
PHYSICAL REVIEW A 81, 013817 (2010)

Multifilamentation of powerful optical pulses in silica
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The multiple filamentation of powerful light pulses in fused silica is numerically investigated for central
wavelengths at 355 nm and 1550 nm. We consider different values for beam waist and pulse duration and compare
the numerical results with behaviors expected from the plane-wave modulational instability theory. Before the
nonlinear focus, the spatiotemporal intensity patterns can be explained in the framework of this theory. Once
the clamping intensity is reached, for long input pulse durations (∼1 ps), the ionization front defocuses all
trailing components within a collective dynamic, and a spatial replenishment scenario takes place upon further
propagation. Short pulses (∼50 fs) undergo similar ionization fronts, before an optically turbulent regime sets in.
We observe moderate changes in the total temporal extent of ultraviolet pulses and in the corresponding spectra.
In contrast, infrared pulses may undergo strong temporal compression and important spectral broadening. For
short input pulses, anomalous dispersion and self-steepening push all pulse components to the trailing edge,
where many small-scaled filaments are nucleated. In the leading part of the pulse, different spatial landscapes,
e.g., broad ring patterns, may survive and follow their own propagation dynamics.
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I. INTRODUCTION

High-power femtosecond laser sources can nowadays
generate light filaments propagating over long distances in
transparent media, such as air, noble gases, liquids, and
glasses. The basic phenomena sustaining the filamentation
dynamics are the optical Kerr self-focusing developing along
the earliest propagation stages, followed by plasma generation
that defocuses the most intense components of the pulse.
Fundamental aspects and applications of this process have
been reviewed in several articles [1–5]. Powerful beams
with peak powers above the critical power for self-focusing
transform laser radiation into a narrow light “rod” clamped
with a plasma channel, capable of running over several
Rayleigh lengths along the optical path. With ultrashort pulses,
this filamentation mechanism is generally accompanied by
supercontinuum generation and production of sharp peaks in
the temporal pulse profile, some of them can be isolated and
exploited in efficient self-compression setups [6–8].

Besides their ability to collapse and self-compress, fem-
tosecond pulses with high enough intensity can also become
modulationally unstable and decay into multiple filaments
under the action of the local ambient noise [9–11]. The
consequence is rather catastrophic, in the sense that this
“multifilamentation” breaks the homogeneity of the laser focal
spot through the random nucleation of filaments. Limitations
of this harmful phenomenon in air have been proposed
by, e.g., playing on beam ellipticity [12] or by introducing
either periodic meshes or masks [13,14] in the beam profile.
However, rendering multifilamentation more deterministic is
not acquired for beams conveying several thousands of critical
powers over long paths, in particular in condensed materials
involving high nonlinear Kerr indices and strong chromatic
dispersion. Understanding the creation of multiple filaments
in such media is thus prerequisite to their future control.

Several works have been devoted to the filamentation
of femtosecond pulses in dielectrics, such as fused silica.

Using laser sources operating at the wavelength of 800 nm,
pioneering investigations revealed that ∼10–40 µm-waisted
filaments with input energy of 2 µJ could travel upon 1 cm
of silica in loosely focused geometry [15]. Tightly focused
radiation, in contrast, produced a breakdown plasma with an
electron density up to 1020 cm−3 resulting in the formation of
a diffusion damage region [16]. More recently, measurements
of plasma channels created from 248 nm, 450 fs pulses
reported an electron density of 4 × 1019 cm−3, contributing
by an index change of 0.4 × 10−3 after irradiation by one
pulse [17]. Filamentation in glasses allows photoinduced mi-
cromodifications of optical materials without thermal damage
at moderate fluences <0.1 J/cm2 [18]. At 800 nm, irreversible
modification lines occur when the refraction index change
attains 5 × 10−3. In the near-infrared domain (1558 nm),
structural modifications supported by a refraction index change
of about 1.2 × 10−3 driven by 870 fs pulses were also observed
in optically-fabricated gratings [19].

The above investigations, however, were mostly limited to
propagation regimes along which the pulse preserved its spatial
integrity. To the best of our knowledge, nothing is known about
pulses triggering multiple filamentation in dense materials.
One reason for this lack of knowledge may simply be the
size of the corresponding computer simulation. Letting, e.g.,
mm-broad beams break up into multiple cells in the diffraction
plane indeed requires to reach ∼1 µm spatial resolution in such
media. Concerning long pulses with, e.g., ∼1 ps full-width at
half-maximum (FWHM) durations, the temporal resolution
must be below the fs scale, in order to correctly resolve the
plasma response. These constraints can nowadays be fulfilled
with the advent of massively-parallel clusters. Using the novel
computer machine Titane of the Commissariat for Atomic
Energy (CEA), we have investigated the nonlinear behaviors
of pulses operating at the ultraviolet (UV) wavelength of
355 nm, leading to normal group-velocity dispersion, and
others operating in the infrared (IR) at 1550 nm, leading to
anomalous group-velocity dispersion.
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In the following, we assume a linearly-polarized electric
field ∼Eeik0z−iω0t + c.c., with the envelope E(x, y, z, t) nor-
malized such that the pulse intensity is I = |E |2. The field
envelope is coupled to the free electron density ρ(x, y, z, t)
created by photo-ionization, through an extended nonlinear
Schrödinger equation [3]

∂zE = i

2k0
T −1∇2

⊥E + iDE − i
k0

2n2
0ρc

T −1ρE − σ

2
ρE

− UiW (I )(ρnt − ρ)

2I
E

+ i
ω0

c
n2T

∫
R(t − t ′)|E(t ′)|2dt ′E, (1)

R(t) = (1 − g)δ(t) + gθ (t)
1 + ω2

Rτ 2
R

ωRτ 2
R

e−t/τR sin (ωRt), (2)

∂tρ = W (I )(ρnt − ρ) + σρI/Ui − ρ/τrec, (3)

where z is the propagation variable, ∇2
⊥ = ∂2

x + ∂2
y the

diffraction operator, and t the retarded time of the pulse
in a frame moving at group velocity. The wave number
k0 = n0ω0/c involves the linear refractive index n0 = n(ω0) at
central frequency ω0. The operator D = ∑

n�2(k(n)/n!)(i∂t )n

accounts for dispersion formally involving the derivatives
k(n) ≡ ∂nk/∂ωn|ω0 . It includes the coefficients k(2) ≡ k′′ for
group-velocity dispersion (GVD) and k(3) ≡ k′′′ for third-
order dispersion (TOD). Values for glass dispersion are taken
from Ref. [20]. The operator T = 1 + (i/ω0)∂t corrects the
slowly-varying envelope approximation and is responsible
for space-time focusing and self-steepening [21]. n2 denotes
the nonlinear Kerr index and ρc � 1.11 × 1021/λ2

0[µm] cm−3

is the critical plasma density. The nonlinear Kerr response
includes a Raman-delayed contribution with ratio g varying
with the laser wavelength [20,22]. The Keldysh rate for crystals
is employed to model ionization in glass [23], using a reduced
(electron-hole) mass of silica equal to 0.635 and considering
the ionization potential Ui = 7.8 eV. The initial density of
SiO2 molecules is ρnt = 2.1 × 1022 cm−3 and the electron
recombination time is set to τrec = 150 fs. Besides dispersion
coefficients and the constituents of the overall Kerr response
Eq. (2), other physical parameters such as the avalanche cross
sections σ have been recalled in Table I.

The propagation Eqs. (1) to (3) are integrated numerically
for collimated pulses modeled at z = 0 by an elongated,

TABLE I. Physical parameters for silica at 355 nm and 1550 nm.
Kerr indices are taken from Refs. [20,24].

Glass parameters vs. λ0 355 nm 1550 nm

k′′ (fs2/cm) 1169 −279
k′′′ (fs2/cm) 348 1510
n0 1.47 1.44
n2 (10−16 cm2/W) 3.6 2.2
Pcr (MW) 0.37 12
g 0.15 0.18
τR (fs) 50 32
ω−1

R (fs) 11.9 12.3
σ (10−19 cm2) 1.108 21.56

second-order supergaussian profile

E(x, y, z = 0, t) =
√

I0e
− x4

w4
0
− 4y4

w4
0 e

− t2N

t2N
p , (4)

where I0 = 2πPin/[Pcr

2(5/4)]. Here, Pin is the input power,

Pcr � λ2
0/2πn0n2 denotes the critical power for self-focusing

and 
(x) is the usual Euler gamma function. The input pulse (4)
has the beam waist w0 and the 1/e2 pulse half-width tp. The
exponent N = 1 is used for modeling Gaussian pulses with
short durations, tp = 50 fs (FWHM duration of about 60 fs),
and millimeter spatial extents. The same exponent will take the
value N = 2, when we simulate long pulses with tp = 500 fs
(FWHM duration of 1 ps) for smaller spatial beams.

Numerical simulations have been performed in full 3D
geometry. The ratio of input power over critical has been
chosen in such a way that the initial intensity I0 lies inside
a narrow range of values, namely 0.06 � I0 � 0.8 TW/cm2,
corresponding to the wide power interval Pin/Pcr = 10–20 000
for various beam waists. For long pulses (tp = 500 fs), the
spatial waist is small (w0 = 0.2 mm), in order to concentrate
on temporal distortions while keeping high resolution level.
In this situation, we introduce a 5% random noise both into
the spatial and temporal amplitudes of the initial beam. For
short pulses (tp = 50 fs), the beams exhibit a broader waist
(w0 = 1 mm), in order to trigger full optical turbulence from a
5% random noise introduced into the beam spatial amplitude
only. Simulations used resolutions of ∼1 µm in (x, y) and
∼0.5 fs in time for an adaptive step size along z, and ran over
1024 processors.

The paper is organized as follows. Section II adapts the
modulational instability theory for plane waves to a nonlinear
Schrödinger model including TOD, space-time focusing, and
self-steepening, applied to the early self-focusing stage of
propagation before plasma generation. Sections III and IV
detail long and short pulse dynamics in the ultraviolet and
near-infrared wavelength domains, respectively. Section V
discusses the corresponding spectra while Sec. VI concludes
the present work.

II. MODULATIONAL INSTABILITY FOR PLANE WAVES

The most intense central part of the extended beams defined
by Eq. (4) can be assimilated to plane waves destabilized by
the action of random noise from z = 0 until the self-focus
point zc, from which plasma generation occurs. Locally, the
plane wave suffers oscillatory perturbations that grow with the
exponential rate 
 as

E � {
√

I0 + [ã(x, y, t) + ib̃(x, y, t)]e
z}eiθz, (5)

where θ = (ω0n2/c)I0, ã, b̃ are real-valued functions and
|ã|, |b̃| � √

I0. Discarding any plasma term together with the
Raman-delayed contribution limited to only 18% of the overall
Kerr nonlinearity, we plug Eq. (5) into

∂zE = i

2k0
T −1∇2

⊥E + iDE + iω0n2

c
T |E |2E, (6)

which can then be linearized straightforwardly. Performing the
Fourier transform in time on the resulting equations by means
of [a(ω), b(ω)] ≡ ∫ +∞

−∞ [ã(t), b̃(t)]eiωtdt [25], we obtain the
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following spectral problem:
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Under the hypothesis that a, b can be approximated by
oscillatory functions a, b ∼ cos (
k⊥ · 
r) with spatial wave
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√
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y , the perturbation growth rate follows

from the positive real root of
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The previous formula generalizes that earlier derived by
Litvak et al. in [26] to higher-order dispersion, space-time
focusing, and self-steepening. Following [25], the Fourier fre-
quency ω corresponds to characteristic periodic fluctuations of
the field envelope in time. In the diffraction plane, perturbative
modes have the typical wave number ∼k⊥, assuming isotropy
of all light cells created by modulational instability (MI).

Below, we will limit high-order dispersion to TOD. By
plotting Eq. (9), it can be checked that the T , T −1 operators
describing pulse steepening downshift the instability branches
by ∼0.1 fs−1 only in the large frequency regions. So, space-
time focusing and self-steepening do not deeply modify the
zones of maximum instability in the (k⊥, ω) plane. Keeping
this property in mind, the maximum growth rate 
max �
ω0n2I0/c is reached by wave numbers and frequencies lying
on the curves k2

⊥/2k0 − ∑
n=2,3(k(n)/n!)ωn � (ω0n2/c)I0. For

uniform perturbations along time (ω → 0), the instability is
identical to Bespalov-Talanov’s pioneering result [9] and is
characterized by the optimum wave number kmax

⊥ = ω0n2I0/c.
Perturbations uniform in the transverse plane (k⊥ → 0) cannot
grow when GVD is normal and prevails over higher-order
dispersion.

In regimes of normal dispersion (k′′ > 0) with relatively
small TOD (λ0 = 355 nm), the instability regions design
hyperbolas, as shown by Figs. 1(a) and 1(b) for the intensity
values I0 = 0.06 and 0.46 TW/cm2, respectively. In that case
the action of TOD on modulational instability is negligible.
In regimes of anomalous dispersion (k′′ < 0) with relatively
large TOD (λ0 = 1550 nm), two instability regions occur,
i.e., hyperbolas at large frequencies and ellipses at small
frequencies. Examples are given in Figs. 1(c) and 1(d) for
the intensity values I0 = 0.2 and 0.73 TW/cm2, respectively.
In the latter case, we can see the hyperbolic branch associated
with TOD merging with the elliptic branch when the input
intensity takes high enough values.

As seen from Fig. 1(a), 355 nm pulses with moderate input
intensity have the maximum perturbation wave number kmax

⊥ �
1378 cm−1 yielding the optimum modulation wavelength

FIG. 1. (Color online) Contour plots of the growth rate 
 [cm−1]
in the plane (k⊥, ω) for λ0 = 355 nm: (a) I0 = 0.06 TW/cm2,
(b) I0 = 0.46 TW/cm2; for λ0 = 1550 nm: (c) I0 = 0.2 TW/cm2,
(d) I0 = 0.73 TW/cm2. The colored crosses indicate positions of the
variables k⊥ and ω used in Fig. 2.

λopt = 2π/kmax
⊥ ≈ 46 µm in the limit ω → 0. In the present

case, Fig. 1(a) predicts occurrence of spatial modulations
around k⊥ ∼ kmax

⊥ . In Fig. 1(b), a higher input intensity causes
a more severe instability, with kmax

⊥ � 3900 cm−1 yielding
16 µm optimum modulations. With dominant GVD, there is
no amplified unstable frequency in the limit k⊥ → 0.

In contrast, 1550 nm pulses are characterized by two in-
stability regions, in which anomalous dispersion may amplify
modulations in time. In Fig. 1(c) we can indeed identify an
elliptic region, dominated by GVD, reaching a maximum
growth rate for k⊥ ≈ kmax

⊥ � 430 cm−1(λopt ∼ 144 µm) in the
limit ω → 0 and ωmax ≈ 0.15 fs−1(τopt ∼ 42 fs) in the limit
of zero wave numbers. Above the elliptic zone, the hyperbolic
branch, dominated by TOD, starts from higher frequencies
ωmax ∼ 0.52 fs−1(τopt ∼ 12 fs). Destabilization of the pulse
should thus proceed from these modulation scales. Figure 1(d)
shows the instability domain of 1550 nm pulses with higher
intensity. The hyperbolic (TOD) branch enters the GVD
elliptic region at high frequencies. Both zones merge around
the point of coordinates k⊥ ≈ kmax

⊥ = 875 cm−1, responsible
for ∼72 µm spatial modulations, and ωmax � 0.35 fs−1,
leading to ∼18 fs temporal fluctuations.
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FIG. 2. (Color online) Growth rate 
 versus intensity I0 for
fixed points in the (k⊥, ω) plane. (a) 355 nm: k⊥ = 5000 cm−1,
ω = 0.26 fs−1 (blue, lower line), and k⊥ = 1378 cm−1, ω = 0 (red,
upper line). (b) 1550 nm: k⊥ = 0, ω = 0.52 fs−1 (blue, lower line),
k⊥ = 0, ω = 0.15 fs−1 (green, center line), and k⊥ = 430 cm−1,
ω = 0 (red, upper line). The respective positions of k⊥ and ω are
marked in Fig. 1 by colored crosses.

In the above predictions we have mostly ignored perturba-
tions inside the (k⊥, ω) plane with k⊥ 
= 0 and ω 
= 0, even
though they may have larger growth rates. The reason why
those perturbations are not observed in the coming simulations
is the following. Besides the linear growth of MI patterns, the
beam also self-focuses as a whole, which leads to a continuous
increase of the “background intensity” I0 and makes the beam
depart from an ideal plane-wave. The observed (numerical)
MI patterns should thus be associated to a larger growth rate
over an intensity range exceeding the usual validity domain
(|E |2 <∼ 2I0) of the classical MI theory. Thus, at fixed values
of k⊥ and ω realizing 
max, the growth rate must still be
non zero for noticeable increase of the background intensity.
We checked that this requirement was generally not fulfilled
by data points belonging to the inner region of the (k⊥, ω)
plane. Some examples are illustrated in Fig. 2 [see blue, lower
curve in Fig. 2(a)], displaying evidence of the predominance
of the transverse instability over the temporal one. The same
argument can moreover help us to predict which of the two
temporal instabilities found in Fig. 1(c) may be the dominant
one. As can be observed from Fig. 2(b), the growth rates using
the lower frequency ωmax � 0.15 fs−1 (green, center line)
clearly prevail over those computed from ωmax � 0.52 fs−1

(blue, lower line).

III. ULTRAVIOLET PULSES

We first focus on powerful beams propagating in normal
dispersion regime. Starting from values less than 0.06 J/cm2,
the maximum beam fluence reaches ∼2.5 J/cm2 beyond the
self-focusing distance of the 1 ps pulse and ∼0.32 J/cm2 for the
50 fs pulse. Since these fluences become close to the damage
thresholds of dielectrics irradiated at low wavelengths [27,28],
we restrict the self-channeling ranges to a few mm beyond the
Kerr-focusing stage.

A. Long pulse durations (UV)

At the wavelength λ0 = 355 nm, a “long” supergaussian
pulse with tp = 500 fs (FWHM � 1 ps), small waist w0 =
200 µm, 100 critical powers, and suffering 5% random
noise both in spatial and temporal amplitudes, develops
regular modulations on its steepest boarders, before the
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FIG. 3. (Color online) (a) Maximum intensity and peak electron
density for the 355 nm pulse with long duration tp = 500 fs and
w0 = 200 µm. (b) Fluence patterns [F ≡ ∫

I (t)dt] at different
propagation distances.

most intense filaments reach the ionization threshold [29,30].
Figure 3(a) displays the evolution of the maximum pulse
intensity and electron density. For clamping values Imax �
15–20 TW/cm2, the corresponding peak plasma density,
ρmax � 4 × 1019 cm−3, agrees with Ref. [17]. In the stage
preceding plasma generation, a ring pattern created from
the supergaussian pulse [31] is amplified into a rectangular
beam-shape upon propagation, as shown by the fluence
patterns [F ≡ ∫

I (t)dt] of Fig. 3(b). About four small-scaled
modulations emerge on each edge of the beam profile. These
modulations appear regularly spaced by ∼50 µm along the
x-axis, where the beam shape is the more elongated. At
z = 1.2 cm, the whole beam intensity has increased by 50%
and collapse occurs 4 mm further. Beyond the nonlinear focus,
the pulse decays into multiple filaments, first on the rectangular
ring (∼8 filaments), then inside the ring where the number of
cells increases.

Figure 4 shows three surface plots of the pulse intensity
profile in the (x, t) plane along the y coordinate supporting
maximum intensity. In the x-direction, four modulations
are clearly amplified before focus. Despite ∼75 fs peri-
odic undulations, no temporal oscillation seems amplified
along z. Together with the transverse modulation length of
∼46 µm (
max � 3.7 cm−1), these evaluations agree with the
predictions made in Sec. II.

At the nonlinear focus (z = 1.58 cm), Fig. 4 shows that
a dominant leading peak with about ∼35 fs duration survives
plasma defocusing, which damps components belonging to the
rear pulse. The FWHM duration of the entire pulse, however,
remains large, of the order of ∼400 fs. Further on (z >

1.7 cm), multiple filaments are nucleated due to the com-
petition between Kerr and plasma nonlinearities in different
pulse time slices [32]. Each resulting peak exhibits durations
comprised between 10 fs and 50 fs. It is interesting to notice
that the most spiky structures still occur at the leading and
trailing edges of the pulse, suggesting thereby a collective
action of the plasma response similar to the well-known
scenario of “dynamic spatial replenishment” [33,34]. There
is no particular optical shock formation owing to pulse
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FIG. 4. (Color online) Field distributions of the long 355 nm
pulse in the (x, t) plane at the coordinate (y) of maximum intensity
(ymax � −0.06 mm) for three different propagation distances.

steepening effects, as the temporal gradient of the operator
T is proportional to the laser wavelength and, thus, has a small
influence at 355 nm [35].

In addition, we checked that the maximum intensity and
peak electron density are in the expected order of magnitude.
We indeed identified the intersection intensity between the
photo-ionization rate W (I ) (assumed to prevail over avalanche
ionization) and the ratio (2ρcn0n2/�Tρnt) × I for a mean
duration �T chosen as the temporal extent of the pulse
shortened by the first ionization front. For the present pulse
whose dominant peak is ∼35 fs long at z = 1.58 cm, we obtain
Imax = 19 TW/cm2 and ρmax = 1.7 × 1020 cm−3, which are
in reasonable agreement with Fig. 3(a).

B. Short pulse durations (UV)

We now examine the evolution of ultraviolet pulses having
short duration (tp = 50 fs) and broader waist (w0 = 1 mm).
The mean intensity is I0 � 0.46 TW/cm2 at z = 0 and the
pulse is initially perturbed by 5% random noise in amplitude
only. Because such intensity level is reached by using a very
large power ratio, Pin/Pcr = 20 000, beam collapse occurs
quite early, zc � 2.45 mm, as shown by Fig. 5(a). The fluence
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FIG. 5. (Color online) (a) Maximum intensity and peak electron
density for the 355 nm pulse with short duration tp = 50 fs and
w0 = 1 mm. (b) Fluence patterns detailing the filament growth at
different propagation distances.

patterns displayed in Fig. 5(b) illustrate a multifilamentation
regime taking place in the center of the beam, which is so
intense that the supergaussian beam does not let its boarders
amplify early modulations. In contrast to the previous case,
the inner part of the beam serves as plane wave, subject to
spatial modulations with periodic spacing of ∼16 µm in the
limit ω → 0. This scale agrees with the modulations zoomed
at z = 2 mm in Fig. 5(b). Further, the beam becomes highly
turbulent in plasma regime (z = 3.1 mm), with interfilament
distances of the order of 10 microns.

Figure 6 details (x, t) field distributions at specific propa-
gation distances. Besides ∼20 µm periodic striation along x,
the pulse does not amplify temporal fluctuations during early
propagation. Only spatial modulations grow. The correspond-
ing wave number kmax

⊥ ≈ 3900 cm−1 belongs to the instability
region of maximum growth rate 
max � 29.3 cm−1, as can be
seen from Fig. 1(b). We can also notice the slight temporal
broadening undergone by the pulse over 2 mm only, which we
attribute to the strong GVD being more effective at short pulse
durations. At focus, plasma generation acts in recompressing
the pulse within a single hump of �T ∼ 40 fs duration only.
Using this time interval and solving the expression

W (I ) = 2ρcn0n2

�Tρnt
× I, (10)

we estimate the clamping intensity and peak electron density
to Imax � 5.5 TW/cm2 and ρmax = 5 × 1019 cm−3, which
support the comparison with Fig. 5(a). Note that the peak
electron density is slightly lower for short pulses. In this
respect, analogous filamentation patterns created from weaker
powers (Pin = 10 000 Pcr with 1% spatial noise) were seen to
develop peak densities limited to 6 × 1018 cm−3 only, after
a more important temporal broadening occurs upon the first
cm-long linear propagation stage (not shown here). Lowering
the plasma response in dense media can be explained by the
chromatic dispersion, which is reinforced at low wavelengths
and short pulse durations [36,37].
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FIG. 6. (Color online) Field distributions of the short 355 nm
pulse in the (x, t) plane at the coordinate y of maximum intensity for
three propagation distances.

IV. INFRARED PULSES

Let us now examine characteristic pulse distortions for
anomalous dispersion (λ0 = 1550 nm). Starting from ini-
tial values �0.2 J/cm2, maximum beam fluence reaches
1.5–3 J/cm2 and 0.43 J/cm2 in plasma regime for long and
short pulses, respectively. These values are close to damage
thresholds reported at long wavelengths [28]. Therefore,
propagation distances will again be limited to a few mm
beyond the nonlinear focus.

A. Long pulse durations (IR)

We again start with long pulse durations (tp = 500 fs)
and small waist (w0 = 200 µm) to emphasize potential
breakup in time. Even with small powers, Pin = 10 Pcr,
supergaussian beams are easily destabilized in space and
undergo multiple filamentation on their ring profile [31]. With a
mean input intensity of I0 � 0.2 TW/cm2, the beam amplitude
is perturbed both in space and time by a 5% random noise.
Figure 7(a) shows in this respect that the beam intensity
increases by 50% at z = 1 cm and beam collapse takes place at
about zc � 1.8 cm. Figure 7(b) details fluence distributions at
three characteristic distances around the nonlinear focus. From

0 0.5 1 1.5 2 2.5
0

20

40

60

I [
T

W
/c

m
2 ]

z [cm]

10
18

10
19

10
20

ρ 
[c

m
−

3 ]

x [mm]

y 
[m

m
]

FLUENCE, z=1.8 cm

−0.1 0 0.1

−0.1

0

0.1

x [mm]

y 
[m

m
]

FLUENCE, z=2.2 cm

 

 

−0.1 0 0.1

−0.1

0

0.1

x [mm]

y 
[m

m
]

FLUENCE, z=1.2 cm

−0.1 0 0.1

−0.1

0

0.1

(a)

(b)

FIG. 7. (Color online) (a) Maximum intensity and peak electron
density for the 1550 nm pulse with long duration tp = 500 fs and
w0 = 0.2 mm. (b) Fluence patterns at different propagation distances.

z = 0.8 cm, four regular modulations arise with the transverse
spacing of 120–150 µm upon the longest boarder in the
x-direction (two modulations on each boarder). They amplify
on the ridges of the ring (z = 1.2 cm), giving birth afterwards to
four filaments (z = 1.8 cm). The most neighboring filaments
then merge along the y-axis, before the resulting two cells
coalesce in turn at center in full plasma regime (z = 2.2 cm).
Other filaments can be nucleated at further distances, in the
trace left by the primary ones [32].

Figure 8 illustrates the evolution of the (x, t) field distribu-
tion at maximum intensity along the y-axis for close propaga-
tion distances. Besides spatial instability, two sorts of temporal
undulations appear: short-scaled (∼10 fs) modulations that
do not amplify and long-scaled (∼50 fs) modulations that
do amplify along the z-axis. These behaviors are compatible
with Figs. 1(c) and 2(b). In space, the most unstable wave
numbers nearby kmax

⊥ � 437 cm−1(
max � 2 cm−1) corre-
spond to 143 µm periodic modulations, which agrees with
Fig. 7(b). At focus, plasma again defocuses every pulse
component whose intensity is close to the clamping value.
The front pulse then exhibits ∼40 fs FWHM duration. Note
the persistent long/short modulations still surviving in the
trailing edge of the pulse (z = 1.8 cm). At further distance
(z = 2.2 cm), the pulse develops a full optically-turbulent
regime. The strong refocusing in the rear pulse suggests an
important action from the T , T −1 operators, reinforced at long
wavelengths [35].

Using �T = 40 fs and solving Eq. (10), we evaluated
the clamping intensity and peak electron density to Imax �
20 TW/cm2 and ρmax = 6 × 1018 cm−3, which agrees with
Fig. 7(a).

B. Short pulse durations (IR)

The last configuration concerns the multifilamentation of
ultrashort (tp = 50 fs) pulses with millimeter waist (w0 =
1 mm) and anomalous dispersion (λ0 = 1550 nm). Only the
spatial amplitude of the beam is perturbed by a 5% random
noise, altering the initial intensity level I0 � 0.73 TW/cm2
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FIG. 8. (Color online) Field distributions of the long 1550 nm
pulse in the (x, t) plane at the respective coordinates y of maximum
intensity (from top to bottom: ymax � 0.028, 0.019, and 0 mm) and
for three propagation distances.

reached for Pin = 1000 Pcr in silica. For this purpose, Fig. 9(a)
displays the global evolution of the beam, which collapses at
the self-focusing distance z � 0.8 cm. At such high power
levels, there is no spatial breakup occurring on the ring
pattern. Instead, the central zone of the beam becomes rapidly
turbulent and self-organizes into myriads of cells distributed
into bee-nested structures. These structures are characterized
by micrometric hot zones, in which filaments are nucleated and
connected to each other by high-fluence bridges [see Fig. 9(b)].
Before the focus, spatial modulations are amplified from the
periodic spacing λopt � 70 µm (z = 6 mm). This evaluation
fully agrees with the maximum wave number of Fig. 1(d).

Along the time direction, Fig. 1(d) predicts the occur-
rence of temporal modulations with ∼18 fs period. Such
modulations, which are not initially excited, are absent from
our numerical simulations. As a matter of fact, anomalous
dispersion and steepening effects, prominent at short pulse
durations, push and compress all spatial components toward
the back zone of the pulse [38]. This not only breaks the
plane-wave assumption for modulational instability in time,

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

I [
T

W
/c

m
2 ]

z [cm]

10
17

10
18

10
19

10
20

ρ 
[c

m
−

3 ]

x [mm]

y 
[m

m
]

FLUENCE, z=0.8 cm

−0.2 0 0.2

−0.2

0

0.2

x [mm]

y 
[m

m
]

FLUENCE, z=1 cm

 

 

−0.2 0 0.2

−0.2

0

0.2

x [mm]

y 
[m

m
]

FLUENCE, z=0.6 cm

−0.2 0 0.2

−0.2

0

0.2

(a)

(b)

FIG. 9. (Color online) (a) Maximum intensity and peak electron
density for the 1550 nm pulse with short duration tp = 50 fs and
w0 = 1 mm. (b) Fluence patterns at different propagation distances.

but also inhibits the classical stage of plasma-driven pulse
splitting in time. These effects superimpose for compressing
the pulse down to two optical cycles (∼10 fs at focus) and
they further initiate a strong shock dynamics along which
singly-cycled (∼5 fs) spikes can dominate, as can be seen
in Fig. 10. It is interesting to notice the important number of
filaments regularly formed along the x-axis; each generates
one cell displayed in Fig. 9(b). Along the full self-channeling
range (z � 0.9 cm), the pulse temporal centroid goes on
moving toward positive times due to third-order dispersion and
pulse steepening. Using the evaluation �T = 5–10 fs for the
most intense peak formed at focus, we estimate from Eq. (10)
Imax = 26–30 TW/cm2 and ρmax = 7.6–8.8 × 1018 cm−3,
which is again compatible with Fig. 9(a).

To end this subsection, we find it instructive to prove from
multifilamented short pulses that the spatial landscape may
drastically change from one time slice to another. At the
time slice supporting the maximum intensity (t = tmax), the
beam blows up into multiple filaments at center, unlike what
could be expected for a supergaussian beam forming a ring
pattern at moderate input intensities. Around tmax filaments
emerge, dissipate due to plasma losses, and renucleate inside
the most intense central part of the beam. In contrast, other
time slices, i.e., at t = 0, can convey in the leading part
of the pulse different spatial landscapes, e.g., the expected
ring patterns, that survive at lower intensity levels. Here,
plasma generation is negligible and, due to its large waist
(wx � 1.2 mm, wy � 0.75 mm), the ring slowly diffracts in
linear propagation regime (see Fig. 11).

V. SPECTRA

Finally, we comment on the spectral modifications under-
gone by the different pulses. Figure 12 displays the intensity
spectra averaged over the entire simulation box at z = 0 (dotted
curves) and at the three propagation distances selected in the
previous (x, t) field distributions. Plotstyle follows the three
increasing distances shown in Figs. 4, 6, 8, and 10, represented
by dash, dash-dotted, and solid curves, respectively.
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FIG. 10. (Color online) Field distributions of the short 1550 nm
pulse in the (x, t) plane at the coordinate y of maximum intensity and
for three propagation distances.

FIG. 11. (Color online) Maximum intensity profiles in the
diffraction plane (top) at times t = tmax and (bottom) at t = 0, for
propagation distances around the self-focus point.
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FIG. 12. Averaged spectra for (a) 355 nm long pulses, (b) 355 nm
short pulses, (c) 1550 nm long pulses, and (d) 1550 nm short pulses.
Plotstyles are explained in the text.

Figures 12(a) and 12(b) both indicate a narrow spectral
broadening, which remains almost symmetric even during
the self-channeling stage. We can also observe that the
spectra remain unchanged in their first intensity decade. This
small spectral broadening can be justified by the fact that
supercontinuum generation is generally limited in the UV
and the operators T , T −1, asymmetrizing the spectral shape,
have a negligible influence at low wavelengths [35]. Self-
phase modulation, dictated by the frequency variations �ω ∼
−k0�z(n2Imax − ρmax/2n0ρc)/τFWHM along path intervals �z

and pulse durations τFWHM, thus appears limited, first because
the intensity is moderately clamped at levels <20 TW/cm2,
second because the overall FWHM pulse duration always stays
comparable with the initial one (τFWHM ∼ tp).

In contrast, Figs. 12(c) and 12(d) reflect the fact that
both short and long 1550 nm pulses undergo sharp intensity
growths (Imax > 30 TW/cm2), accompanied by strong tempo-
ral compression dynamics. The latter is reinforced by optical
shocks induced by an efficient self-steepening. Consequently,
the pulse spectrum widely broadens to large frequencies, as
already reported, e.g., at infrared wavelengths in air [39] or at
1550 nm in silica for a single filament [40].

Another interesting feature is the growing lateral spec-
tral components that surround the central frequency. Their
dynamics could resemble those reported recently on rogue
wave formation in 1D (optical fiber) systems at long wave-
lengths [41]. Despite the lack of numerous simulations testing
different noise realizations, we can guess that optical rogue
waves, characterized by the sudden occurrence of intense
components shifted to the back zone, may also here appear
around the self-focus point. In this regards, we can be inspired
by the temporal distribution of spikes for long pulses in Fig. 8
and by the “rogue” trailing pulse amplified from initially short
pulses in Fig. 10. Optical rogue waves were recently reported
in atmospheric laser filamentation from the statistical analysis
of experimental spectra [42].

013817-8



MULTIFILAMENTATION OF POWERFUL OPTICAL PULSES . . . PHYSICAL REVIEW A 81, 013817 (2010)

VI. CONCLUSION

In summary, we have numerically examined the self-
focusing and multiple filamentation of pulses at two different
wavelengths inducing normal or anomalous group-velocity
dispersion. The analysis was performed for small (micrometer)
spatial beams limiting the creation of small-scaled cells, but
extending over long pulse durations, and for large (millimeter)
beams triggering a very large number of filaments over
relatively short time scales. In this respect, an important result
is the applicability of the spatial light replenishment scenario
creating two-peaked temporal profiles on multifilamented
beams not only in the UV, but also in the near-infrared domain
over long pulses. Here the plasma classically acts in collective
manner to defocus the trailing edge of the most intense spatial
components and reform secondary peaks in the same zone at
further distances. Long pulse durations diminish the efficiency
of anomalous dispersion in the near-infrared domain. In
contrast, the same effect becomes a key player for initially-
short pulse durations. Combined with higher-order dispersion

and steepening effects, it leads to pulse self-compression in
the rear region. There, multiple filaments can emerge in space,
whereas at earlier times more regular patterns, such as ring
distributions, still survive over long z scales. For ultraviolet
pulses, we find moderate changes in the temporal extent,
associated with a small spectral broadening that still holds
in multifilamentation regime. Finally, we checked by means
of arguments based on the modulational instability theory that
characteristic fluctuations amplified by the Kerr nonlinearities
could be found in such beams.
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[12] A. Dubietis, G. Tamošauskas, G. Fibich, and B. Ilan, Opt. Lett.
29, 1126 (2004).
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