
PHYSICAL REVIEW A 81, 013801 (2010)

Dyakonov-Tamm waves guided by the interface between two structurally chiral materials that differ
only in handedness
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The boundary-value problem of the propagation of Dyakonov-Tamm waves guided by the planar interface
between two structurally chiral materials that are identical except for structural handedness was formulated and
numerically solved. Detailed analysis showed that either two or three different Dyakonov-Tamm waves can
propagate. These waves have different phase speeds and degrees of localization to the interface with a sudden
handedness change. The most localized Dyakonov-Tamm waves are essentially confined to within a small number
of structural periods of the interface on either side.
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I. INTRODUCTION

A structurally chiral material (SCM), such as a chiral
liquid crystal [1,2] or a chiral sculptured thin film (STF)
[3,4], has a periodic nonhomogeneity which is born of a
continuous rotation of anisotropic dielectric properties at a
uniform rate along a specific axis. Structurally, an SCM can
be either left-handed or right-handed. When illuminated by
circular polarized light, an SCM exhibits the circular Bragg
phenomenon as follows. Provided the SCM is sufficiently
thick and the free-space wavelength of incident light lies in
a regime called the Bragg regime that depends on the angle
of incidence with respect to the axis of chirality, over a wide
range of angles of incidence the reflectance is either very high
or very low—depending on whether the illuminating light and
the SCM are co-handed or cross-handed [5–7]. Thus, an SCM
acts as a circular-polarization filter, a characteristic that is best
appreciated when the wave vector of the illuminating light is
parallel to the axis of chirality.

The polarization dependence vanishes if two SCMs, iden-
tical in all respects but differing in structural handedness, are
stacked on top of each other, provided that dissipation in the
SCM is sufficiently weak [8–10]. Thus, the differing structural
handednesses can offset the differing circular-polarization
sensitivities of the two SCMs in this arrangement. The question
of whether the planar interface of two such SCMs can guide the
propagation of surface waves arose. If so, these surface waves
are to be classified as Dyakonov-Tamm waves [11–13], which
combine the features of Dyakonov surface waves [14–22]
and Tamm states [23–27] and arose from research [11] on
surface-wave propagation guided by the planar interface of a
chiral STF and an isotropic dielectric material. These waves
were also shown to be allowed by a twist-defect interface in
an SCM [13,28].

Dyakonov surface waves propagate at the planar interface
of two homogeneous, nonconducting, dielectric materials, at
least one of which is anisotropic. As these surface waves can
exist only when very restrictive conditions are satisfied [29,30],
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their existence was experimentally confirmed [31] some two
decades after the theoretical prediction of their existence [14].
Dyakonov surface waves have several potential applications
in integrated optics [32–34]. Electronic states called Tamm
states are localized to the surface of a solid occupying a half
space. These states were experimentally observed in 1990 on
the surfaces of superlattices [24], and their optical analogs
have been theoretically investigated subsequently [25–27].

Our aim here is to establish the possibility of the prop-
agation of Dyakonov-Tamm waves guided by the planar
interface of two SCMs that are identical except for structural
handedness. For generality, we also assume that either of
the SCMs is twisted arbitrarily with respect to the direction
of propagation of the Dyakonov-Tamm wave parallel to the
interface. Section II presents the relevant boundary-value
problem which yields the dispersion equation for Dyakonov-
Tamm waves. Section III contains numerical results and
discussions for an SCM that is a chiral STF made of titanium
oxide. An exp(−iωt) time dependence is implicit, with ω

denoting the angular frequency. The free-space wave number,
the free-space wavelength, and the intrinsic impedance of
free space are denoted by k0 = ω

√
ε0µ0, λ0 = 2π/k0, and

η0 = √
µ0/ε0, respectively, with µ0 and ε0 being the perme-

ability and permittivity of free space, respectively. Vectors
are underlined once, dyadics are underlined twice, column
vectors are underlined and enclosed within square brackets,
and matrices are underlined twice and similarly bracketed.
Cartesian unit vectors are identified as ux , uy, and uz. The
dyadics employed in the following sections can be treated as
3 × 3 matrices [35,36].

II. FORMULATION

A. Geometry and permittivity dyadics

Let the half-space z > 0 be occupied by an SCM with a
unidirectionally nonhomogeneous, frequency-dependent per-
mittivity dyadic given by [3,4]

ε(z) = ε0S
z
(z, h,�, γ +) · S

y
(χ ) · ε

ref

·ST

y
(χ ) · ST

z
(z, h,�, γ +), z > 0 (1)
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FIG. 1. (Color online) Schematic of the planar interface of two
chiral STFs that are identical except for their different structural-
handedness parameters.

and the half-space z < 0 by an SCM characterized by

ε(z) = ε0S
z
(z,−h,�, γ −) · S

y
(χ ) · ε

ref

· ST

y
(χ ) · ST

z
(z,−h,�, γ −), z < 0, (2)

where the reference relative permittivity dyadic,

ε
ref

= εauzuz + εbuxux + εcuyuy, (3)

indicates local orthorhombic symmetry. The dyadic function

S
z
(z,±h,�, γ ±) = (uxux + uyuy) cos ζ±

±h(uyux − uxuy) sin ζ± + uzuz, (4)

where

ζ± = πz

�
+ γ ±, (5)

contains 2� as the structural period and ±h as the structural-
handedness parameters. The parameter h = 1 (h = −1)
indicates right (left)-handedness for the SCM in half-space

z > 0 and left (right)-handedness for the SCM in half-space
z < 0.

The beginning of the helical variation of the permittivity
dyadic is offset relative to the x axis in the x-y plane
by an angle γ + ∈ [−π, π ] in the half-space z > 0 and by
an angle γ − ∈ [−π, π ] in the half-space z < 0. The tilt
dyadic

S
y
(χ ) = (uxux + uzuz) cos χ

+ (uzux − uxuz) sin χ + uyuy (6)

involves the angle of inclination χ with respect to the x-y
plane. The superscript T denotes the transpose. The relative
permittivity scalars εa , εb, and εc are functions of the angular
frequency. Equations (1)–(6) can represent chiral nematic and
chiral smectic liquid crystals, as well as chiral STFs.

B. Field representation

Keeping both angles γ + and γ − arbitrary, we take the
Dyakonov-Tamm wave to propagate parallel to the x axis in the
x-y plane. Then the fields are independent of the y coordinate,
and it is appropriate to write [3]

E(r) = e(z) exp(iκx)

H (r) = h(z) exp(iκx)

}
∀ z. (7)

The column vector

[f (z)] = [ ex(z) ey(z) hx(z) hy(z) ]T (8)

satisfies the matrix differential equation [6],

d

dz
[f (z)] = i[P ±(z, κ)] · [f (z)]

}
z > 0

z < 0
, (9)

where the 4 × 4 matrix

[P ±(z, κ)] = ω

⎡
⎢⎢⎢⎣

0 0 0 µ0

0 0 −µ0 0

±hε0(εc − εd ) cos ζ± sin ζ± −ε0(εc cos2 ζ± + εd sin2 ζ±) 0 0

ε0(εc sin2 ζ± + εd cos2 ζ±) ∓hε0(εc − εd ) cos ζ± sin ζ± 0 0

⎤
⎥⎥⎥⎦

+ κ
εd (εa − εb)

εaεb

sin χ cos χ

⎡
⎢⎢⎢⎣

cos ζ± ±h sin ζ± 0 0

0 0 0 0

0 0 0 ∓h sin ζ±
0 0 0 cos ζ±

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎣

0 0 0 − κ2

ωε0

εd

εaεb

0 0 0 0
0 κ2

ωµ0
0 0

0 0 0 0

⎤
⎥⎥⎦ (10)

and

εd = εaεb

εa cos2 χ + εb sin2 χ
. (11)

Equation (9) can be solved by two independent techniques
[37–39]. The ultimate aim is to determine the matrices [N±]

that appear in the relations

[f (±2�)] = [N±] · [f (0±)] (12)

to characterize the optical response of one period each of
both SCMs. The matrices [N±] can be calculated using two
numerical techniques: the piecewise uniform approximation
technique [6] and a series technique based on the Maclaurin
expansion of [P ±(z, κ)] with respect to z [37,38]. As both
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FIG. 2. Sets of solutions κ/k0 of Eq. (20) for different combinations of the angular offsets γ + and γ −: εa = 2.514, εb = 3.943, εc = 3.153,
χ = 46.367◦, � = 197 nm, and λ0 = 633 nm. (a) First set, (b) second set, (c) third set, and (d) fourth set.

techniques yield the same results [39], the piecewise uniform
approximation technique was selected for all results reported
here.

Basically, this technique consists of subdividing each period
of the SCM into a cascade of electrically thin sublayers parallel
to the plane z = 0 and assuming the dielectric properties to be
spatially uniform in each sublayer. A sufficiently large number

N + 1 points z±
n = ±2�(n/N ), n ∈ [0, N ], are defined on

each side of the interface and the matrices

[W±
n

] = exp

{
±i

[
P ±

(
z±
n−1 + z±

n

2
, κ

)]
2�

N

}
,

n ∈ [1, N ] (13)

013801-3



JUN GAO, AKHLESH LAKHTAKIA, AND MINGKAI LEI PHYSICAL REVIEW A 81, 013801 (2010)

are calculated for a specific value of κ; then

[N±] ∼= [W±
N

] · [W±
N−1

] · . . . · [W±
2

] · [W±
1

]. (14)

A sublayer thickness 2�/N = 2nm gave reasonable results.
By virtue of the Floquet-Lyapunov theorem [40], we can

define the matrices [Q±] such that

[N±] = exp{±i2�[Q±]}. (15)

Both [N±] and [Q±] share the same eigenvectors, and their

eigenvalues are also related as follows. Let [t±](n), n ∈ [1, 4],
be the eigenvector corresponding to the nth eigenvalue σ±

n of
[N±]; then, the corresponding eigenvalue α±

n of [Q±] is given

by

α±
n = ∓i

ln σ±
n

2�
. (16)

C. Dispersion equation for Dyakonov-Tamm wave

The electromagnetic fields of the Dyakonov-Tamm wave
must diminish in magnitude as z → ±∞; the faster the
decay, the higher is the degree of localization to the interface.
Therefore, in the half-space z > 0, we label the eigenvalues of
[N+] such that Im[α+

1,2] > 0 and then set

[f (0+)] = [ [t+](1) [t+](2) ] ·
[

A1

A2

]
, (17)

where A1 and A2 are unknown scalars; the other two
eigenvalues of [N+] describe fields that amplify as z → +∞
and cannot therefore contribute to the Dyakonov-Tamm wave.
A similar argument for the half-space z < 0 requires us to
ensure that Im[α−

1,2] < 0 and then set

[f (0−)] = [ [t−](1) [t−](2) ] ·
[

B1

B2

]
, (18)

where B1 and B2 are unknown scalars.
Continuity of the tangential components of the electric

and magnetic fields across the interface z = 0 requires that
[f (0+)] = [f (0−)], which may be rearranged as

[
M

]
·

⎡
⎢⎢⎢⎣

A1

A2

B1

B2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎦ . (19)

For a nontrivial solution, the 4 × 4 matrix [M] must be
singular, so that

det[M] = 0 (20)

is the dispersion equation for the Dyakonov-Tamm wave.

III. NUMERICAL RESULTS AND DISCUSSION

A. Preliminaries

In order to illustrate the results of solving Eq. (20), we
decided to use chiral STFs as SCMs, as shown in Fig. 1. For
definiteness, we set h = 1. The angles γ + ∈ [−π, π ] and γ − ∈
[−π, π ] were left as variable parameters. All calculations were

carried out at λ0 = 633nm with data previously used for chiral
STFs made of titanium oxide [11]: εa = 2.514, εb = 3.943,
εc = 3.153, χ = 46.367◦, and � = 197 nm.

A sequential combination of standard numerical methods—
the search, the bisection, and the Newton-Raphson methods
[41]—was employed to find values of κ that satisfy Eq. (20).
If a solution exists, then ω/κ is the corresponding phase speed.

For every value of κ that satisfies Eq. (20), the fields on
either side of the interface z = 0 were calculated as follows.
First, we set A1 = 1 V/m and calculated A2, B1, and B2 from
Eq. (19); then we obtained [f (0±)] from Eqs. (17) and (18);
and finally we used⎡
⎢⎢⎢⎣

ex(z±
n )

ey(z±
n )

hx(z±
n )

hy(z±
n )

⎤
⎥⎥⎥⎦ ∼= [W±

n
] · [W±

n−1
] · . . . · [W±

2
]

· [W±
1

] · [f (0±)], n ∈ [1,∞], (21)

hz(z
±
n ) =

(
κ

ωµ0

)
ey(z±

n ), n ∈ [1,∞], (22)

ez(z
±
n ) =

(
εd

εaεb

) {
−

(
κ

ωε0

)
hy(z±

n )

+ (εa − εb)
sin 2χ

2

[
ex(z±

n ) cos
(π

�
z±
n + γ ±

)
± hey(z±

n ) sin
(π

�
z±
n + γ ±

)]}
, n ∈ [1,∞).

(23)

B. Solutions of the dispersion equation

For each combination of γ + and γ −, we obtained up to four
solutions of Eq. (20) that indicate the possible propagation of a
Dyakonov-Tamm wave. The variations of computed values of
κ/k0 with γ − at every chosen γ + for all four sets of solutions
are shown in Fig. 2. Because γ ± = π is physically the same
as γ ± = −π , the solution at γ − = π is equal to the one at
γ − = −π for any γ + ∈ [−π, π ], and vice versa.

The first set of solutions, shown in Fig. 2(a), has values
of the relative wavenumber κ/k0 around 0.734. This set is
organized in two parallel branches separated by two 60◦ gaps
on the γ − axis in which no solution exists; κ/k0 increases
with the increase of γ − in each branch. The values of γ − at

FIG. 3. (Color online) γ −
s2 and γ −

s3 as functions of γ +.
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(a)

(c)

(b)

FIG. 4. (Color online) Profiles of
the magnitudes of field components of
the first solution (κ/k0 = 0.734025) of
Eq. (20) for γ + = 15◦ and γ − = −105◦.
Electric field magnitudes are in V/m,
and magnetic field magnitudes are in
A/m, with A1 = 1 V/m. Field compo-
nents in the half-space z > 0 are super-
scripted +, whereas those in the half-
space z < 0 are superscripted −. See
Fig. 2 for the values of the constitutive
and geometric parameters used.

the midpoints of the two gaps are given by

γ −
s11 =

{
γ + + 7

12π, γ + ∈ [−π, 5
12π ]

γ + + 7
12π − 2π, γ + ∈ [ 5

12π, π ]
(24)

and

γ −
s12 =

{
γ + + 19

12π, γ + ∈ [−π,− 7
12π ]

γ + + 19
12π − 2π, γ + ∈ [− 7

12π, π ].
(25)

The variations of κ/k0 in the second and the third sets
of solutions with γ − for specific values of γ + are shown in
Figs. 2(b) and 2(c), respectively. For each set, the solutions
lie on a single curve which contains a discontinuity at a value

of γ − denoted by γ −
s2 and γ −

s3 for the two sets. Both γ −
s2 and

γ −
s3 are plotted against γ + in Fig. 3, which shows that they are

farthest apart in the neighborhood of γ + = ±π/2.
The fourth set of solutions, with κ/k0 around 1.84, is

shown in Fig. 2(d). Solutions in this set do not exist for all
combinations of γ + and γ −. If the γ − axis is folded so that
γ − = −π and γ − = π are joined, the solutions for a specific
value of γ + lie on a symmetric curve with one maximum.

Although all four sets are solutions of Eq. (20), they do
not necessarily indicate the propagation of surface waves.
Therefore, the variations of the electric and magnetic fields
with z were examined for several representative solutions from

(a)

(c) (d)

(b)

FIG. 5. (Color online) Same as
Fig. 4, but for the second solution
(κ/k0 = 1.501607) of Eq. (20) for
γ + = 15◦ and γ − = −105◦.
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(a)

(c) (d)

(b)

FIG. 6. (Color online) Same as
Fig. 4, but for the third solution (κ/k0 =
1.516921) of Eq. (20) for γ + = 15◦ and
γ − = −105◦.

the four sets. The field profiles on the two sides of the interface
z = 0 are, in general, different from each other. The profiles for
γ + = 15◦ and γ − = −105◦ were chosen for presentation here
since all four solutions of Eq. (20) exist for this combination
of the two angular offsets. We see that the fields for the first
solution (κ/k0 = 0.734025) in Fig. 4 are not localized at all to
the interface z = 0, indicating they do not belong to a surface
wave. The field profiles for the second (κ/k0 = 1.501607)
and the third (κ/k0 = 1.516921) solutions are presented in
Figs. 5 and 6, respectively. Both solutions have different field
profiles, but both are strongly coupled to the interface. Finally,
the fields for the fourth solution (κ/k0 = 1.840987) presented
in Fig. 7 are superpositions of a strongly localized component

and a weakly localized component. These field profiles allow
us to conclude that three different Dyakonov-Tamm waves can
propagate for the chosen combination of γ + and γ −. The most
localized Dyakonov-Tamm waves are essentially confined to
within three structural periods on either side of the interface;
that is, their fields are concentrated in the zone |z| < 6�.

The degree of localization to the interface is described
by four decay constants: exp(−u1), exp(−u2), exp(−v1), and
exp(−v2), where u1,2 = Im[α+

1,2] · 2� and v1,2 = −Im[α−
1,2] ·

2�. As the constraints Im[α+
1,2] > 0 and Im[α−

1,2] < 0 must
be satisfied for a Dyakonov-Tamm wave to exist, all decay
constants should be less than unity for the wave to decay
as z → ±∞. The smaller that the decay constants are, the

(a)

(c) (d)

(b)

FIG. 7. (Color online) Same as
Fig. 4, but for the fourth solution (κ/k0 =
1.840987) of Eq. (20) for γ + = 15◦ and
γ − = −105◦.
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(a)

(b)

FIG. 8. (Color online) Variations of decay constants exp(−u1) =
exp(−v1) and exp(−u2) = exp(−v2) with the angular offsets γ ±. See
Fig. 2 for the values of the constitutive and geometric parameters
used.

stronger is the wave localized to the interface. We therefore
examined the decay constants as functions of the angular
offsets. The eigenvalues, but not the eigenvectors, of [N±] are

independent of γ ±. Furthermore, as α+
1,2 = −α−

1,2, exp(−u1) =
exp(−v1) and exp(−u2) = exp(−v2), so that at most two
decay constants are possible. For the second and third sets of
solutions, α+

1 = α+
2 and α−

1 = α−
2 , so there is only one decay

constant exp(−u1) = exp(−v1) = exp(−u2) = exp(−v2).
The decay constants are plotted in Fig. 8 as functions

of γ + and γ −. For the first set of solutions, we see
that exp(−u1) = exp(−v1) < 1 and exp(−u2) = exp(−v2) ≈

0.999 . . . . Clearly, then u2 = v2 is almost null valued, which
means that the relevant solutions of Eq. (20) do not signify
the propagation of Dyakonov-Tamm waves, confirming our
suspicion from Fig. 4. For the second and the third sets of
solutions, we obtain exp(−u1) = exp(−v1) = exp(−u2) =
exp(−v2) < 1. The sole decay constant for the second set of
solutions represented by red triangles in Fig. 8 has the small-
est value at {γ + = −135◦, γ − = −90◦}, {γ + = −90◦, γ − =
−45◦}, {γ + = 45◦, γ − = 90◦}, and {γ + = 90◦, γ − = 135◦},
thereby indicating the strongest localization. The sole decay
constant for the third set represented by blue stars in the
same figure has the smallest value at {γ + = −105◦, γ − =
−90◦}, {γ + = −90◦, γ − = −75◦}, {γ + = 75◦, γ − = 90◦},
and {γ + = 90◦, γ − = 105◦}. The two decay constants in Fig. 8
for the fourth set of the solutions also signify the propagation
of Dyakonov-Tamm waves for certain combinations of γ +
and γ −, because exp(−u1) = exp(−v1) < 1 and exp(−u2) =
exp(−v2) < 1, but with one strongly localized component and
one weakly localized component.

We conclude from the foregoing figures that Dyakonov-
Tamm waves can propagate guided by the interface z = 0,
whether any angular offsets are present or not.

IV. CONCLUDING REMARKS

We formulated the boundary-value problem of the prop-
agation of Dyakonov-Tamm waves guided by the planar
interface of two SCMs that are identical except for structural
handedness. The angular offsets γ ± of beginning the helical
variation relative to the x axis in the x-y plane were varied
arbitrarily. A material discontinuity across the interface exists
even when both offsets are null valued. By numerically solving
a dispersion equation, we found that, depending on the angular
offsets, either two or three different Dyakonov-Tamm waves
can propagate—with different phase speeds and degrees of
localization to the interface. The most localized Dyakonov-
Tamm waves are essentially confined to within three structural
periods of the interface on either side.
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