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We address quantum interference of the Zeeman atom embedded in two kinds of structures containing left-
handed materials (LHM), which are a single LHM layer mounted on a single mirror (SLSM) and Fabry-Pérot
cavity filled with a LHM layer by half (FPCLH). Especially, the influence of the dissipation of LHM on quantum
interference has been studied in detail. Though dissipation weakens quantum interference in general, it holds
nearly complete quantum interference when the thickness of the cavity is small for FPCLH. Moreover, with
equivalence of left- and right- rotation polarized dipoles to two spatial orthogonal dipoles, we found the optimum
orientation of two orthogonal dipoles which can realize the maximum quantum interference in a certain anisotropic
environment. Our research may have potential applications in the designing of microsize devices.
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I. INTRODUCTION

The quantum interference among different decay channels
of the atom has attracted great attention for a long time [1–6],
since it results in many fascinating phenomena in the field of
laser and quantum information, such as coherence trapping of
population [1], lasing without inversion [2], electromagneti-
cally induced transparency [3], atomic excited level population
trapping [4], ultranarrow spectral line [5], and gain without
inversion [6]. However, strong quantum interference requires
the presence of near-degenerate atomic transitions with near-
(anti)parallel dipole moments sharing a common atomic state.
It is well known that the near-degenerate atomic transitions can
be realized through the Zeeman splitting, but the corresponding
dipole moments are orthogonal to each other, in which one is
left-rotation polarized and the other is right-rotation polarized.
Therefore, there is rarely experimental proof of strong quantum
interference in atomic systems due to the lack of an appropriate
candidate system.

To avoid the difficulty in quantum interference of the atomic
system, Agarwal [7] first suggested that quantum interference
between two orthogonal dipole moments can be revived in
an anisotropic vacuum. Later, the anisotropy of a multilayer
dielectric medium [8] and one-dimensional photonic crystals
[9] has been checked, and the quantum interferences of
a Zeeman V-type atom in these environments have been
studied theoretically. However, the required distance between
atom and interface of those structures for strong quantum
interference cannot be larger than half of the wavelength,
equivalently the width of the space with high anisotropy
in Refs. [7–9] is less than half of the wavelength at the
atomic transition frequency, which is a strong constraint for
experiment.

Recently, we published a paper emphasizing that the
Zeeman atom could have strong quantum interference in a
much wider space with the help of left-handed materials
(LHM) [10] due to the enhanced indirect quantum inter-
ference. LHM introduced by Veselago in 1968 [11] refer
to the materials possessing negative permittivity, negative
permeability, and negative refractive index simultaneously at
interesting frequencies. With its significant advantage of phase
compensation, LHM has promising applications in perfect lens

[12], the sub-wavelength cavity resonator [13], and complete
inhibition of spontaneous decay [14]. Until now, LHM had
been fabricated in the microwave region, infrared, and visible
light frequencies [15,16].

Here, based on the content of Ref. [10], we explore
the influence of the dissipation of LHM on the quantum
interference in detail, and analyze the quantum interference
between two spatial orthogonal dipole moments in a certain
environment. This paper is arranged as follows. In Sec. II,
we give the principle of reviving the quantum interference
of the Zeeman atom in an anisotropic vacuum. In Sec. III,
we discuss the quantum interference of the Zeeman atom
embedded in two kinds of structure, i.e., SLSM and FPCLH,
especially focusing on the influence of dissipation on quantum
interference. In Sec. IV, the necessary condition required for
strong quantum interference of two spatial orthogonal decay
channels is analyzed. Section V draws our conclusion.

II. QUANTUM INTERFERENCE OF A ZEEMAN
THREE-LEVEL ATOM

We consider a V-type three-level atom located in a one-
dimensional structure, which is shown in Fig. 1. The layer
containing the atom is a vacuum, which is marked by “Layer
0” with thickness d0. The center of Layer 0 is taken as the
origin of the coordinate. The atom with position (0, 0, z0) has
two closely lying upper states |1〉 and |2〉, and one ground
state |3〉. For the Zeeman atom, the atomic dipole moment
operator is represented by d = d(A13ε− + A23ε+) + H.c., in
which ε+ = (ez + iex)/

√
2 and ε− = (ez − iex)/

√
2 refer to

right-rotating and left-rotating unit vectors, respectively. Aij =
|i〉〈j |(i, j = 1, 2, 3) is the atomic operator, and the amplitude
of the dipole moment d is chosen to be real.

According to Ref. [8], the simultaneous equations of the
expectation values of atomic operators for the V-type three-
level atom are

d

dt
〈A11〉 = −2γ1〈A11〉 − κ2〈A12〉 − κ2〈A21〉, (1)

d

dt
〈A22〉 = −2γ2〈A22〉 − κ1〈A21〉 − κ1〈A12〉, (2)
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FIG. 1. The V-type three-level atom (left figure) is placed in the
one-dimensional structure (right figure).

d

dt
〈A12〉 = −[γ1 + γ2 + i(ω2 − ω1)]〈A12〉

− κ1〈A11〉 − κ2〈A22〉, (3)

where

γ1 = d2ω2
1ε− · Im

↔
G(r0, r0, ω1) · ε+

= d2ω2
1 Im[Gzz(r0, r0, ω1) + Gxx(r0, r0, ω1)]/2, (4)

γ2 = d2ω2
2ε− · Im

↔
G(r0, r0, ω2) · ε+

= d2ω2
2 Im[Gzz(r0, r0, ω2) + Gxx(r0, r0, ω2)]/2, (5)

κ1 = d2ω1ω2ε+ · Im
↔
G(r0, r0, ω1) · ε+

= d2ω1ω2 Im[Gzz(r0, r0, ω1) − Gxx(r0, r0, ω1)]/2, (6)

κ2 = d2ω1ω2ε− · Im
↔
G(r0, r0, ω2) · ε−

= d2ω1ω2 Im[Gzz(r0, r0, ω2) − Gxx(r0, r0, ω2)]/2. (7)

In which γ1 and γ2 are the spontaneous decay rates for
transitions |1〉 → |3〉 and |2〉 → |3〉, respectively. κ1 and κ2

are the quantum interference between two decay channels. In
the presence of quantum interferences κ1 and κ2, 〈A11〉 and
〈A22〉 do not decay with the decay rate γ1 and γ2 according to
Eqs. (1) and (2).

In a free vacuum, the Green tensor
↔
G(r0, r0, ω) is isotropic,

i.e., Gxx = Gyy = Gzz, therefore quantum interference does
not happen (κ1 and κ2 are zero). However, if the vacuum
is anisotropic, i.e., Gzz �= Gxx , then quantum interference
κ1(κ2) appears. We adopt the relative strength of quantum
interference p = κn/

√
γ1γ2 [8] to measure quantum inter-

ference. Because the two Zeeman upper levels are nearly
degenerate, the approximation ω1 ≈ ω2 = ω0 is reasonable.
With the definition of �⊥ = d2ω2

0ImGzz(r0, r0, ω0) and �|| =
d2ω2

0 ImGxx(r0, r0, ω0), p becomes

p = �⊥ − �||
�⊥ + �||

. (8)

Here �⊥ is the spontaneous decay rate of the dipole momentum
d perpendicular to the interface, i.e., along the z-axis, and
�|| is the spontaneous decay rate of the dipole momentum d
parallel to the interface, i.e., along the x-axis. It is clear that p
increases with the difference between �⊥ and �||. If �|| = 0,
we get p = 1 with γ1 = γ2 = κ1 = κ2 = �⊥/2, which means
complete quantum interference happens. With the help of the
Green tensor in a multilayer [17], the decay rate �⊥ and �||
can be expressed as

�|| = 3

4
�0Re

(∫ K

0
+

∫ ∞

K

)
dβ

K

β

Kz

{[
1 + 2rT E

L rT E
R ei2Kzd0 + rT E

L eiKz(d0+2za ) + rT E
R eiKz(d0−2za )

DT E

]

+ K2
z

K2

[
1 + 2rT M

L rT M
R ei2Kzd0 − rT M

L eiKz(d0+2za ) − rT M
R eiKz(d0−2za )

DT M

]}

= �||rad + �||nonrad, (9)

�⊥ = 3

2
�0Re

(∫ K

0
+

∫ ∞

K

)
dβ

Kz

β3

K3

[
1 + 2rT M

L rT M
R ei2Kzd0 + rT M

L eiKz(d0+2za ) + rT M
R eiKz(d0−2za )

DT M

]

= �⊥rad + �⊥nonrad. (10)

Here �0 = d2ω3
0/(3πε0h̄c3) is the decay rate of dipole moment

d at ω0 in free space. Two components of the wave vector, the
z-component Kz and the projection on the x-y plane β, satisfy
the relationship of K2

z + β2 = K2, in which K = ω0/c is the
wave number. r

q

R(rq

L) is the reflective coefficient at the right
(left) interface of Layer 0 for polarization q = TE or TM. Dq

originates from the multireflection in Layer 0, which is

Dq = 1 − r
q

Lr
q

Re2iKzd0 . (11)

In Eqs. (9) and (10), the decay rate is divided into two parts:
the radiative decay rate and nonradiative decay rate. Radiative
decay refers to the decay through an emitting photon, which
is embodied by integration over β from 0 to K. Nonradiative

decay originates from a Coulomb interaction between the atom
and its surrounding, and happens only when the surrounding
contains dissipation. In mathematics, nonradiative decay rate
is embodied by integration over β from K to infinite in Eqs.
(9) and (10) while Kz is a pure imaginary number.

III. QUANTUM INTERFERENCE OF ZEEMAN ATOM
EMBEDDED IN THE STRUCTURE CONTAINING LHM

Agarwal [8] first pointed out that anisotropy may lead
to quantum interference between two orthogonal dipole mo-
ments. He adopted the ideal Fabry-Pérot cavity (FPC) (cavity
with two perfect mirrors) to construct a high anisotropic space,
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FIG. 2. The relative strength of the quantum interference p as a
function of the width of the cavity for ideal cavity, z0 = 0.

and gave spontaneous decay rates in such a cavity as [8]

�⊥/�0 = 3π

2Kd0
+ 3π

Kd0

N∑
n=1

(
1 − π2n2

K2d2
0

)

× cos2

(
z0 + d0/2

d0
πn

)
, (12)

�||/�0 = 3π

2Kd0

N∑
n=1

(
1 + π2n2

K2d2
0

)
sin2

(
z0 + d0/2

d0
πn

)
.

(13)

Here N is the largest integer which is smaller than Kd0/π . If
d0 < λ0/2, and then �|| = 0 and �⊥/�0 = 3π/(2Kd0), which
results in p = 1 according to Eq. (8). Otherwise when d0 �
λ0/2, �|| is no longer zero, thus the relative strength p is smaller
than 1. p versus d0 for z0 = 0 in an ideal FPC has been plotted
in Fig. 2.

From Fig. 2, it is clear that p is near 1 only when the width
d0 is less than half of the wavelength. With increasing d0, the
amplitude of p decreases. When d0 is larger than 2λ0, |p| is
less than 0.2 and quantum interference nearly does not work.

A. Single LHM layer mounted on single mirror (SLSM)

In order to hold the strong quantum interference for larger
d0, we try to construct an environment which can inhibit the
decay of the x-component dipole even if the distance between
the atom and interface is large. Kästel and Fleischhauer [14]
pointed out that the structure made of a mirror and a LHM
layer has the power to suppress spontaneous emission over a
macroscopic distance, which is shown in Fig. 3. The distance
between the atom and the right interface of the LHM layer is
given exactly as the thickness of the LHM layer dA. In order
to make use of Eqs. (9) and (10) to perform the calculation,
we assume a virtual wall on the right side of the atom, see the
dotted line in Fig. 3, then d0 = 2dA.

When Layer A is made of the ideal LHM (εA = µA =
nA = −1), the coefficients in Eqs. (9) and (10) take the values
as z0 = 0, r

T M/T E

R = 0, rT E
L = − exp(−i2KzdA), and rT M

L =
exp(−i2KzdA). Consequently, we get p = 1 with �⊥ = 2�0

and �|| = 0 for arbitrary dA (d0). That means, even if the
Zeeman atom is far away from the LHM layer, there is still
strong quantum interference.

FIG. 3. The atom is in front of a single LHM layer mounted on a
single mirror.

The result of p = 1 originates from the phase compensation
of LHM. As the refractive index of LHM layer is −1, the
total optical distance between the atom and mirror is nAdA +
dA = 0. Therefore the atom is equivalent to be placed just at
the mirror. It is well known that, when the atom is placed
at the mirror, the density of state for an atom with dipole
moment parallel to mirror is zero, while the density of state
for an atom with dipole moment normal to mirror is twice of
that in free space. As a result, for the Zeeman atom placed
in the environment of Fig. 3, we get �|| = 0 and �⊥ = 2�0.
Consequently, the anisotropy of �|| and �⊥ leads to complete
quantum interference as expected.

However, according to the Krames-Kronig relation and the
fact that the LHM frequency band is always near the resonance
frequency of material [15], the dissipation of LHM cannot be
omitted, and then the influence of the LHM’s dissipation on
quantum interference must be taken into account.

Here we set εA(ω0) = µA(ω0) = nA(ω0) = −0.999 +
i0.003, r

T E/T M

R = 0, and the reflective coefficients of the
mirror are rT E

mir = −0.99 and rT M
mir = 0.99. The purpose of

adopting the above parameters is to realize such refractive
index, whose real part is near −1 and its imaginary part is very
small at the atomic transition frequency ω0. Here εA(ω0) is
chosen to have the same value as µA(ω0) in order to weaken
the reflection between vacuum and LHM. With Eqs. (8)–(10),
we plot p, �||, and �⊥ as a function of d0 in Fig. 4.

From Fig. 4(a), with increasing d0, p decreases from 1 to
0.34 at first, and then increases to maximum 0.8 at d0 ≈ 1.2λ0,
finally decreasing monotonously to 0.4 at d0 = 10λ0. Such
behavior is determined by the properties of �|| and �⊥.

When d0 (dA) is zero, nonradiative decay rates are zero
because the atom is just placed at the mirror. Therefore we
get p = 1 with �|| = �||rad = 0 and �⊥ = �⊥rad = 2�0. With
increasing dA(d0 = 2 dA), the Zeeman atom interacts with
more and more free dipoles in LHM through the dipole-dipole
energy transfer, and nonradiative decay rates �||(⊥)non-rad
increase with d0 sharply. As d0 ≈ 0.14λ0, �|| and �⊥ reach
their maximum values 88�0 and 180�0, consequently p gets its
minimum value 0.34 according to Eq. (8). Since the radiative
decay rate is much small compared with the total decay rate
when d0 < 0.5λ0, the nonradiative decay plays the prominent
role in the total decay as the atom-LHM distance is small.
Notice that the nonradiative decay originates from the dipole-
dipole energy transfer between the atom and the surrounding
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FIG. 4. (a) p as function of d0, (b) �|| as function of d0, and (c)
�⊥ as function of d0. The atom is placed in front of a single LHM
layer mounted on a single mirror shown in Fig. 3. The insets refer to
the enlarged figure of the total decay rate for d0 < λ. The reflective
coefficients of the mirror are rT E

mir = −0.99 and rT M
mir = 0.99, and

nA = −0.999 + i0.003.

through the Coulomb interaction, and the dipole-dipole energy
transfer depends on both the distance and relative orientation
between the donor and acceptor [18]. Therefore the maximum
�⊥non−rad is about twice of the maximum �||nonrad.

When d0 > 0.14λ0(dA > 0.07λ0), �||(⊥)nonrad is approxi-
mately proportional to (d0/2)−3, because the Coulomb force
between two dipoles is proportional to (R)−3 (R is the distance
between two dipoles) [18]. With the decreasing of nonradiative
decay rate, p reaches its second maximum value 0.8 at d0 =
1.2λ0. The dashed lines and the dotted lines in Fig. 4(b) and (c)
illustrate the competition between the radiative decay and the
nonradiative decay with the increasing d0. The nonradiative
decay can be omitted completely when d0 > 4λ0, while
�||rad(�⊥rad) increases (decreases) with d0 monotonously.
There are two reasons for the deviation of �||rad(�⊥rad) from
zero(2�0). The major reason is the absorption of the radiative
field by dissipation, and the second reason is the deviation of
the real part of the refractive index from −1. Consequently, the
phase compensation of the LHM is weakened and the Zeeman
atom cannot equivalently be placed just at the mirror. So the
deviation of �||rad(�⊥rad) from zero (2�0) becomes larger with
wider d0, and results in the decrease of p at large d0.

B. FPC filled with LHM by half (FPCLH)

To improve the quantum interference for larger d0, we
propose to add another wall made of the same LHM and mirror
as in the above section on the other side of the atom, as shown
in Fig. 5. Here the thickness of the middle layer is twice as
long as that of the LHM layers, and the Zeeman atom is placed
at the center of the middle layer, i.e., d0 = 2 dA, z0 = 0.

The starting point of choosing such a structure is based
on the following considerations. In the ideal case εA = µA =
nA = −1, the structure is equivalent to a Fabry-Pérot cavity
with zero thickness. We know from Fig. 2 that �|| = 0 when

FIG. 5. The scheme of a Fabry-Pérot cavity filled with the LHM
layer by half.

the distance between two mirrors is less than half of the
wavelength, and then the structure in Fig. 5 can inhibit �||
much more deeply than the structure in Fig. 3 as d0 increases
even if the index of Layer A is deviated from −1. Therefore,
p may hold a high value for wider d0 in the structure of Fig. 5.

We also set the indexes of LHM to be εA(ω0) = µA(ω0) =
nA(ω0) = −0.999 + i0.003, and the reflective coefficients of
the mirror to be rT E

mir = −0.99 and rT M
mir = 0.99. The results—

p, �||, and �⊥ as function of d0 in such a structure—are shown
in Fig. 6.

For the dipole moment parallel to interface, shown in Fig.
6(b), the nonradiative decay rate �||nonrad is dominant for d0

< λ, and the radiative decay rate is dominant for d0 > 4λ.
Due to dissipation, the structure of Fig. 5 cannot be rigorously
equivalent to be the FPC with zero thickness, and then the
radiative decay rate increases with d0 monotonously. However,
as expected, this structure can inhibit �|| much deeper than the
single LHM layer mounted on a single mirror (SLSM) when
d0 > 4λ0 by comparing Fig. 6(b) with Fig. 4(b).

For the dipole moment normal to interface, both the
radiative decay rate and nonradiative decay rate are much

FIG. 6. (a) p as function of d0, (b) �|| as function of d0, and
(c)�⊥ as function of d0. The atom is placed in a Fabry-Pérot cavity
filled with a LHM layer by half shown in Fig. 5. The reflective
coefficients of the mirror are rT E

mir = −0.99 and rT M
mir = 0.99, and

nA = −0.999 + i0.003.
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FIG. 7. The relative strength of the quantum interference p as a
function of the refractive index nA. (a) refers to the case of the Zeeman
atom in SLSM, and (b) refers to the case in FPCLH. µA = −1 is
constant. z0 = 0, d0 = 2λ0, and dA = λ0.

higher as d0 < λ. Different from the case of SLSM in Fig. 4(c),
the saturation of the nonradiative decay rate �⊥nonrad only
happens when d0 → 0 and cannot be shown in Fig. 6(c).
The reasons are that the Coulomb coupling of the z-direction
atomic dipole to the free dipoles in LHM is stronger than that
of the x-direction atomic dipole, and LHMs exist on both sides
of the atom in FPCLH. On the other hand, the radiative decay
rate �⊥rad is on the order of 102�0 as d0 → 0 because the
z-direction atomic dipole is easy to couple to the leak cavity
with zero thickness. Different from the case in SLSM, p is
still above 0.9 when d0< λ in FPCLH even if the dissipation
is taken into account. Due to the deeper inhibition of �|| and
stronger enhancement of �⊥ in FPCLH, p can hold a much
higher value for wider d0 in Fig. 6(a) compared with Fig. 4(a).
It is clear that p is still 0.7 in FPCLH even if d0 is 10λ0.

Though the dissipation of LHM has a destructive influence
on the quantum interference of the Zeeman atom in the above
two structures, the quantum interference p is still larger than
that in the FPC [7], multilayer dielectric medium [8], and one-
dimensional photonic crystals [9] when the distance between
the atom and surrounding is larger than half of the wavelength.

Finally, we discuss the influence of the refractive index of
LHM on the quantum interference. We set the permeability
µA = −1, and change the permittivity εA from −1 to −9. The
relative strength of the quantum interference p of the atom
in SLSM and FPCLH as a function of refractive index nA is
shown in Fig. 7.

From Fig. 7, p damps accompanying oscillations with the
deviation of nA from −1. p reaches the maximum 1 only when
nA = −1, in which the phase compensation of LHM works. If
nA deviates from −1, the effect of phase compensation is still
work, but the atom is no longer equivalent to be placed just at
the mirror, so the amplitude of p for nA �= −1 is smaller than
that for nA = −1 but is larger than that of atom in F-P cavity.

In addition, the amplitude of p for atom in FPCLH is stronger
than that in SLSM.

IV. THE INTERFERENCE BETWEEN TWO SPATIAL
ORTHOGONAL DIPOLES

In Secs. II and III, we discussed the quantum inter-
ference between two phase orthogonal dipoles, i.e., left-
rotating polarized dipole and right-rotating polarized dipole.
In mathematics, the left rotating-polarized dipole and right-
polarized dipole can be equivalent to two spatial perpendicular
linear polarized dipoles. For example, the transformation of
ε+ = (ez + iex)/

√
2 → e1 = (ez + ex)/

√
2 and ε− = (ez −

iex)/
√

2 → e2 = (ez − ex)/
√

2 has no influence on the results
of Sec. III. In this section, we focus on the case in which two
dipoles are spatially perpendicular to each other, and aim to
find the optimum orientation of these two dipoles to get the
maximum quantum interference in a certain environment. This
question is also relevant to finding the optimum orientation of
the normal line of the one-dimensional structure relative to
the rotation polarized ε+ and ε−. The dipole moment operator
considered here can be expressed as

d = d(A13e1 + A23e2) + H.c., (14)

e1 = (sin θ1 cos φ1ex + sin θ1 sin φ1ey + cos θ1ez), (15)

e2 = (sin θ2 cos φ2ex + sin θ2 sin φ2ey + cos θ2ez). (16)

We set the orientation angle φ1 = 0 to simplify the analysis,
which means e1 varies only on the x-z plane. The geometrical
orientation of dipoles e1 and e2 is shown in Fig. 8.

Owing to e1⊥e2, we get the relationship between θ1, θ2,
and φ2 as

tan θ2 cos φ2 = − 1

tan θ1
. (17)

Under the approximation ω1 ≈ ω2 = ω0, the spontaneous
decay rates γ1,2 and the quantum interference κ1,2 in the
anisotropic environment of Gxx = Gyy �= Gzz should be
rewritten as

γ1 = d2ω2
0e1ImG(r0, r0, ω0)e1 = cos2 θ1�⊥ + sin2 θ1�||,

(18)

γ2 = d2ω2
0e2ImG(r0, r0, ω0)e2 = cos2 θ2�⊥ + sin2 θ2�||,

(19)

κ = κ1,2 = d2ω2
0e1ImG(r0, r0, ω0)e2

= sin θ1 sin θ2 cos φ2�|| + cos θ1 cos θ2�⊥. (20)

The relative intensity of the quantum interference in such case
is

p = κ/
√

γ1γ2 = sin θ1 sin θ2 cos φ2�|| + cos θ1 cos θ2�⊥√
(sin2 θ1�|| + cos2 θ1�⊥)(sin2 θ2�|| + cos2 θ2�⊥)

= cos θ1 cos θ2(1 − �||/�⊥)√
[cos2 θ1(1 − �||/�⊥) + �||][cos2 θ2(1 − �||/�⊥) + �||/�⊥]

. (21)
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FIG. 8. The geometrical orientation of dipoles e1 and e2.

From Eq. (21), the value of p depends on both the orientation
angles of two dipoles and the ratio of �|| to �⊥.

According to the discussion in Sec. II, the strongest
quantum interference requires the equality between γ1,2 and
κ1,2. The sole condition fitting such a requirement is that
either �⊥ or �|| is zero. However, the results of Sec. III tell
us that it is impossible to get either �⊥ or �|| to be zero if the
LHM contains dissipation. Therefore the key emphasis in this
section is to find the optimum orientation of such two spatial
orthogonal dipoles to get the maximum quantum interference
in a certain environment.

Below, we will calculate the variation of p as a function of
orientation angles φ2 and θ1 [while the orientation angle θ2 is
determined by Eq. (17)] in different environments marked by
certain �||/�⊥.

We first consider the case of �|| = 0.706�0 and �⊥ = 4�0.
Here the values of the decay rates are not the emphasis, the
key point is their ratio �||/�⊥. Keeping the same ratio and
multiplying a common number to both �|| and �⊥ does not
change the result according to Eq. (21). From Fig. 9, there are
two common values of φ2 to make |p| = 0 for all θ1, which
are φ2 = 90◦ and φ2 = 270◦. The cases of φ2 = 90◦ and φ2 =
270◦ mean that e2 = ±ez.

FIG. 9. (Color online) the absolute value of the degree of quantum
interference |p| as a function of orientation angle φ2 for θ1 = 10◦

(black line), θ1 = 30◦ (dashed/red line), θ1 = 45◦ (dotted/blue line),
and θ1 = 60◦ (dash-dotted/dark cyan line). Here �|| = 0.706�0 and
�⊥ = 4�0. The case of θ1 = 180◦ − a is the same as the case of
θ1 = a. a ∈ [0, 90◦].

FIG. 10. (Color online) the absolute value of the degree of
quantum interference |p| as a function of orientation angle φ2 for θ1 =
10◦ (black line), θ1 = 30◦ (dashed/red line), θ1 = 45◦ (dotted/blue
line), and θ1 = 60◦ (dash-dotted/dark cyan line). Here �|| = 0.1�0

and �⊥ = 4�0. The case of θ1 = 180◦ − a is the same as the case of
θ1 = a. a ∈ [0, 90◦].

However, there are two common values of φ2 for all θ1 to
reach the relative maximum |p|, which are φ2 = 0◦ and φ2 =
180◦. Among all the groups of φ2 and θ1, groups (φ2 = 0◦,
θ1 = 45◦) and (φ2 = 180◦, θ1 = 45◦) lead to the absolute max-
imum value of |p| = 0.700, and will generate the maximum
quantum interference for the environment of �|| = 0.706�0

and �⊥ = 4�0.
Then we check the case of �|| = 0.1�0 and �⊥ = 4�0 in

Fig. 10. Similarly to Fig. 9, the groups (φ2 = 0◦, θ1 = 45◦) and
(φ2 = 180◦, θ1 = 45◦) lead to the absolute maximum value of
|p| = 0.951. And when φ2 = 90◦ and φ2 = 270◦, the quantum
interference disappears even if the difference between �||
and �⊥ is large here. Comparing Fig. 10 with Fig. 9,
the maximum |p| in Fig. 10 is much higher than that in Fig. 9.
The absolute maximum |p| in Figs. 9 and 10 satisfy the
formula |p|max = |(�⊥ − �||)/(�⊥ − �||)|, which are just the
|p| of the Zeeman three-level atom with ε± = (ez ± iex)/

√
2

in these environments.
In the Appendix, we analytically prove the above conclu-

sion that, for an anisotropic environment with Gxx = Gyy �=
Gzz, the quantum interference between two spatial orthogonal
dipoles disappears when φ2 = 90◦ or 270◦ and the quantum
interference reaches the absolute maximum when θ1 = 45◦
or 135◦ and φ2 = 0 or 180◦. It should be noticed that φ2 =
90◦ or 270◦ means that e2 is along the y-axis, and e1 is on
the x-z plane. Because the x-y plane is isotropic, e2 has
no interaction with the x-component of e1, in addition e2

cannot couple to the z-component of e1, and then no quantum
interference happens for such cases. However θ1 = 45◦ or
135◦ and φ2 = 0◦ or 180◦ mean that e1 and e2 are both in
the x-z plane and their z-component has the same amplitude
with the x-component. The absolute maximum |p| when
θ1 = 45◦ or 135◦ and φ2 = 0◦ or 180◦ equals to |p| of the
Zeeman three-level atom with ε± = (ez ± iex)/

√
2 in the same

environment. As the SLSM and FPCLH can provide much
higher |p| for the Zeeman atom for much wider space than
the ordinary materials, the quantum interference between two
spatial orthogonal dipoles can also be enhanced in SLSM
and FPCLH when their dipole orientations are adjusted into
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the optimum orientations θ1 = 45◦ or 135◦ and φ2 = 0◦
or 180◦.

V. CONCLUSION

As a conclusion of this paper, LHM have been used to
enhance the quantum interference between two orthogonal
dipoles due to the phase compensation. For a lossless ideal
LHM, the Zeeman atom in a single LHM layer mounted
on a single mirror (SLSM) is equivalent to being placed at
the mirror, and the Zeeman atom in the FPC filled with the
LHM layer by half (FPCLH) is equivalent to be placed in a
zero-thickness FPC, and then complete quantum interference
can be achieved for arbitrary distance between the atom and
the ideal LHM. The influence of the dissipation of LHM
has been considered, and the competition between radiative
decay and nonradiative decay has also been studied in detail.
We find the dissipation of LHM can weaken the quantum
interference for larger d0, but the strong quantum interference
can be generated in FPCLH even if the distance between the
atom and LHM is larger than five wavelengths. Additionally,
with the equivalence of the rotation polarized ε+ and ε− to two
spatial orthogonal dipoles, we address the optimum orientation
of two orthogonal dipoles which can be used to realize
the maximum interference in an anisotropic environment of
Gxx = Gyy �= Gzz. This object is also equivalent to find the
optimum orientation of a normal line of one-dimensional
structure relative to rotationally polarized ε+ and ε−. The
enhancement of quantum interference for a large distance
may have a potential application in the designing of microsize
devices.
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APPENDIX: THE OPTIMUM ORIENTATION OF TWO
ORTHOGONAL DIPOLES TO REACH

THE MAXIMUM OF | p|
Part (i): If θ1 is fixed, what is the value of φ2 to reach the

relative maximum and minimum of |p|?
The expression of p for two spatial orthogonal dipoles is

shown in Eq. (A1) as

p = cos θ1 cos θ2(�⊥ − �||)√
[cos2 θ1(�⊥ − �||) + �||][cos2 θ2(�⊥ − �||) + �||]

.

(A1)

To derivate the above formation, the orthogonal condition,
Eq. (17) in which cos φ2 = −1/(tan θ1 tan θ2), has been used.
Let a = �||/(�⊥ − �||) (a � 0 due to �⊥ > �|| � 0), we get
the square of p as

p2 = 1(
1 + a

cos2 θ1

)(
1 + a

cos2 θ2

) . (A2)

With Eq. (17), we get

cos2 θ2 = 1

1 + tan2 θ2
= 1

1 + 1
tan2 θ1 cos2 φ2

, (A3)

then p2 can be rewritten as

p2 = 1(
1 + a

cos2 θ1

)(
1 + a + a

tan2 θ1 cos2 φ2

) . (A4)

It is clear that, if θ1 is fixed, p2 reaches the relative maximum
value when φ2 = 0, π . However, p2 reaches the minimum
value 0 when φ2 = π

2 , 3π
2 .

Part (ii): What is the group of (θ1,φ2) that can reach the
absolute maximum of |p|?

The previous part shows that, for certain θ1, p2 reaches the
relative maximum value when φ2 = 0, π . Now we want to
ascertain the group (θ1,φ2) to make p2 the absolute maximum.
Following the above part, the value of φ2 should be φ2 = 0, π ,
and the corresponding p2 is

p2 = 1(
1 + a

cos2 θ1

) (
1 + a

sin2 θ1

) . (A5)

Let x = cos2 θ1 (x∈ [01]), the denominator of Eq. (A5) can be
simplified and be defined as y by

y =
(

1 + a

x

)(
1 + a

1 − x

)

= 1 + a

x
+ a

1 − x
+ a2

x(1 − x)
. (A6)

The derivative of y, with respect to x, is

y ′ = a

[
1

(1 − x)2
− 1

x2
− a(1 − 2x)

x2(1 − x)2

]
. (A7)

It is well known that y(x0) is an absolute extremum of y

when y ′(x0) = 0. Such y(x0) will be the absolute maximum
if y ′′(x0) < 0, or be the absolute minimum if y ′′(x0) > 0. By
solving the equation of y ′(x0) = 0, we get x0 = 1/2.

The second derivative of y, with respect to x, is

y ′′ = a

{
2

(1 − x)3
+ 2

x3

+ a
2x(1 − x) + (1 − 2x)[2(1 − x) − 2x]

x3(1 − x)3

}
. (A8)

Inserting x0 = 1/2 into Eq. (A8), we get

y ′′(x0) = a(24 + 24 + 25a) = 25a(1 + a) > 0. (A9)

As y ′(x0) = 0 and y ′′(x0) > 0, y takes the absolute minimum
at x0 = 1/2. Consequently, ascos2 θ1 = 1/2, p2 takes the
maximum value.

So we have proved that the absolute value of p for two
spatial orthogonal dipoles gets the maximum value when θ1 =
π/4 or 3π/4 and φ2 = 0 or π .
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