and others
(see, e.g., Ref. [47]), although it does not consider residual
terms and (at least initially) was primarily concerned only
with reflections and scattering. This was based on that from the
earlier work of Beezley and Krueger [48], who applied wave-
splitting concepts to optics. Other similar work is the one-
way wave equation of Leviandier [49], and other directional
schemes have been suggested by Kinsler et al. [50] and Kolesik
et al. [51]. It is also interesting to compare and contrast
the factorization scheme used here with beam propagation
methods (BPM, e.g., Refs. [29,52]). For example, the treatment

2See Sec. IV.B of this reference.
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of Van Roey et al. [29] also begins using Green’s functions
which define a chosen reference propagation. Thus, while
those BPM methods might (in principle) be developed in a
way which matches the benefits of the factorization scheme
I present here, to my knowledge no such implementation has
been published.

A. Bidirectional wave equations

A pair of bidirectional wave equations suggests similarly
bidirectional fields, so I split the electric field into forward
( �E+) and backward ( �E−) directed parts, with �E = �E+ + �E−.
In the following equations I have reinstated the �E argument of
�Pε (and �H of �Mµ) to emphasize that they depend on the total

field; an important point since we see that �Pε , �Mµ, diffraction,
and other terms drive both forward and backward equations
equally.

Using the procedure summarized in Appendix A, the
second-order wave equation in Eq. (12) can be converted into
a pair of coupled bidirectional first-order wave equations for
the directed fields �E±. They are

∂z
�E±(ω) = ±ıβ(ω) �E±(ω) ± ı �∇2

⊥
2β(ω)

[ �E+(ω) + �E−(ω)]

± ık2
0(ω)µL

2β(ω)
�Pε( �E+ + �E−, Ez, ω)

∓ k0(ω)µL

2β(ω)c
�J (ω) ∓ k0(ω)c

2β(ω)
�∇ × �Mµ

± ı

2β(ω)εL(ω)
�∇

[
�∇ · �Pε(ω) − ρ(ω)

ε0

]
. (13)

Since k0 = ω/c, such factors convert to a (scaled) time deriva-
tive when these frequency domain equations are transformed
into the time domain.

B. Propagation, evolution, and directed fields

Note that since our solutions of the wave equations enforce
propagation toward larger z, the fields E±(t) are directed
forwards and backward in time; these fields then evolve
forwards and/or backward in time as z increases. Note that I use
this terminology (propagated, directed, evolved) throughout
this article to mean these three specific and distinct concepts.

When examining the wave equation Eq. (13) which evolves
the directed fields E± as they propagate forward in z, we see
that the right-hand side has two types of terms, which I label
the “underlying” and “residual” parts [37].

Underlying evolution is that given by ±ıβ(ω)E± term and
is determined by our chosen εL(ω) and µL(ω). By itself, it
would describe a plane-wave–like evolution where the field
oscillations would move forward (+) or backward (−) in time
across E±(t). This is analogous to the choice of reference when
constructing directional fields [50] or the refractive index term
n2

0 used in the BPM [29].
Residual evolution accounts for the discrepancy between

the true evolution and the underlying evolution and is every
part of the material response not included in εL(ω) or µL(ω);
i.e., it is all the remaining terms on the right-hand side of
Eq. (13). These typically include any nonlinear polarization,
angle-dependent linear terms, and the transverse effects; they
are analogous to the correction terms used in directional

fields models or the refractive index perturbation �n2 used
in BPM [29]. In the language used by Ferrando et al. [34],
these residuals are “source” terms. Although we might hope
they will be a weak perturbation, so that we could make the
(desirable) unidirectional approximation discussed later, the
factorization procedure is valid for any strength.

C. Underlying evolution: choice of β and the resulting E±

I now examine how the choice of β affects the relative sizes
of the forward and backward directed E+ and E−. To do this I
consider the simple example of a medium for which the field is
known to propagate with wave vector k; but for demonstration
purposes we choose an underlying evolution determined by a
wave vector β that is different from k. For example, for a linear
isotropic medium we could exactly define k2 = β2 + �2; but
in general we would just have some residual (source) term
Q. This means that our definitions of forward and backward
directed fields do not exactly correspond to what the wave
equation will actually evolve forward and backward as we
propagate toward larger z.

The second-order wave equation is (∂2
z + β2)E = −Q,

which in the linear case has Q = δ2E, so that (∂2
z + k2)E = 0.

The factorization in terms of β is then

∂zE
± = ±ıβE± ± ıQ

2β
. (14)

Now if we select the case where our field E only evolves
forward, we know that E = E0 exp[ıkz]. Consequently E±
must have matching oscillations: i.e., E± = E±

0 exp[ıkz], even
though E− is directed backward. Substituting these into
Eq. (14) gives

E−
0 = β − k

β + k
E+

0 , (15)

which specifies how much E− we need to combine with
E+ so that our pulse evolves forward; since the E− will be
dragged forward by its coupling to E+. This interdependent
E± behavior is generic—no matter what the origin of the
discrepancy between β and the true evolution of the field (i.e.
the residual or source terms such as mismatched dispersion,
nonlinearity, diffraction, etc), some nonzero backward directed
field E− must exist but still evolve forwards with E+.
Analogous behavior can be seen in the directional fields
approach of Kinsler et al. [50].

Usually we hope that this residual E− contribution is small
enough so that it can be neglected. If we assume E− � 0, then
we find that k � β + �2/2β, which is just the expansion of
k = (β2 + �2)1/2 to first order in �2/β2. Following this, we
find that Eq. (15) then says that E−

0 � (�2/4β2)E+
0 , which has

come full circle and provided us with the scale on which E−
can be considered negligible. Outside the restricted (linear)
case where we know �2, the true wave vector k might be
difficult to determine and in nonlinear propagation may even
change as the pulse propagates.

There is a further important point to notice: if we choose
β = β(ω) with a frequency dependence, then we see that
the sourcelike terms [e.g. diffraction, polarization, etc.; or
�2 in Eq. (14)] inherit that dispersion. This means that
even if we started with polarization model with instantaneous
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nonlinearity, our factorized equations no longer have instanta-
neous nonlinear terms, as they have become “antidispersed” by
the factor of β(ω)−1; as indeed have the other residual terms.
This matches exactly what happens in the directional fields
approach of Kinsler et al. [50], where choosing a dispersive
reference has an equivalent effect on the correction terms.

V. UNIDIRECTIONAL WAVE EQUATIONS

Making only a single well-defined type of approximation
I can now reduce the exact coupled bidirectional evolution of
�E⊥ down to a single unidirectional first-order wave equation.
I do not require a moving frame, a smooth envelope, or to
assume inconvenient second-order derivatives are somehow
negligible: all these are frequently required in standard treat-
ments, and even extensions use them [19,26,27,30,31,39]. The
approximation is that the residual terms are weak compared to
the (underlying) ±ıβ �E term—e.g., weak nonlinearity, angle
dependence, and diffraction. This enables me to assert that if
I start with �E− = 0, then �E− will remain negligible—see my
estimate in subsection IV C. In this context, “weak” means that
no significant change in the backward field is generated in a
distance shorter than one wave period (“slow evolution”) and
that small effects do not build up gradually over propagation
distances of many wavelengths (“no accumulation”).

Slow evolution is where the size of the residual terms is
much smaller than that of the underlying linear evolution—i.e.,
smaller than β �E. This allows us to write down straightforward
inequalities which need to be satisfied. It is important to note
the close relationship between these and a good choice of β, as
discussed in subsection IV C. If β is not a good enough match,
there always be significant contributions from both forward
and backward directed fields; and even if nothing ends up
evolving backward, an ignored backward directed field will
result in miscalculated nonlinear effects, since the total field
�E = �E+ + �E− will be different to the assumed value of �E+.

No accumulation occurs when the evolution of any back-
ward directed field �E− is dominated by its coupling via the
residual terms to the forward directed field �E+; and not by its
preferred underlying backward evolution. No accumulation
means that forward-evolving field components do not couple
to field components that evolve backward; this the typical
behavior since the phase mismatch between forward-evolving
and backward-evolving components is ∼2β; in essence it
is comparable to the common rotating wave approximation
(RWA). This rapid relative oscillation means that backward-
evolving components never accumulate, as each new addition
will be out of phase with the previous one; it is not quite a
“no reflection” approximation, but one that asserts that the
many microreflections will not combine to produce something
significant. An estimate of the conditions required to break this
approximation are given in Appendix B; generally speaking
this is a much more robust approximation than the slow evolu-
tion one. Of course, periodic spatial modulation of the medium
gives periodic residual terms, and these can be engineered
to force phase matching. In most contexts this would be a
periodicity based on a relatively small phase mismatch (see,
e.g., quasi phase matching in Boyd [39]); but might even go
as far as matching the backward wave (see, e.g., Ref. [53]).

It is also important to note that the same small size of pertur-
bation from the residual terms can accumulate on the forward-
evolving field components (or, indeed, the backward pertur-
bation on the backward-evolving field components). Although
the magnitude of the residual terms acting on the forward
and backward field evolution are identical, forward-evolving
components of the residuals can accumulate on the forward-
evolving field because they are phase matched, whereas
backward residuals are not and rapidly average to zero.

A. Polarization and magnetization

To see most clearly how different optical effects satisfy this
slow evolution criteria, I will split the total polarization �Pε into
pieces:

µL(t) � �Pε( �E, �r, t) = φε( �E, t) � �E(�r, t) + �Vε( �E, �r, t)
= φL( �E, t) � �E(�r, t)

+φN ( �E, t) � �E(�r, t)
+ �VL( �E, �r, t) + �VN ( �E, �r, t). (16)

The part which is scalar in nature is represented by φε ; it might
contain linear parts and time response (φL), but can also be a
function of transverse wave vector (i.e., be angle dependent)
or contain nonlinear contributions φN such as the third-order
Kerr nonlinearity with φN

�E ∝ ( �E · �E) �E. The vector part �Vε

would typically be, e.g., a second-order nonlinearity, which
couples the ordinary and extraordinary field polarizations.
Note that this description of the material parameters does not
restrict allowed values of ε in any way; they can include any
order of nonlinearity.

The same can be done for �Mµ, the nonisotropic and non-
linear (i.e., the non-µL) part of the magnetization. However,
the calculations will all follow the same basic pattern that they
do for �Pε , albeit somewhat complicated by the curl operation.
Since magnetic nonlinearity is rarely present when considering
optical propagation, I leave detailed assessment of such effects
to later work.

B. Residual terms and slow evolution

Now I will treat each possible residual term in order, where
the oppositely directed field is negligible: i.e., for �E±, we have
that �E∓ � 0, where the scalar εL contains the linear response
of the material that is both isotropic and lossless (or gainless);
since here it is a time-response function, it is convolved with
the electric field �E. Note that the field vectors �E, �D, and indeed
the material parameter εL are all functions of time t and space
�r = (x, y, z); the polarization �Pε and its components φε , �Vε

are a functions of time t , space �r , and the field �E.
Below I will refer to field components Ei , where �E ≡

(Ex,Ey,Ez) and i ∈ {x, y, z}; also to wave vector components
ki from �k = (kx, ky, kz), with k2

⊥ = k2
x + k2

y . However, note
that in the constraints below, that k⊥ is also used as a substitute
symbol to represent any one of kx , ky , or k⊥.

First, we have the diffraction term �∇2
⊥ �E, which is linear.

For i, j ∈ {x, y}, and in transverse wave vector space, the
criteria is

ık2
j |E+

i + E−
i |/2β

ıβ|E±
i | � ık2

j |E±
i |/2β

ıβ|E±
i | = k2

j

2β2
� 1. (17)
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This is just the criterion already given in Ref. [54] and is
identical to the standard paraxial criteria. This diffraction
constraint applies only to the transverse behavior of the pulse;
it does not constrain the pulse’s intensity, temporal bandwidth,
or field profile in any way.

Second, scalar polarization terms φε , which can be either
linear (φL) or nonlinear [φN ( �E)]. These might encode, e.g.,
some of the dispersion, birefringence, or perhaps an angle-
dependent refractive index; if nonlinear they might arise from,
e.g., a third-order nonlinearity. Such terms give us the criterion

ıφε |E+
i + E−

i |/2β

ıβ|E±
i | � ıφε |E±

i |/2β

ıβ|E±
i | = φε

2β2
� 1. (18)

In the linear case, φ ≡ φL is independent of �E, so only
the material parameters are constrained, the pulse properties
play no role. In the nonlinear case, e.g., for a third-order
nonlinearity, as already treated in Refs. [35,45], we have φ ≡
φN � χ (3)| �E+|2. Thus the nonlinear criteria makes demands
on the peak intensity of the pulse—but does not apply
smoothness assumptions or bandwidth restrictions.

Third, linear and nonlinear terms from �Vε . These will have
a criterion broadly the same as the scalar cases in Eq. (18), but
with �Vε replacing φε

�E. Thus for i ∈ {x, y, z}, we can write
down constraints for each component of the vector �Vε , which
are

ık2
0 |Vε,i |/2β � ıβ|E±

i | =⇒ |Vε,i | � 2
β2

k2
0

|E±
i |. (19)

In the linear case, �Vε ≡ �VL, and since �VL and �E have some
linear relationship, this criterion only constrains the material
parameters contained in �VL, not the pulse. In the nonlinear
case, �Vε ≡ �VN , the same holds except just as for scalar
nonlinear terms, the peak pulse intensity is restricted; e.g.,
for a χ (2) medium, | �VN | ∼ χ (2)| �E|.

However, one complication of the vector cases is that
a field consisting of only one field polarization component
(e.g., E+

x ) may induce a driving in the orthogonal (and
initially zero) components (e.g., E±

y ). Hence both E±
y fields

will be driven with the same strength, so it is far from obvious
that we can set E−

y to zero, but still keep the E+
y without being

inconsistency. However, as described above, it is the phase
matching which ensures that forward residuals accumulate,
while the nonmatched backward residuals are subject to the
RWA and become negligible: hence we can still rely on
Eq. (19), albeit under caution.

Fourth, we have the divergence term �∇ �∇ · �Pε . Often this
term is considered negligible and discarded even before writing
down the second-order wave equation; nevertheless we should
test it. Here we consider just scalar linear or nonlinear terms
φ, but the arguments can be adapted to vector terms as
done above; in any case the results are comparable. For
i, j ∈ {x, y, z}, we have

ıkikj |P +
j + P −

j |/2β � ıβ|E±
i |

kikj

2β2
φ|E+

j + E−
j | � |E±

i |. (20)

There are four distinct cases to consider here but only two
resulting criteria. First, if i ∈ {x, y}, then whether j ∈ {x, y}

or j ≡ z we find that

k2
⊥

2β2
|φ| � 1 (21)

since |Ez|/|Ei | ∼ k⊥/β; this we see that this is a combination
of both the diffraction and nonlinear criteria and is thus easily
satisfied. For the second, where i ≡ z, all the wave vector
contributions cancel, leaving simply

|φ| � 1. (22)

It is thus directly comparable to the scalar nonlinear criteria
above and equally likely to be satisfied; the comparable vector
criteria are k2

⊥Vi/2β2 � Ei and Vi � Ei .
Fifth, we must consider the charge density ρ and charge

current �J . These criteria are simple to write down, but whether
they are satisfied will depend on the initial conditions and
the response of how these are modeled to the propagating
pulse. This is something that may need to be checked during
simulation or solution of the pulse propagation, and not
assumed beforehand, although Berge and Skupin [40] discuss
the issues in the context of optical beam filamentation. The
charge and current constraints are

|ρ|
2β2ε0|εL| � |Ei |, (23)

k0µL|Ji |
2β2c

� |Ei |. (24)

Sixth, a constraint on the non-µL magnetization �Mµ can
also be written down, although (as already discussed) I leave
the details for later work. It is

k0c

2β2
| �∇ × �Mµ| � |Ei |. (25)

Here the curl operator might often be expected to return a value
of order β, so with k0 ∼ β we have c| �Mµ|/2 � |Ei |.

To summarize, the diffraction criterion asserts the beam
must be sufficiently paraxial, the linear criteria asserts the
material must have weak dispersion, and the nonlinear criteria
assert the nonlinear effect must be weak. Paraxiality is
determined by our experimental conditions and can thus
be guaranteed if desired, and for most optical materials,
the dispersion is sufficiently weak—except perhaps in the
vicinity of resonances or band gaps. Weak nonlinearity is
invariably guaranteed by material damage thresholds, since the
material suffers damage long before nonlinear effects become
strong—nevertheless, the effects of such strong nonlinearities
on unidirectional approximations have been analytically and
numerically studied [45]. Finally, it is worth noting that each
criterion is independent of the others, so each effect can be
tested for separately.

C. Unidirectional equation for �E+

In the case where all of the wavelength-scale slow-evolution
criteria listed above hold, we can be sure that the backward
directed field �E− is negligible, and if the no-accumulation
condition also holds, then neither will there be any backward-
evolving contributions to the field. Consequently, we can be
sure that an initially negligible �E− remains so, and again with
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k0 = ω/c, the bidirectional Eq. (13) simplifies to

∂z
�E+(ω) = +ıβ(ω) �E+(ω) + ı �∇2

⊥
2β(ω)

�E+(ω)

+ ık2
0(ω)µL

2β(ω)
�Pε( �E+, ω) − k0(ω)µ0

2β(ω)c
�J (ω)

− k0(ω)c

2β(ω)
�∇ × �Mµ( �H+) + ı

2β(ω)εL(ω)

× �∇
[

�∇ · �Pε( �E+, ω) − ρ(ω)

ε0

]
. (26)

Here now the polarization �Pε , diffraction, and divergence
are solely dependent on the forward directed field ( �E+).
Likewise the magnetization term �Mµ should be considered
as being solely dependent on the forward directed field
( �H+)—although we will need to estimate the value of �H+

using the known electric field �E+. Since we are in a slow
evolution approximation, a good estimate for the components
of �H+ will simply be those of �E+ scaled by ε0(εL/µL)1/2c;
so that (e.g.) H+

y depends on E+
x . Also, the �∇ × �Mµ will be

dominated by the z dependence of its x and y components, so
that it will typically generate factors of order β| �Mµ|.

Although I have included magnetic effects in the derivation
of Eq. (26), I do not consider specific cases in detail, as has
been done for plane-polarized light in, e.g., Refs. [55–57]. The
derivations in those articles are “traditional” in the sense that
each consists of multiple interim stages at which an additional
approximation is applied; it is instructive to compare those
derivations with mine, in particular, e.g., all apply bandwidth
limitations, and discard various high-order derivative terms
that are not specific to their choice of propagation medium.
Although Scalora et al. [55] is the least aggressive in this
respect, it does not allow for magnetic nonlinearity.

VI. MODIFICATIONS

Let us now consider some of the strategies used in
other approaches, some of which were required in order to
get approximations that eventually achieved a sufficiently
simple evolution equation. In particular, the various envelope
equations (e.g., Refs. [19,27,30,31], and even Refs. [56,57])
all use comoving frames and/or envelopes as a preparation
for discarding inconvenient derivatives: here such steps are
optional extras. In this factorization approach shown here,
none of these were required, but they nevertheless may be
useful. Examples are as follows:

1. A comoving frame can now be added, using t ′ = t − z/vf .
This is a simple linear process that causes no extra
complications; the leading right-hand side ıβE+ term is
replaced by ı(β ∓ kf )E±, for frame speed vf = ω1/kf .
Note that setting β = kf will freeze the phase velocity of
a pulse centered at ω1, not the group velocity.

2. The field can be split up into pieces localized at certain
frequencies, as done in descriptions of OPAs or Raman
combs (as in, e.g., Refs. [27,58,59]). The wave equation can
then be separated into one equation for each piece, coupled

by the appropriate frequency-matched polarization terms
(see, e.g., Ref. [60]).

3. A carrier-envelope description of the field is not re-
quired but can easily be implemented with the usual
prescription of [39,61] E(t) = A(t) exp[ı(ω1t − k1z)] +
A∗(t) exp[−ı(ω1t − k1z)] defining the envelope A(t) with
respect to carrier frequency ω1 and wave vector k1; this also
provides a built in a comoving frame vf = ω1/k1. Multiple
envelopes centered at different carrier frequencies and wave
vectors (ωi , ki) can also be used [39,60].

4. Bandwidth restrictions might be added (see below), either
to ensure a smooth envelope or to simplify the wave
equations; in addition they might be used to separate out
or neglect frequency mixing terms or harmonic generation.
As it stands, no bandwidth restrictions were applied when
deriving Eq. (26)—there are only the limitations of the
dispersion and/or polarization models to consider.

5. Mode averaging is where the transverse extent of a
propagating beam is not explicitly modeled but is subsumed
into a description of a transverse mode profile; as such it
is typically applied to situations involving optical fibers
or other waveguides. See, e.g., Ref. [62] for a recent
approach, which goes beyond a simple addition of a
frequency dependence to the “effective area” of the mode
and generalizes the effective area concept itself.

A wave equation like that derived above, but limited to
describing propagation in optical fibres (i.e., a dispersive and
third-order nonlinear material), has already been studied [35];
but it did not consider the effects of diffraction or angle
dependent refractive index, vector polarization terms, or the
divergence of �Pε . It did, however, show a stunning level of
agreement between undirectional envelope and PSSD [21]
Maxwell equations simulations in the case of optical carrier
wave shocking—even though it described the pulse using an
envelope!

If desired, we can easily recover wave equations that match
the SEWA and SVEA wave equations already in common use,
by applying bandwidth constraints to our field, and making
approximations based on them. First, we set k0 = ω0(1 + δ)/c,
with δ = (ω − ω0)/ω0. Then assume that our field �E+ has a
bandwidth much smaller than the carrier frequency ω0, so that
�E(ω0(1 + δ)) is only non-negligible for δ � 1; thus we can

now assume δ2 � 0. This bandwidth constraint amounts to
an assumption about the smoothness of the pulse in the time
domain. The k2

0 factor now simplifies to k2
0 � ω2

0(1 + 2δ)/c2,
and hence we get a nonenvelope but otherwise SEWA-like
wave equation [19], which is

∂z
�E+(ω) = +ı(β(ω) − kf ) �E+(ω) + ı

2β(ω)
�∇2

⊥ �E+(ω)

+ ıω2
0µL

2c2β(ω)

[
1 + 2

ω − ω0

ω0

]
�Pε( �E+(ω), ω).

(27)

The next level of bandwidth-limiting approximation takes us
back to an equation matching the venerable SVEA. To achieve
this we take such narrow-band fields that we can set δ � 0,
and so
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∂z
�E+(ω) = +ı(β(ω) − kf ) �E+(ω) + ı

2β(ω)
�∇2

⊥ �E+(ω)

+ ıω2
0µL

2c2β(ω)
�Pε( �E+(ω), ω). (28)

Neither of these (SEWA-like, SVEA-like) wave equations are
required to incorporate an envelope-carrier description of the
fields or a comoving frame as demanded by the usual SEWA
or SVEA derivations; the moving frame specified by kf above
is a mere convenience, and kf may be set to zero. Strictly
speaking, to match the SEWA or SVEA wave equations most
closely, we should also set β to a fixed value and put all of the
remaining linear dielectric properties of the material into �Pε .

Even in the SVEA limit, the factorization technique allows
us to recover the same propagation equations as derived using
standard approaches, but this derivation now gives us a better
(and much simpler) basis on which to judge their robustness
to strong nonlinearity, angle-dependent refractive indices, and
diffraction or transverse effects. Note in particular that the
linear constraints given in Sec. V depend only on the material
properties and not on the field in any way. The nonlinear
constraints are the same, but with an additional dependence on
the peak field strength—but importantly, not its smoothness
or bandwidth.

It is important to remember that introducing an envelope
and carrier representation of the pulse remains useful. This
is because a well-chosen carrier frequency ω1 will almost
certainly provide an envelope smoother than the field itself;
this will provide a more intuitive picture but will also have
advantages for numerical computation.

VII. EXAMPLES

A. Third-order nonlinearity

Third-order nonlinearities are common in many materials,
e.g., in the silica used to make optical fibers [36]. Here I
study propagation in a comparable material but also allow
for magnetic dispersion. The propagation is based around
a wave vector reference β, where the residual frequency
dependence of the material refractive index is represented
by a dimensionless parameter κ dependent on the linear
dispersive parts of the permittivity εd and permeability µd ,
so that κ = ω(εdµd )1/2/β − 1. The instantaneous electric
third-order nonlinearity is χ (3). For plane polarized fields, the
unidirectional wave equation for E+

x (ω) can be derived from
Eq. (26), and with the usual k0 = ω/c is

∂zE
+
x = +ıβ[1 + κ]E+

x + ık2
0µL

2β

×F
[
χ (3)E2

x(t)E+
x (t)

] + ı �∇2
⊥

2β
E+

x , (29)

where F[...] is the Fourier transform that converts the time-
domain nonlinear polarization into its frequency domain form.

This is a generalized nonlinear Schrödinger (NLS) equation
but is for the full field (i.e., uses no envelope description) and
retains the full nonlinearity (i.e., retains the third-harmonic
generation (THG) term). The only assumptions made are that
of transverse fields, weak dispersive corrections κ , and weakly
nonlinear response; these all allow us to decouple the forward

and backward wave equations. This decoupling then allows us,
without any extra approximation, to reduce our description to
one of forward only pulse propagation. The specific example
chosen here is for an instantaneous cubic nonlinearity, but it
is easily generalized to noninstantaneous cases or other scalar
nonlinearities.

We can transform Eq. (29) into a NLS equation by
representing the field in terms of an envelope and carrier,
where the carrier has a fixed frequency ω1 and wave vector
k1; i.e., using

E+
x (t) = A(t) exp[ı(ω1t − k1z)]

+A∗(t) exp[−ı(ω1t − k1z)]. (30)

In the frequency domain an arbitrary frequency ω differs from
the carrier frequency ω1 by an offset �; i.e., ω = ω1 + �;
hence the frequency domain counterpart to A(t) is best
written A(�), not A(ω). We proceed by setting β to have the
constant value k1 and ignoring the off-resonant third-harmonic
generation term, which is usually very poorly phase matched.
After separating into a pair of complex-conjugate equations
(one for A, one for A∗), this gives us the expected NLS
equation with diffraction. The chosen carrier effectively
moves us into a frame that freezes those carrier oscillations,
but this differs from one that is comoving with the pulse
envelope, i.e., one moving at the group velocity vg = ∂ω/∂k.
After we transform into a frame comoving with the group
velocity, where at ω1 we have Kg = ω1(v−1

g − v−1
p ), the

frequency domain wave equation is

∂zA = +ıK(�)A + ık2
0µL

2k
F

[
χ (3)|A(t)|2A(t)

] + ı �∇2
⊥

2k
A,

(31)

with K(�) = kκ(ω1 + �) + Kg . All that has been assumed
to derive this equation is uni-directional propagation and
negligible THG. This Eq. (31) is for a magnetically dispersive
system broadly comparable to that giving rise to the Eq. (12)
of Scalora et al. [55] [henceforth Eq. (S12)3]; although I have
additionally retained diffraction and any order of dispersion.

Many instances of NLS-type equations, such as that of
Eq. (S12) or simpler forms (e.g., Ref. [36]), are written in
the time domain, which means that it is more complicated
to represent the full range of the dispersive response. When
transforming Eq. (31) into the time domain, the dispersion
term K(�)A(�) becomes a convolution—but it can also
be represented as a Taylor series in time derivatives. This
Taylor series is usually reduced to a few low-order terms,
and when using the correct group velocity, the lowest order
term is a quadratic. Also often seen in NLS equations is
the self-steepening term [again see Eq. (S12)]. This self-
steepening term be obtained from Eq. (31) by expanding
k2

0 = ω2/c2 = (ω1 + �)2/c2, in a similar manner to deriving
a SEWA-like equation as discussed in the previous section.
Then the leading term (∝ ω2

1) gives the usual nonlinear term,
while the first-order contribution (∝ 2ω1�) gives the single
time derivative needed for self-steepening in the time domain.
Also present in Eq. (S12), but not in Eq. (31), is a term

3Note that Eq. (S12) has scaled both the time and space parameters.
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proportional to χ (3) squared. Here such a term is not present
because it is second-order correction, while the unidirectional
approximation applied here is first order. While it is possible to
incorporate higher-order corrections, one has to be careful to
remain consistent and not miss other significant corrections of
the same order, nor to include unnecessary terms which should
strictly be considered negligible.

B. Second-order nonlinearity

The case of second-order nonlinearity is a little more com-
plicated, since it typically couples the two possible polarization
states of the field together [39]. For simplicity, I will avoid
an exhaustive, detailed derivation from first principles, and
instead just give example wave equations directly. Indeed, they
can be easily inferred directly from the format of the coupling
in standard treatments.

In second-order nonlinear interactions such as optical
parametric amplification (OPA) in lithium borate (LBO) using
birefringent phase-matching, two field polarizations need to
be considered. To model the cross-coupling between the
orthogonally polarized fields, it is necessary to solve for both
field polarizations and to allow for the birefringence we need
a pair of linear responses, i.e., κx(ω), κy(ω).

Since it is convenient, I split the vector form of the �E±
wave equation up into its transverse x and y components. The
propagation is based around a wave vector reference β, where
the residual frequency dependence of the material refractive
index in the x or y directions is represented by a dimensionless
parameter κi , for i ∈ {x, y}. This κi is dependent on the linear
dispersive parts of the permittivities εd,i and permeabilities
µd,i , so that κi = ω(εd,iµd,i)1/2/β − 1. The instantaneous
electric second-order nonlinear coefficient is χ (2). Based on
Eq. (26), and for second harmonic generation in the orthogonal
polarization (i.e., a type I OPA), the wave equations for E+

x (ω)
and E+

y (ω) (with the usual k0 = ω/c) are

∂zE
+
x = +ıβ [1 + κx] E+

x + ık2
0µL

2β
F

× [
2χ (2)E+

y (t)E+
x (t)

] ı �∇2
⊥

2β
E+

x (32)

∂zE
+
y = +ıβ[1 + κy]E+

y + ık2
0µL

2β
F

× [
χ (2)E+2

x (t)
] + ı �∇2

⊥
2β

E+
y , (33)

where F[...] is the Fourier transform that converts the time-
domain nonlinear polarization into its frequency domain form.
The specific example chosen here is easy to modify to allow
for or incorporate other χ (2) processes. Remarkably, it is also
strikingly similar in appearance (although not in detail) to the
usual SVEA equations used to propagate narrow-band pulse
envelopes; despite the lack of a comoving frame, and even
though they are for the field, not an envelope.

We can transform Eqs. (32), (33) into the usual equations
for a parametric amplifier by representing the x and y polarized
fields in terms of three envelopes and carrier pairs:

Ex(t) = A1(t) exp [ı(ω1t − k1z)]

+A∗
1(t) exp [−ı(ω1t − k1z)]

+A2(t) exp [ı(ω2t − k2z)]

+A∗
2(t) exp [−ı(ω2t − k2z)] (34)

Ey(t) = A3(t) exp [ı(ω3t − k3z)]

+A∗
3(t) exp [−ı(ω3t − k3z)] , (35)

where ω3 = ω1 + ω2. After separating into pairs of complex-
conjugate equations (one each for Ai , one for A∗

i ), and
ignoring the off-resonant polarization terms, Just as for the
NLS example above, we also transform into a frame comoving
with the group velocity, although here we select the group
velocity of a preferred frequency component (perhaps ω3),
with, e.g., Kg = ω3(v−1

g − v−1
p ). Choosing β for each equation

differently, i.e., with β ∈ {k1, k2, k3}, the wave equations for
the Ai(ω) are

∂zA1 = ıK1(�)A1 + ık2
0µL

2k1
F

[
2χ (2)A3(t)A∗

2(t)
]

× e−ı�kz + ı �∇2
⊥

2k1
A1 (36)

∂zA2 = ıK2(�)A2 + ık2
0µL

2k2
F

[
2χ (2)A3(t)A∗

1(t)
]

× e−ı�kz + ı �∇2
⊥

2k2
A2 (37)

∂zA3 = ıK3(�)A3 + ık2
0µL

2k3
F

[
χ (2)A1(t)A2(t)

]

× e+ı�kz + ı �∇2
⊥

2k3
A3. (38)

Here Ki(�) = kiκx(ωi + �) + Kg , with i ∈ {1, 2}; and
K3(�) = k3κy(ω3 + �) + Kg . The phase mismatch term is
�k = k3 − k2 − k1. The only approximations used to derive
these equations are unidirectional propagation and negligible
off-resonant polarization terms.

VIII. CONCLUSION

I have derived a general first-order wave equation for
unidirectional pulse propagation that allows for arbitrary
dielectric polarization, diffraction, and free electric charge
and currents; even magnetic dispersion and other magnetic
responses are allowed. After factorizing the second-order wave
equation into an exact bidirectional model, it applies the
same slow-evolution approximation to all nontrivial effects
(e.g., nonlinearity, diffraction) and so reduces the propagation
equations to a first-order unidirectional wave equation. My
derivation contrasts with typical approaches, which often rely
on a comoving frame and a sequence of different approx-
imations, such as ad hoc assumption of negligible second
derivatives. In the appropriate limits, it turns out that many
existing derivations have given similar but more restricted
results to those presented here. As a result, with minimal
adjustment, existing numerical and theoretical models could
be adapted to take advantage of this sounder theoretical basis,
more straightforward approximations, and simpler error-term
calculations.

The improved “factorization” derivation presented here
allows a term-to-term comparison of the exact bidirectional
theory with its approximate unidirectional counterpart so the
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approximation used (and its consequences) is much more
easily understood. This means that pulse propagation models
in the extreme ultrafast and wide-band limits can be made more
robust—since differences between exact bidirectional and ap-
proximate unidirectional propagation can be straightforwardly
computed.
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APPENDIX A: FACTORIZING

Here I present a simple overview of the mathematics of
the factorization procedure, since full details can be found in
Ref. [34]. In the calculations below, I transform into wave
vector space, where the z derivative ∂z is converted to ık. Also,
we have that β2 = n2ω2/c2, and the unspecified residual term
is denoted Q. The second-order wave equation can then be
written [

∂2
z + β2

]
E = −Q (A1)

[−k2 + β2]E = −Q (A2)

E = 1

k2 − β2
Q = 1

(k − β) (k + β)
(A3)

= −1

2β

[
1

k + β
− 1

k − β

]
Q. (A4)

Now (k − β)−1 is a forwardlike (Green’s function) propagator
for the field, but note that, in my terminology, it evolves the
field. The complementary backwardlike propagator is (k +
β)−1. As already described in the main text, we now write
E = E+ + E− and split the two sides up to get

E+ + E− = −1

2β

[
1

k + β
− 1

k − β

]
Q (A5)

E± = ±1

2β

1

k ∓ β
Q (A6)

[k ∓ β] E± = ± 1

2β

1

k ∓ β
Q (A7)

ıkE± = ±ıβE± ± ı

2β
Q. (A8)

Finally, we transform the wave vector space ık terms back
into normal space to give z derivatives, resulting in the final
form

∂zE
± = ±ıβE± ± ı

2β
Q. (A9)

APPENDIX B: THE NO ACCUMULATION
APPROXIMATION

In the main text, I describe the no accumulation approxi-
mation in spectral terms as a RWA approximation. However,
it is hard to set a clear, accurate criterion for the RWA

approximation to be satisfied in the general case, since it
requires knowledge of the entire propagation before it can
be justified. In this appendix, I take a different approach to
determine the conditions under which the approximation will
be satisfied.

First, consider a forward-evolving field so E =
E0 exp(ıkz), and therefore

E−
0 = k − β

k + β
E+

0 = ξE+
0 , (B1)

where as noted k can be difficult to determine and may even
change dynamically; here we can assume it corresponds to
the propagation wave vector that would be seen at if all the
conditions holding at a chosen position also held everywhere
else. On this basis, we can even define k = k(z), where by
analogy to the linear case we might assert that k2(z) = β2 +
Q(z)/E(z) so for small Q, we have kE � β(E + Q/2β2).

Let us start by assuming our field is propagating and
evolving forwards (only), with perfectly matched E± fields
so E− = ξE+, but then it happens that Q changes by δQ
over a small interval δz; likewise ξ changes by δξ . The E±
will no longer be matched, and now the total field splits
into two parts that evolve in opposite directions. The part
that continues to evolve forward has E+ nearly unchanged,
but the forward-evolving E− has changed size [and is now
∝ (ξ − δξ )] to stay perfectly matched according to the new
Q. The rest of the old E− (∝ δξ ) now propagates backward,
taking with it a tiny fraction of the original E+ (and is ∝ ξδξ ).

Comparing the two backward-evolving E− components at z
and z + δz, and taking the limit δz → 0, enables us to estimate
that the backward-evolving E− field changes according to

∂zE
−
0,backward = 2β

(k + β)2 [∂zk]E+
0,forward. (B2)

Using the small-Q approximation for k, we can write

∂zE
−
0,backward = 1

(k + β)2
[∂zQ]e−ıkz. (B3)

where the exponential part removes any oscillations due to the
linear part of Q; i.e., if Q = χE then

∂zE
−
0,backward = 1

(k + β)2
[∂zχ ]. (B4)

So here we see that backward-evolving fields are only
generated from forward-evolving fields due to changes in the
underlying conditions (i.e., either material response or pulse
properties) but that for the reflection to be strong those changes
will have to be significant on the order of a wavelength or be
periodic so that phase matching of the the backward wave
could occur.
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