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Finite-size behavior of quantum collective spin systems
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We discuss the finite size behavior of the adiabatic Dicke model, describing the collective coupling of a set of
N two-level atoms (qubits) to a faster (electromagnetic) oscillator mode. The energy eigenstates of this system
are shown to be directly related to those of another widely studied collective spin model, the uniaxial one. By
employing an approximate continuum approach, we obtain a complete characterization of the properties of the
latter, which we then use to evaluate the scaling properties of various observables for the original Dicke model
near its quantum phase transition.
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I. INTRODUCTION

The interaction of N two-level systems (qubits) with a
common single-mode quantum bosonic field is a paradigmatic
example of collective quantum behavior. Dating back to the
model put forward by Dicke, [1], this has become one of the
most investigated problems in quantum optics and condensed
matter physics, with proposed physical implementations rang-
ing from superconducting nanodevices, [2] to ultracold atoms
and Bose-Einstein condensates in cavity [3]. The Dicke model
exhibits a second-order phase transition [4] and, due to its
broad application range [5], it has been studied extensively
in the past few years, [6–9]. It displays a rich dynamics,
with many nonclassical features [10–13]; in particular, the
ground-state entanglement [14,15] and the Berry phase [16,17]
of the Dicke model have been diffusely analyzed and many
aspects of its finite-size behavior have been obtained [18–20].
The continued interest in the Dicke model also stems from the
fact that it pertains to the same universality class as other
intensely studied many-body systems that possess infinite-
range interactions and for which theoretical models typically
allow for exact solutions in the thermodynamic limit.

The most general collective model of (effective) spin 1/2
systems, the biaxial model in arbitrary field, can be described
by the Hamiltonian (see Ref. [21] for details)

Ĥ
⊥, ‖
XY =

∑
k=x,y,z

δkŜk + gxŜ
2
x + gyŜ

2
y , (1)

where the Ŝk = ∑N
i=1 σ̂

(k)
i are the collective Pauli opera-

tors that obey angular-momentum-like commutation relations
[Ŝi , Ŝj ] = 2iεijkŜk . The energy eigenstates can be written in
the angular-momentum basis (we employ the standard one,
apart from a factor 2 in the definitions) {|s, sz〉; sz = −s,−s +
2, . . . , s − 2, s} constructed as the set of common eigenstates
of both Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z and Ŝz. For a ferromagnetic
interaction gx,y < 0, the ground state of the Hamiltonian
belongs to the symmetric subspace with S2 = N (N + 2) and
special and diffusely studied cases are the biaxial model in
a transverse field (δx = δy = 0) Ĥ⊥

XY (the well-known LGM
model [22,23]) and the uniaxial model (δy = gy = 0) Ĥ

⊥, ‖
X .
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Under the thermodynamic limit, the phase diagram of these
collective spin models has been simply established by a mean-
field approach [24]. For N large but finite, purely quantum
effects become important and numerical analysis have been
implemented using the continuous unitary transformation
method [25] and a semiclassical approach [26]. A qualitative
understanding of the LGM model is obtained in Ref. [27] by
introducing a double well structure above the phase transition
in a semiclassical treatment of the system.

In the present work, we establish an exact relationship
between the Dicke model in the adiabatic regime (i.e., for the
case of slow qubits coupled to a faster oscillator mode) and the
uniaxial model, which is valid not only in the thermodynamic
limit, but also for any finite number N of spins. We then present
an alternative analytic method which relies on a continuum
approach to solve the collective uniaxial model for large N .
We show that this method is useful to determine the finite-size
behavior and the entire 1/N expansion (i.e., critical exponents
and prefactors) at the critical point for both the Dicke and
the collective uniaxial spin models. These results corroborate
several studies in which the exponents have already been
derived.

The objective of the present study is thus threefold, and the
article is organized accordingly: first, we consider the Dicke
model in the regime in which the frequency of the quantum
field is much larger than the energy spacing of the qubits; in this
case, the field degree of freedom can be adiabatically separated
from the qubit ones and an effective N -qubit interaction can be
obtained by means of the Born-Oppenheimer approximation.
This is done in Sec. II, where the relationship with the uniaxial
model is established for any energy eigenstate. Afterward, we
focus on the quantum phase transition of this collective model
(Sec. III) for which we derive the 1/N expansion for some
relevant physical observables and we also compute exactly
various entanglement measures for the qubits. Finally, using
these results together with those obtained in Sec. II, we obtain
analogous 1/N expansions for the Dicke model (Sec. IV). A
summary and some concluding remarks are finally given in
Sec. V.

II. ADIABATIC DICKE MODEL

We consider a system of N qubits interacting with
a single harmonic oscillator mode, described by the
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Hamiltonian (h̄ = c = 1)

Ĥ = − δ

2
Ŝx + ε

2
Ŝz + ωâ†â + λ√

N
(â† + â)Ŝz, (2)

where a is the annihilation operator for the field mode of
frequency ω, δ is the transition frequency of the qubit, ε is the
level asymmetry, and λ is the strength of the coupling between
the oscillator and the two-level systems.

We assume a slow qubit and work in the regime
ω � δ by employing the Born-Oppenheimer approximation,
Refs. [19,28]. The standard procedure is to separate the
Hamiltonian of Eq. (2) in two parts, containing slow and fast
variables, respectively [29]

Ĥ = Ĥs + Ĥf , (3)

where

Ĥf = ωâ†â + ε

2
Ŝz + λ√

N
(â† + â)Ŝz, H̃s = − δ

2
Ŝx . (4)

The eigenstates of the composite system can be written as
a coherent superposition of the eigenkets of Hf , having a
parametric dependence on (i.e., conditioned by) the values of
the slow variables:

|ψr〉 =
∑
{n,sz}

φ(n,r)
sz

|n[sz]〉, (r = 0, . . . , s), (5)

where the displaced number states of the oscillator are given
by

|n[sz]〉 = e
− λ

ω
√

N
(a†−a)sz |n〉 ⊗ |s, sz〉. (6)

They are the eigenstates of the fast Hamiltonian

Ĥf |n[sz]〉 = Vn(sz)|n[sz]〉, (7)

with eigenvalues

Vn(sz) = ωn + ε

2
sz − λ2

Nω
s2
z . (8)

For different n, Vn(sz) contribute an effective adiabatic
potential felt by the slow subsystem so that the wave function
φ(n,r)

sz
of the N qubit system is determined by

Ĥeffφ
(n,r)
sz

= E(n,r)(sz)φ
(n,r)
sz

, (9)

where the effective Hamiltonian is reduced to the form

Ĥeff = δ

2
Ŝx + Vn(Ŝz) = ωâ†â + Ĥ

⊥, ‖
Z , (10)

with Ĥ
⊥, ‖
Z being the Hamiltonian of the uniaxial model

introduced in the previous section, with coupling constant
gz = − λ2

Nω
:

Ĥ
⊥, ‖
Z = − δ

2
Ŝx + ε

2
Ŝz + gzŜ

2
z . (11)

The ground state of the coupled qubit-oscillator system is
given by

|ψ0〉 =
N∑

m=−N

ϕme
− mλ√

Nω
(a†−a)|0〉 ⊗ |N,m〉, (12)

where ϕm ≡ φ(0,0)
m .

The uniaxial (as well as the LGM model) and the Dicke
model are known to be equivalent in the thermodynamic limit.
From the discussion of this section, we see that there is a
strict relationship between the ground states of the two model
systems as both can be expressed in the angular-momentum
basis with the same amplitudes ϕm. However, this last equation
shows that at finite size there can be differences between
their behaviors since, in the case of the Dicke model, these
coefficients gets effectively modified due to the presence of
the displacement operator, whose argument depends explicitly
on the number of qubits N . This implies that we will find small
differences in the 1/N expansions for the two models.

In order to continue the discussion on the Dicke model,
we need to evaluate the amplitudes ϕm. Therefore, we now
turn our attention to the uniaxial model with N qubits. Once
the coefficients ϕm are obtained, we will use them in Sec. IV
to complete the description of the finite-size behavior in the
Dicke model.

III. UNIAXIAL MODEL

A. Continuum approach

The Hamiltonian of a uniaxial model for a spin system with
a collective coupling can be written as

Ĥ
⊥, ‖
Z = − δ

2
Ŝx + ε

2
Ŝz − g

N
Ŝ2

z (13)

with δ � 0 and where we have rescaled the ferromagnetic
coupling constant by the number of spins, gz = −g/N . This
is equivalent to the more diffusely found Ĥ

⊥, ‖
X Hamiltonian

that can be obtained after the rotation eiπSy/4. To connect this
model to the discussion of the previous section, one simply
has to take g = λ2/ω.

The ground state of Ĥ
⊥, ‖
Z lies in the maximum spin

sector s ≡ N . In this subspace, spanned by the states
{|N,m〉; m = −N,−N + 2, . . . , N − 2, N}, the ground
state can be written as

|φ0〉 =
N∑

m=−N

ϕm|N,m〉, (14)

where ϕm are real coefficients.
We limit our present discussion to the case of the symmetric

phase ε = 0, that is, the one relevant for the description of the
Dicke phase transition occurring at ε = 0 with λ2 = ωδ/4,
corresponding to g = δ/4.

In the angular-momentum basis, the Hamiltonian takes
a (N + 1) ⊗ (N + 1) tridiagonal symmetric (Jacobi) matrix
form with double symmetries along both the main and the
second diagonal:

TN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ−N δ−N 0 . . . 0 0 0

δ−N λ−N+2 δ−N+2 . . . 0 0 0

0 δ−N+2 λ−N+4 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . λN−4 δN−4 0

0 0 0 . . . δN−4 λN−2 δN−2

0 0 0 . . . 0 δN−2 λN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)
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where

λm = −λ2

N
m2 , −N � m � N (16)

and

δm = − δ

4

√
N (N + 2) − m(m + 2) . (17)

These coefficients satisfy a confluence property λm/N →
λ(z) and δ2

m/N2 → δ2(z) where z = m/N as m,N → ∞
[30]. By application of theorems on the zeros of orthog-
onal polynomials [31] one finds that the ground-state en-
ergy density in the m,N → ∞ limit is given in general
by

ε0(∞) = inf{λ(z) − 2δ(z)}. (18)

Introducing the dimensionless parameter α = 4g/δ the mini-
mum is found at

z0 =
{

0, (α � 1),

±
√

1 − 1/α2, (α > 1),
(19)

and the corresponding thermodynamic limit of the ground-
state energy per spin is

lim
N→∞

ε0(N )

N
=

{
− δ

2 , (α � 1),

− δ
4

(
α + 1

α

)
, (α > 1).

(20)

For finite N , the solution of the eigenvalues problem for the
ground state reduces to the recurrence relation

δm−2ϕm−2 + λmϕm + δmϕm+2 = ε0ϕm (21)

that can be rewritten as a second-order linear difference
equation

2(δm + δm−2) 
2 ϕm + 2(δm − δm−2) 
1 ϕm

+ (δm + δm−2 + λm)ϕm = ε0ϕm, (22)

where 
2ϕm = (ϕm+2 + ϕm−2 − 2ϕm)/4 and 
1ϕm =
(ϕm+2 − ϕm−2)/4 are finite differences of second and first
orders, respectively.

A simple analytic behavior of the coefficients ϕm for N � 1
can be derived by considering m/N as a continuous variable
and by expanding the recursion relation (22) in series around
the minima of Eq. (18). For α � 1, expanding in series (21)
around m = 0 and neglecting corrections of order 1/N2, one
obtains

ϕ′′
m +

[
ε0(N )

Nδ
+ 1

2

(
1 + 1

N

)
− 1 − α

4N2
m2

]
ϕm � 0 (23)

whose solution is

ϕm �
(

2k

πN

)1/4

e−km2/4N (24)

with k = √
1 − α. The ground-state energy per spin is given

by

ε0(N )

N
� − δ

2

(
1 + 1 − √

1 − α

N

)
. (25)

For α > 1, by expanding in series Eq. (21) around m �
±m0 = ±N

√
1 − 1/α2, one gets

ϕ
′′
m + α

[
ε0(N )

Nδ
+ 1

4

(
α + 1

α

)
+ α

2N

− α(α2 − 1)

4N2
(m ± m0)2

]
ϕm � 0 (26)

whose approximate solution is the symmetric superposition

ϕm � 1√
2

(ϕ+
m + ϕ−

m) (27)

with

ϕ±
m =

(
2k̄

πN

)1/4

e−k̄(m∓m0)2/4N, (28)

where k̄ = α
√

α2 − 1. In this regime one has

ε0(N )

N
� − δ

2

[
1

2

(
α + 1

α

)
+ α − √

α2 − 1

N

]
. (29)

In this language, the transition is readily understood: above
the coupling value corresponding to α = 1 a drastic change
in the form of the ground-state wave function takes place,
with a breaking of the “inversion” symmetry around m = 0.
For a finite-size system, the transition becomes smother and
smother and the wave function ϕm gradually changes from a
one peaked Gaussian to the superposition with two peaks that
emerge progressively as the value of z0 moves away from the
origin (i.e., as α increases).

For large enough N , we can check the continuum approx-
imation by comparing it to the behavior obtained by solving
the tridiagonal matrix numerically. In Fig. 1 ϕm for N = 200 is
shown with α = 0.3 and α = 1.3 compared with the analytic
expressions of Eqs. (24), (25), (26), and (27).

B. Finite-size corrections

Having obtained the ground-state coefficients ϕm (together
with the ground-state energy), we may evaluate the average

200 100 0 100 200
0.00

0.05

0.10

0.15

0.20

m

ϕ m

FIG. 1. (Color online) Normalized ϕm function for α = 0.3 (small
red circles) and α = 1.3 (black circles) for a spin system of size
N = 200 obtained by numerically solving the tridiagonal matrix (15).
Comparison is made with the analytic expressions of Eq. (24) (dashed
red line) and Eq. (27) (continuous blue line).
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values of every physical observable; in particular, we concen-
trate on the total spin components. One immediately gets

〈Sx〉
N

= − 2

N

∂ε0(N )

∂δ

=
⎧⎨
⎩

1 + 1
N

(
1 + α−2

2
√

1−α

)
, (α � 1);

1
α

+ 1

N
√

α2−1
, (α > 1)

(30)

and〈
S2

z

〉
N2

= − 1

N

∂ε0(N )

∂g

=
⎧⎨
⎩

1
N

√
1−α

, (α � 1);

1 − 1
α2 + 2

N

(
1 − α√

α2−1

)
, (α > 1).

(31)

The expressions for 〈S2
x,y〉 are, instead, a bit more complicated

〈
S2

x,y

〉 = 1

2

[
N (N + 2) − 〈

S2
z

〉]

± 2
N−2∑

m=−N+2

a+
ma−

mϕm−2ϕm+2 . (32)

However, they can be simplified by making use of the simple
results ϕm−2ϕm+2 = e−2k/Nϕ2

m for α � 1 and ϕm−2ϕm+2 =
e−2k̄/Nϕ2

m for α > 1 that are easily derived from our analytic
expressions for ϕm. Thus, one obtains

〈
S2

x

〉
N2

�
⎧⎨
⎩

1 + 2
N

(
1 − 1√

1−α

)
, α � 1;

1
α2 + 1

N
α2+1

α
√

α2−1
, α > 1

(33)

〈
S2

y

〉
N

�
⎧⎨
⎩

√
1 − α, α � 1;√
1 − 1

α2 , α > 1.
(34)

In the region α ∼ 1 we must take into account also the
next to leading order in the expansion of the recursion
relation (21) that gives a non-negligible contribution near
the phase transition point. We thus need to consider the
quartic-oscillator-like equation

ϕ′′
m+

[
ε0(N )

Nδ
+ 1

2

(
1+ 1

N

)
− 1 − α

4N2
m2− m4

16N4

]
ϕm � 0.

(35)

Using the approach presented in a previous work [19], Eq. (35)
can be reduced to a single-parametric problem with the help of
Symanzik scaling procedure [32]. This is done, by recasting
Eq. (35) into the equivalent form

ϕ′′
n + [e0(ζ ) − ζn2 − n4]ϕn � 0, (36)

where n = m(2N )−2/3 is a scaled variable. The only remaining
scale parameter is then ζ = (2N )2/3(1 − α), while the ground-
state energy is rewritten as

ε0(N )

N
= − δ

2

(
1 + 1

N

)
+ δ

e0(ζ )

(2N )4/3
. (37)

For ζ ∼ 0 (that is, very close to the transition point), we can
resort to perturbation theory and obtain the ground-state energy

as an expansion in powers of ζ ,

e0(ζ ) =
∞∑

n=0

βnζ
n. (38)

It is easy to show that β0 = e0(0) � 1.06036 is the lowest
eigenvalue of the pure quartic oscillator and β1 = e′

0(0) �
0.36203.

Using these results to obtain an approximate expression for
the ground-state energy and for the coefficients ϕm, it is easy to
derive the following leading nontrivial finite-size corrections
for one- and two-spin correlation functions

〈Sx〉
N

� 1 − 2β1

(2N )2/3
(39)〈

S2
z

〉
N2

� 4β1

(2N )2/3
(40)〈

S2
x

〉
N2

� 1 − 4β1

(2N )2/3
(41)〈

S2
y

〉
N2

� 8β0

3(2N )4/3
. (42)

The critical exponents in these expressions are in full agree-
ment with those reported in Ref. [25]. The present method
not only corroborates the results for the exponents reported
in the Literature but also allowes us to obtain the prefactors
of the finite-size expansion that cannot be determined with
typical scaling arguments and that are important to transfer
these results to the case of the Dicke model. In particular, we
relied on a continuum approximation to solve the eigenvalue
problem for the matrix TN of Eq. (15). This kind of approach is
not limited to the present problem but can be applied whenever
the confluence property holds (namely, whenever the matrix
element of a spin Hamiltonian depends only on the ratio m/N ).

In Fig. 2 we make a comparison of the analytical results
for the leading nontrivial finite-size corrections with those
obtained from a direct numerical solution at the critical point.

S 〉/N2
z

2

S 〉/N2
y

2

2 4 6 8 10 12

-15

-10

-5

0

log2(N)

〈

〈

FIG. 2. Comparison in log2-log2 scale between numerical
(points) and analytical (lines) results for the scaling of two-spins
correlation functions 〈S2

z 〉/N 2 and 〈S2
y 〉/N 2 [analytical results refer

to the Eq. (40) and Eq. (42), respectively] as a function of N at the
critical point α = 1.
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One can see that the agreement is good even for small values
of N .

C. Ground-state entanglement

Before going back to the Dicke model, we use the results
we have obtained in order to discuss the critical behavior of
the ground-state entanglement for the uniaxial model. In this
respect, it is useful to make a partition of the N spins in
two blocks of size L and (N − L), respectively. Using the
decomposition

|N,m〉 =
L∑

l=−L

p
1/2
lm |N − L,m − l〉 ⊗ |L, l〉, (43)

where

plm =

(
L

L+l
2

)(
N − L

N−L+m−l
2

)
(

N
N+m

2

) (44)

we obtain the ground-state reduced density matrix of the block
of size L out of the total N spins in the form

ρL,N =
L∑

l1=−L

L∑
l2=−L

|L, l1〉〈L, l2|

×
N∑

m=−N

p
1/2
l1m

p
1/2
l2m−l1+l2

ϕmϕm−l1+l2 . (45)

We then compute the linear entropy as a measure of the
entanglement of the block of size L with the rest of the system

τL = ηL

[
1 − Tr

(
ρ2

L,N

)]
, (46)

where the prefactor is chosen to be ηL = 2L

2L−1 in order to
bound τL to 1.

In particular, for L = 1, the state of every single qubit is
found to be

ρ1,N = 1

2

(
I + 〈Sx〉

N
σx

)
, (47)

where I is the identity. We can then evaluate the one-tangle as

τ1 = 2
[
1 − Tr

(
ρ2

1,N

)] ≡ 1 − 〈Sx〉2

N2
. (48)

One has

τ1 �
⎧⎨
⎩

1
N

(
2 + α−2√

1−α

)
, α � 1;

1 − 1
α2 + 2

Nα
√

α2−1
, α > 1

(49)

and

τ1 � 4β1

(2N )2/3
, α = 1. (50)

The reduced density matrix of two qubits (L = 2), can be
written in the angular-momentum basis {|2,m〉}, with m =
2, 0,−2. In general, one should also consider the state |0, 0〉;
but its population is zero in our case, so we can erase the

corresponding line and row and write ρ2,N in the form:

ρ2,N =

⎛
⎜⎝

v+
√

2x+ u√
2x+ 2w

√
2x−

u
√

2x− v−

⎞
⎟⎠ , (51)

where the matrix elements may be expressed in terms of the
expectation values of the collective operators as [33]

v± = N (N − 2) + 〈
S2

z

〉
4N (N − 1)

± 〈Sz〉
2N

(52)

w = N2 − 〈
S2

z

〉
4N (N − 1)

(53)

u =
〈
S2

+
〉

N (N − 1)
(54)

x± = 〈S+〉
2N

± 〈[S+, Sz]+〉
4N (N − 1)

. (55)

The entanglement between two qubits can be expressed in
terms of the concurrence [34]. Since the ground state lies in
the maximum spin sector and has real coefficients in the basis
{|N,m〉}, one has

C = max{0, Cy}, (56)

where

(N − 1)Cy = 1 −
〈
S2

y

〉
N

. (57)

Thus, the concurrence needs to be rescaled by the factor N − 1
(that is, C vanishes ∼ 1/N in the thermodynamic limit), with
Cr = (N − 1)C. In the thermodynamic limit, only Cr remains
finite:

Cr �
⎧⎨
⎩

1 − √
1 − α, α � 1;

1 −
√

1 − 1
α2 , α > 1.

(58)

This result is consistent with the general formula for the
concurrence of a class of symmetric states derived in Ref. [21].

For finite N and at the critical point, Eq. (42) gives

Cr � 1 − 4β0

3 (2N )1/3
. (59)

This shows that, at the critical point, the behavior of the
concurrence is modified and Cr scales with N with a critical
exponent of 1/3. This result is in agreement with Ref. [18],
where the scaling exponents are obtained by arguing that there
can be no singularity in any physical quantity at finite size.

IV. FINITE-SIZE SCALING OF THE DICKE MODEL

We can now make use of the expressions of the amplitudes
ϕm obtained for uniaxial model in order to discuss the finite-
size behavior of the Dicke model.

Whenever we are interested in a qubit observable, that
is, whenever the result can be obtained by tracing out the
oscillator, the only difference with the uniaxial model is
the appearance of exponentials of the form exp{−λ2(m −
m′)2/Nω2}, due to the overlap of different coherent states. This
kind of terms modifies the behavior of the spin observables for
small N , but for very large N one can expect to obtain very
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similar behaviors for the Dicke and the uniaxial models. One
finds

〈Sx〉 → e− αD
2N 〈Sx〉 (60)

and 〈
S2

x − S2
y

〉 → e− 2αD
N

〈
S2

x − S2
y

〉
(61)

which coincides, respectively, with Eq. (30) and Eq. (32) in
the D = δ/ω → 0 limit. Using these results, one can show,
for example, that the ground-state energy at the critical point
reads

ε0(N )

N
� − δ

2

(
1 + 2 − D

2N
− 2β0

(2N )4/3

)
. (62)

Once all of the average values of the spin observables
are obtained, it is easy to get expressions for the various
entanglement measures. In particular, the rescaled concurrence
in the thermodynamic limit reads

Cr �
⎧⎨
⎩

1 − Dα − √
1 − α, α � 1;

1 − D
α

−
√

1 − 1
α2 , 1 < α < α0,

(63)

where α0 = (1 + D2)/2D = (δ2 + ω2)/2ωδ. For finite size, at
the critical point one gets

Cr � 1 − D − 4β0

3 (2N )1/3
. (64)

Thus, the concurrence scales with N exactly as in the uniaxial
model. Figure 3 shows the Cr both for finite N and for
N → ∞.

The difference between the adiabatic Dicke model and the
uniaxial one lies in the presence of the oscillator, which is far
detuned from the spins but that can still be excited (because of
the presence of the counter-rotating terms in the Hamiltonian)
and becomes correlated with the qubits. In particular, the
entanglement between the oscillator and the N qubits can be
evaluated by the linear entropy which is of the form

τN = ηN

(
1 − Tr

{
ρ2

N

})
, (65)

where ρN is the reduced density matrix for the N -qubits sub-
system, obtained from the ground-state density operator (12)
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FIG. 3. (Color online) Scaled concurrence for the Dicke model as
a function of α, for D = 0.1 and for system sizes N = 10, 20, 40, 100
and ∞ (bottom to top).
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FIG. 4. (Color online) The tangle τN between the oscillator and
the N qubits as a function of α, for D = 0.1 and for system sizes
N = 6, 10, 20, 100 and ∞ (bottom to top).

by tracing out the field variables

ρN = TrF {|ψ0〉〈ψ0|}

=
N∑

m1,m2=−N

e− αD
8N

(m1−m2)2
ϕm1ϕm2 |N,m1〉〈N,m2|. (66)

Evaluating the trace of ρN squared, one has

τN = η

⎛
⎝1 −

N∑
m1,m2=−N

e− αD
4N

(m1−m2)2
ϕ2

m1
ϕ2

m2

⎞
⎠ . (67)

In the thermodynamic limit the sum can be computed
exactly to get

τ∞ =

⎧⎪⎪⎨
⎪⎪⎩

1 −
(

1 + Dα√
1−α

)− 1
2

(α � 1)

1 − 1
2

(
1 + D√

α2−1

)− 1
2

(α > 1)
, (68)

which shows a cusp at the critical point, where τ∞ = 1.
Figure 4 shows τN both for finite N and for N → ∞.

When N is very large (N � 4/D3), the entanglement scales
as

τN (α = 1) ∼ 1 − K
( π

D

)1/2
(

4

N

)1/6

, (69)

where K = 1
4

∫
dnϕ4

n � 0.46, and ϕn is the normalized solu-
tion of Eq. (36) for α = 1. The fact that the leading term in
the 1/N expansion of τN has exponent 1/6 implies that the
convergence of the series is slower (with respect to those found
for other physical quantities) and that for small values of N ,
subsequent terms should be taken into account.

V. CONCLUDING REMARKS

We have discussed the finite-size critical behavior of the
Dicke model for the case of a fast oscillator coupled to
many slower qubits. We have derived a direct relationship
between this system and the uniaxial model, describing
the collective interaction among qubits residing on a fully
connected graph. In particular, we have obtained a precise
one-to-one correspondence between the energy eigenstates
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of the two models, showing that their critical behaviors
are closely related both in the thermodynamic limit and at
finite size. We have then adopted a continuum approximation
in order to describe analytically the ground state of the
uniaxial model which we used to reobtain all the known
features of the model, such as its critical exponents. We have
also obtained a full characterization of the 1/N expansion
(including non universal features such as the prefactors) for
many physical observables, among which we dedicated a
particular emphasis to the description of the entanglement
content of the ground state and to its behavior near the critical
point.

Using the solution obtained for the uniaxial model, we have
then been able to go back to the original Dicke model and to
describe its critical behavior and its scaling properties, again
obtaining not only the scaling exponents for various physical
quantities, but their entire 1/N expansions (of which the first
terms are shown and discussed explicitly).

The two models we have discussed obviously differ because
of the presence of the bosonic mode in the Dicke case. From
a physical point of view this implies that an entanglement
is built up not only among the qubits (as in the uniaxial
model) but also between qubits and oscillator. Formally,
this manifests itself in the fact that the oscillator state is
a displaced vacuum (i.e., coherent) state conditioned on the

qubit magnetization in the direction of the coupling (i.e., on
the value of Sz, in our notation). The presence of this quantum
correlation with the oscillator also modifies the entanglement
among qubits (formally, because of the presence of some
exponential prefactors that essentially suppress entanglement),
and this can be interpreted in terms of the monogamy of
entanglement.

Apart from this aspect, the two models have many features
in common; in particular, their critical behaviors are closely
related and their quantum phase transitions are essentially the
same, occurring at the same point in parameter space (once the
proper relationship between the physical parameters is taken
into account).

Our analysis can be of interest for a broad range of appli-
cations, ranging from quantum optics [5,35] to the description
of solid state nanodevices. In particular, the Hamiltonian of
Eq. (2) is written in the form usually employed in the rapidly
evolving field of “circuit-QED” to describe superconducting
nanocircuits comprising Josephson qubits interacting with an
electromagnetic resonator in the dispersive (i.e., off-resonant)
regime [36,37]. Due to strong coupling required to reach the
critical point, solid-state devices are indeed the only effective
candidates to show signatures of the Dicke collective critical
behavior, and our results indicate that this goal can be achieved
even with a relatively small number of qubits.
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