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Achieving ground-state polar molecular condensates by chainwise atom-molecule adiabatic passage
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We generalize the idea of chainwise stimulated Raman adiabatic passage (STIRAP) [Kuznetsova et al., Phys.
Rev. A 78, 021402(R) (2008)] to a photoassociation-based chainwise atom-molecule system, with the goal of
directly converting two-species atomic Bose-Einstein condensates (BEC) into a ground polar molecular BEC. We
pay particular attention to the intermediate Raman laser fields, a control knob inaccessible to the usual three-level
model. We find that an appropriate exploration of both the intermediate laser fields and the stability property of
the atom-molecule STIRAP can greatly reduce the power demand on the photoassociation laser, a key concern
for STIRAPs starting from free atoms due to the small Franck-Condon factor in the free-bound transition.
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I. INTRODUCTION

A condensate of ground polar molecules with large perma-
nent electric dipoles represents a novel state of matter with
long-range and anisotropic dipole-dipole interactions that are
highly amenable to the manipulation by dc and ac microwave
fields [1]. As such, creation of such a condensate is expected
to be celebrated as another milestone that promises to greatly
spur activities at the forefront of physics research, particularly
with respect to quantum computing and simulation [2] and
precision measurement [3].

The road to molecular condensation is, however, compli-
cated by the fact that more degrees of freedom are needed to
describe molecules than atoms. In particular, cooling particles
by entropy removal, a direct method popular with atoms,
has so far proved to be unable to lower the temperature of
molecules down to the regime of quantum degeneracy. Thus,
most current experimental efforts in both homonuclear [4]
and heteronuclear [5–9] molecules have all taken a different
approach exemplified by the first experimental realization of
ground polar RbCs molecules [6], in which molecules are first
coherently created from ultracold atoms by photoassociation
(PA) [10] and are then brought down to the lower energy
state by a coherent laser field (instead of by spontaneous
decay [5,11,12]). More recently, by applying a single-step
stimulated Raman adiabatic passage (STIRAP) [13] onto the
weakly bound Feshbach molecules, groups at JILA [7–9] have
successfully created an ultracold dense gas of polar 40K87Rb
molecules.

In such schemes, there is a relatively large energy difference
between the initial Feshbach and final ground molecular states.
The former, being close to the dissociation limit, is a highly
delocalized state, while the latter is a tightly bound state. It
is then, in principle, difficult to locate a single excited state,
capable of a large spatial overlap integral [or equivalently a
good Franck-Condon (FC) factor] with both the initial and
final states. The desire to overcome this obstacle has led to
the idea of stepwise STIRAP [14,15], and more recently to the
idea of chainwise STIRAP [16], both of which are based on
models where additional intermediate states and Raman laser
fields are introduced to form a chain of � systems [17,18].
In these STIRAPs, the two lower states within each sub-�

system are far closer in energy than the initial and final states,
thereby greatly boosting the chance of locating an excited
state capable of a large FC transition to both lower states.
In contrast to a stepwise STIRAP, which employs a series
of STIRAPs to move molecules one step at a time down
each lower intermediate state, a chainwise STIRAP applies
a single STIRAP between the initial and final lasers to transfer
molecules, while uses relatively high intermediate cw lasers
to keep all the lower intermediate states virtually unoccupied.
This latter method eliminates the opportunities for molecules
to inherit decoherence from the unstable lower intermediate
states and is clearly an improvement over the former as
far as the ability to preserve the phase-space density is
concerned.

The focus of this paper is on the coupled multilevel
atomic-molecular condensate systems where the role of the
initial transition is played by photoassociation. (An example is
provided in Fig. 1, which will be described in detail in the
next section.) Our goal is to develop a generalized chainwise
STIRAP founded on the concept of atom-molecule dark
state, a coherent population trapping (CPT) superposition
between stable ground species [19,20]. This scheme has
several attractive properties. First, atoms are directly converted
into ground molecules. Thus, the loss of atoms typically
associated with the initial preparation of Feshbach molecules
[7,21] is never an issue here. Second, pulses of longer durations
can be employed to meet the adiabatic condition; we can
do so because the atom-molecule dark state is far more
stable than the molecular dark state, where the initial state
is highly unstable compared to the ground (atom or molecule)
states. Finally, the use of intermediate lasers presents us
with a new control knob inaccessible to typical three-level
models. It is the purpose of this paper to show that an
appropriate exploration of both the intermediate laser fields
and the stability property of the dark state can greatly reduce
the power demand for the PA laser needed for an efficient
conversion. This along with other efforts involving the use of
Feshbach resonance [22] may help to combat the weakness
in photoassociation, a key concern to STIRAPs starting from
free atoms due to the free-bound FC factor being typically very
small.
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FIG. 1. (Color online) A schematic of a chainwise STIRAP.

Our paper is organized as follows. In Sec. II, we describe our
model and the underlying mean-field equations and provide
the rationale that justifies the implementation of chainwise
STIRAP in our model. In Sec. III, we derive a set of linearized
equations around the time-dependent CPT solution and obtain
an adiabatic condition via a state expansion over a set of
orthonormal base vectors provided in Appendix B. In Sec. IV,
we apply this adiabatic theorem to facilitate our numerical
studies of the examples that serve to illustrate the main physics
outlined in the previous paragraph. Finally, a summary is given
in Sec. V.

II. MODEL AND CPT STATE

Figure 1 is the energy schematic diagram for a minimum
model that is capable of illustrating all the main points that
we want to convey in this paper. A laser field associates
atoms from two distinct species of states |01〉 and |02〉 into
molecules of state |1〉 in the excited electronic manifold with
a coupling strength �1 proportional to the laser field and
the free-bound FC factor. Simultaneously, a series of laser
fields of (molecular) Rabi frequency �i (i � 2) is applied to
move the molecules from the excited to the ground state |6〉
via additional intermediate energy states. In our notation, a
molecular state |i〉 (i = 1, 2, . . . , 6) is coupled to the atomic
states via an i-photon process characterized with an i-photon
detuning �i defined, respectively, as �1 = ω1 − E1/h̄, �2 =
(ω1 − ω2) − E2/h̄, �3 = (ω1 − ω2 + ω3) − E3/h̄, etc., where
ωi stands for the (temporal) frequency of the laser field with
Rabi frequency �i , and Ei for the energy of the molecular
state |i〉 relative to the free atomic energy level. Further,
intermediate states |i〉 (i = 1, 2, . . . , 5) are assumed to be
unstable; for each intermediate state |i〉, a decay rate γi is
introduced to describe phenomenologically the loss of its
molecules due to various incoherent processes.

As a proof of principle, we consider, in this paper, a
uniform condensate system with a total atom number density
n and describe such a system with a set of field operators �̂i ,
where �̂i is the operator for annihilating a bosonic particle
in condensate state |i〉. By following the mean-field treatment
of photoassociation at zero temperature [23] in which each
�̂i is treated as a c number �i , we obtain, from Heisenberg’s
equations for operators �̂i , a set of coupled Gross-Pitaevskii’s

equations for the normalized condensate fields ψi = �i/
√

n:

iψ̇01 = �1

2
ψ∗

02
ψ1, (1a)

iψ̇02 = �1

2
ψ∗

01
ψ1, (1b)

iψ̇1 = (�1 − iγ1)ψ1 + �1

2
ψ01ψ02 + �2

2
ψ2, (1c)

iψ̇i = (�i − iγi)ψi + �i

2
ψi−1 + �i+1

2
ψi+1,

(1d)
i = 2, 3, . . . , 5,

iψ̇6 = �6ψ6 + �6

2
ψ5, (1e)

where the molecular Rabi frequencies

�1 =
√

2
√

n�̄
(el)
1 〈v1|v(0)〉 (2a)

�i = �̄
(el)
i 〈vi |vi+1〉, i = 2, 3, . . . , 6, (2b)

are expressed in terms of the mean electronic Rabi frequency
�̄

(el)
i , the free-bound FC factor 〈v1|v(0)〉, and the bound-bound

FC factor 〈vi |vi+1〉, where vi and v(0) are the stationary wave
functions (of interatomic distance R) for a bound molecular
state |i〉 and a pair of atoms in states |01〉 and |02〉, respectively
[24,25]. In arriving at Eqs. (1), without the loss of the main
physics, we have followed Refs, [7,16] and ignored all the
two-body s-wave collisions. Further, in order to better illustrate
the essential physics, we will limit our study to a model in
which �3 = �5 ≡ �o and �2 = �4 ≡ �e, where subscript o

and e stand for the intermediate lasers of odd and even indices,
respectively.

Before moving ahead, we note that Jaksch et al. [14] have
identified a set of rovibrational levels from X1�+

g (ground)
and A1�u (excited) electronic manifolds to implement the
homonuclear version of the model in Fig. 1 for producing Rb2

molecules in the ground state X1�+
g (v = 0, j = 0) [=|6〉].

It is true that in order to arrive at a similar set of pathways
for the heteronuclear model, one must perform a careful
analysis of experimental spectroscopic data and possibly,
ab initia calculation of various overlap integrals [FC factors
defined in Eqs. (2)] [26–28]. However, the selection rules
for heteronuclear molecules are actually more relaxed; the
heteronuclear molecular orbitals do not have g or u symmetry,
and the number of possible transitions between the free atomic
and the ground molecular state is thus doubled. As a result, it is
not difficult to see that such a model can be easily generalized
from homonuclear to heteronulcear molecules.

By ignoring the decays (see the justification that follows)
and subjecting our system to the conservation of total particle
number,

ψ2
01

+ ψ2
02

+ 2
6∑

i=1

ψ2
i = 1, (3)

and that of atomic population difference, ψ2
01

− ψ2
02

≡ 0 (or
ψ2

01
= ψ2

02
≡ ψ2

0 for a balanced model), we find that under the
conditions of two-, four-, and six-photon resonance, namely,
�2 = �4 = �6 = 0, the system at steady state supports a
superposition involving all the lower states with the follow-
ing amplitude distribution (see Appendix A for a detailed
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derivation):

ϕ0 = 1√
1 +

√
1 + 2(α2�1/�6)2

, (4a)

ϕ2 = −ξϕ2
0 , ϕ4 = ξαϕ2

0 , ϕ6 = −α2 �1

�6
ϕ2

0 , (4b)

ϕ1 = ϕ3 = ϕ5 = 0, (4c)

where α = �o/�e and ξ = �1/�e. In arriving at Eq. (4), we
have only retained the leading order term in ξ , assuming that
the intermediate fields (�o,�e) are far stronger than the initial
and final fields (�1,�6) [16,18]. (Unless stated otherwise,
a similar perturbative interpretation applies to all the other
results.) It needs to be stressed that Eq. (4) is derived when
all the decays are ignored. As a result, it represents a steady
state (or CPT state) of Eqs. (1) (where all the decay rates are
included) only when it does not involve any unstable states.
The only unstable states in Eq. (4) are the lower intermediate
states, |2〉 and |4〉, whose amplitudes scale as ξ . Thus, it is in
the limit ξ � 1 when states |2〉 and |4〉 remain virtually empty
that this superposition can be truly called a “CPT” or “dark”
state. Also evident is that in the same limit and for a fixed α, the
initial and final populations are solely determined by the ratio
�1/�6. This lays the foundation for converting all the atoms
into the ground molecules by a chainwise STIRAP where a
counterintuitive pulse sequence is maintained only between
the initial and final laser fields. Another important feature is
that the initial and final populations are function of α2�1 so
that the change by �1 can also be accomplished by varying α.
However, the full impact of α on the STIRAP has to wait until
we know the adiabatic condition.

III. ADIABATIC CONDITION

To obtain the adiabatic condition, we linearize Eqs. (1)
around the instantaneous CPT state ϕi(t) according to ψi(t) =
ϕi(t) + δψi(t), where δψi(t) is the small perturbation, and ϕi(t)
are Eqs. (4) when �i are replaced with their instantaneous
values �i(t) at time t . This procedure results in a matrix
equation for the ket |δψ〉 = (δψ01 , δψ02 , δψ1, . . . , δψ6)T :

i
d

dt
|δψ〉 = (M − iγ )|δψ〉 − i|ϕ̇〉, (5)

where

M = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 �′
1 0 0 0 0 0

0 0 �′
1 0 0 0 0 0

�′
1 �′

1 2�1 �2 0 0 0 0

0 0 �2 0 �3 0 0 0

0 0 0 �3 2�3 �4 0 0

0 0 0 0 �4 0 �5 0

0 0 0 0 0 �5 2�5 �6

0 0 0 0 0 0 �6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 γ1 0 0 0 0 0

0 0 0 γ2 0 0 0 0

0 0 0 0 γ3 0 0 0

0 0 0 0 0 γ4 0 0

0 0 0 0 0 0 γ5 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|ϕ̇〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ̇0

ϕ̇0

0

γ2ϕ2 + ϕ̇2

0

γ4ϕ4 + ϕ̇4

0

ϕ̇6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

with �′
1 = ϕ0�1. Following the standard procedure [29], we

expand |δψ(t)〉 = ∑
ci(t)|λj (t)〉 in the space spanned by the

instantaneous collective modes |λj (t)〉 defined by

M|λj (t)〉 = λj (t)|λj (t)〉. (7)

In this new basis and under the condition that 〈λi |Ṁ|λj 〉/|λj −
λi | � 1 (λi �= λj ), Eq. (5) becomes

i
dci

dt
= λici − i

∑
j

〈λi |γ |λj 〉cj − i〈λi |ϕ̇〉 (8)

and can be put in a form convenient for us to estimate the
magnitudes of various ci due to the time variation of the
CPT state |ϕ̇〉, or, in another words, to arrive at the adiabatic
condition. (Note that whenever confusion is unlikely, we omit
the argument t to time-dependent variables.)

Thus, we see that the most crucial step in developing
an adiabatic theorem is to determine from Eq. (7) a set of
base vectors |λj 〉 upon which we can expand |δψ(t)〉. As
this step itself can often be quite involved, we focus on a
simplified model with �1 = �3 = �5 = 0. As we show in
Appendix B, for this special model and in the limit ξ � 1,
we can apply perturbation theory to obtain simple analytical
solutions from Eq. (7). In what follows, we simply quote the
relevant results and refer interested readers to Appendix B
for details. In a nutshell, the collective modes are found
to consist of λ1,2 = 0 [same as λ̄1,2 in Eq. (B9)] with a
double degeneracy, a set of “soft” modes λ3,4 = ±�eff/(2β)
[same as λ̄3,4 in Eq. (B9)] that scale as (�′

1and�6), where
�eff =

√
2�′2

1 α4 + �2
6 and β = √

1 + α2 + α4, and two sets
of “stiff” modes λ5,6 = ±0.5�e

√
1 + α + α2 [same as λ

(0)
5,6

in Eq. (B4b)] and λ7,8 = ±0.5�e

√
1 − α + α2 [same as λ

(0)
7,8

in Eq. (B4c)] that scale as �e and are larger than the “soft”
modes by a factor of ξ−1. Each set of nondegenerate modes
is symmetrically displaced with respect to the 0 modes, and
the appearance of the negative modes is expected because the
CPT state is not a thermodynamical ground state.
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The 0 mode being a doublet distinguishes the heteronuclear
model [30] from its homonuclear counterpart, which only
supports a single 0 mode [29]. In general, due to the ground
intermediate states being unstable, the two modes here are both
unstable, in contrast to the dark state in a typical three-level
system, which is a stable superposition, completely isolated
from other unstable states. However, by choosing the two
modes in the orthonormal form

|λ1〉 = 1√
2

(−1, 1, 0, 0, 0, 0, 0, 0)T , (9a)

|λ2〉 = (−�6,−�6, 0, 2ξ ′�6, 0,−2αξ ′�6, 0, 2α2�′
1)T√

2�eff

,

(9b)

where |λ1〉 is exact while |λ2〉 is correct up to the first order in
ξ ′ = �′

1/�e, which scales as ξ � 1 [see the discussion below
Eqs. (4)] because ξ ′ = ϕ0ξ , we find that |λ1〉 is completely
decoupled from other states as in a true dark state while |λ2〉
couples to other states with strengths that are at the same order
of magnitude as its decay rate,

〈λ2|γ |λ2〉 = 2(γ2 + α2γ4)ξ ′2�2
6/�2

eff ≡ 1/τ0. (10)

The result in Eq. (10) corroborates our intuition that the use
of relatively high intermediate laser fields can indeed make
the lifetime of our CPT state, τ0, far longer than those of the
lower intermediate states. Clearly, in order to justify the use of
the CPT state in Eqs. (4) as the adiabatic state for a STIRAP
process, we must design the STIRAP in such a fashion that it
is slow compared with the periods of the nonzero modes but
fast compared with τ0, the lifetime of the CPT state.

As a result, we consider all the coupling coefficients
〈λ2|γ |λi〉 involving |λ2〉 weak and ignore them from Eqs. (8).
In addition, we also ignore all the stiff modes, because they
are ξ−1 times more difficult to populate than the soft modes,
whose eigenvectors are given by

|λ3,4〉 = 1√
2

(
α2�′

1

�eff
,
α2�′

1

�eff
,±α2

β
, 0,∓α

β
, 0,± 1

β
,

�6

�eff

)T

.

(11)
Under these conditions, Eqs. (8) are simplified into

(iλ3 + 〈λ3|γ |λ3〉)c3 + 〈λ3|γ |λ4〉c4 = −〈λ3|ϕ̇〉, (12a)

〈λ3|γ |λ4〉c3 + (iλ4 + 〈λ4|γ |λ4〉)c4 = −〈λ4|ϕ̇〉, (12b)

where we have ignored ċ3,4 by assuming that they are
sufficiently small compared to λ3,4 in the adiabatic limit.

Finally, with the help of Eqs. (6) and (11), we find
from Eqs. (12) that, to a good approximation, the adiabatic
parameter [29]

r =
√

|c3|2 + |c4|2/2 (13)

can be estimated according to

r =
√

4γ 2
eff + λ2α2χ̇/

√
2

√
2λ2(1 + 2α4χ2)1/4(1 +

√
1 + 2α4χ2)

� 1, (14)

where χ = �1/�6, λ = �eff/(2β), and γeff = (α4γ1 +
α2γ3 + γ5)/(2β2).

IV. DISCUSSION

In what follows, we seek to gain from the r value in Eq. (14)
insights into the parameters, especially, α, that optimize the
final conversion efficiency. In a dynamical process where the r

value varies with time, we find the r value evaluated at time ts to
be a good figure of merit that distinguishes different STIRAPs,
where ts is the time when about 50% atoms would be converted
into molecules if the system were to follow the CPT state. With
ts defined above and the Gaussian pulses defined below, we
find

ts = T 2

2(t1 − t6)
ln

(
2�0

6

α2�0
1

)
+ t1 + t6

2
,

where T , t1,6, and �0
1,6 are, respectively, the width, peak

times, and peak strengths of the Gaussian pulses: �1,6(t) =
�0

1,6 exp[−(t − t1,6)2/T 2]. In all the calculations, γ1,3,5 =
107 s−1, γ2,4 = 104 s−1, t1 = 2.5T , t6 = 1.0T , �0

1 = 3.3 ×
106 s−1, �e = 2 × 108 s−1, and �0

6 = 8 × 107 s−1. Note that
although in theory high adiabaticity can always be gained at
the expense of a large �0

1, in practice, �0
1 is quite limited

due to the relative weakness in photoassociation. For this
reason, we have chosen �0

1 to be much weaker than �0
6

(�0
1 ≈ �0

6/24). At such �0
1, we find, using n = 1020 m−3

and µ = 4.48 × 10−26 kg (the reduced mass of K and Rb
atoms), that �0

1/ωρ = 131, where ωρ = h̄n2/3/2µ [31]. In a
STIRAP process, due to quantum interference, the molecular
population in state |1〉 remains extremely small so that even
when �0

1/ωρ is in the order of 102, rogue photodissociation of
molecules in state |1〉 is shown to produce a negligible fraction
of noncondensate atom pairs [32]. As a result, we ignore the
rogue photodissociation in this work.

Figure 2(a) illustrates how the r value at ts changes with α

under different T . The most interesting feature here is that, for
a given T , the r value is quite high on the side of α < 1 (the left
side of the dashed vertical line α = 1), but significantly smaller
within certain region on the side of α > 1. As a result, we see
in Fig. 2(b) with T = 10 µs that when α changes from 0.5
to 3.8 (at which the r value is near minimum), the conversion
efficiency η[=2ψ2

6 (∞)] increases from 1.8% to 22.6%, a trend
consistent with Fig. 2(a) with T = 10 µs. But, we caution that
no efficiencies significantly higher than 22.6% are possible
in this case by further raising the α value because the r value
actually increases with α when α is sufficiently large according
to Fig. 2(a); we trace this to the fact that, unlike the CPT state in
Eq. (4), λ and γeff and hence the adiabatic condition in Eq. (14)
do not scale as α2�1.

An important point to make is that were the lifetime of the
dark state limited to the order of 10 µs, a higher efficiency
would indeed have to come at the expense of a higher PA
laser power. This, however, is not needed owing to another
important virtue of our system—the stability of our CPT state,
whose lifetime can be made much longer than those of the
lower states in the ground electronic manifold. This, therefore,
affords us with a plenty of room to increase efficiency by using
pulses with longer durations rather than higher powers. Indeed,
the population dynamics in Fig. 2(c) with a much longer pulse
(T = 300 µs) demonstrates, in addition to a trend same as
in Fig. 2(b), a dramatic increase in the maximum efficiency,
which can now reach more than 85%.

013632-4



ACHIEVING GROUND-STATE POLAR MOLECULAR . . . PHYSICAL REVIEW A 81, 013632 (2010)

10
−1

10
0

10
1

10
−2

10
−1

10
0

α
 

 

0 10 20 30 40
0  

0.25

0.5 

P
op

ul
at

io
n 

D
yn

am
ic

s

 

 

0 0.2 0.4 0.6 0.8 1 1.2
0  

0.25

0.5

 

 

α=3.8

α=1.0

α=0.5

α=3.8

α=1.0

α=0.5

T=10µs

T=55µs

T=300µs

(a)

r(t
s
)

α<1 α=1 α>1

(b) T=10µs

t(µs)

t(ms)

(c) T=300µs

|ψ
6
|2

|ψ
6
|2

FIG. 2. (Color online) (a) The r value at ts as a function of α

under different T . The population dynamics with (b) T = 10 µs and
(c) T = 300 µs for different α. Other parameters are defined in the
text.

To estimate the required power on the photoassociation
laser field, we consider heteronuclear molecules involving
Rb atoms, for example, KRb [11] and RbCs [6]. The free-
bound FC factor for heteronuclear molecules is expected
to be smaller than that for their homonuclear counterparts
because the excited potential at large internuclear distance
R for the heteronuclear molecules is dominated by the van
der Waals potential (R−6) and thus has a shorter range than
that for the homonuclear molecules, which is dominated by
the resonant dipole-dipole interaction (R−3). An encouraging
news according to ab initia calculations in Refs. [27,33] is
that the former is only slightly smaller than the latter. As a
result, in our estimation, we choose a free-bound FC factor
〈v1|v(0)〉 = 3 × 10−14 m3/2 several times smaller than that of
Rb2 molecules, which can be on the order of 10−13 m3/2 (for
n = 1020 m−3) according to Naidon and Masnou-Seeuws [25].
Finally, using 1.6ea0 as the atomic dipole moment [34] with
e the electron charge and a0 the Bohr radius, we estimate
the peak PA laser intensity to be 3.8 × 103 W/cm2. This
admittedly high (and yet attainable) intensity can be put in
perspective by comparison with the case where T = 10 µs
and α = 1, where an intensity of more than 100 times higher is
needed to achieve the same level of high efficiency [in Fig. 2(c)
with α = 3.8].

V. SUMMARY

In summary, we have generalized the chainwise STIRAP
from pure molecular to coupled atomic-molecular systems. In

addition to the known advantages, for example, the increased
chance to locate pairs of Raman transitions with large FC
factors, we have uncovered additional virtues. In particular,
α, a ratio between intermediate laser fields, was found to
serve as a robust experimental control knob, inaccessible to
the usual three-level systems. This control knob together with
the stability of the atom-molecule dark state may bring us one
step closer to overcome the PA weakness, so that the ground
polar molecules can be created directly from degenerate atomic
gases in a manner that preserves the phase-space density.
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APPENDIX A

This appendix provides the steps that we take to arrive at
Eqs. (4). We begin with Eqs. (1) at steady state, where the
derivatives on the left-hand sides are all set to zero. Next, we
ignore all the decays as well as all the excited populations
(ψ1 = ψ3 = ψ5 = 0). We then see that the equations for
ψ2, ψ4, and ψ6 lead to the CPT condition, �2 = �4 = �6 =
0, while the rest of equations are simplified to

−ξψ01ψ02 = ψ2, (A1a)

−αψ2 = ψ4, (A1b)

−�o

�6
ψ4 = ψ6, (A1c)

where as in the main text we have made the use of �2 = �4 =
�e, �3 = �5 = �o, α = �o/�e, and ξ = �1/�e. For a
balanced system with ψ2

01
= ψ2

02
≡ ψ2

0 , we find from Eqs. (A1)
that ψ2 = −ξψ2

0 , ψ4 = αξψ2
0 , and ψ6 = −(�o/�6)αξψ2

0 ,
which, when combined with the particle number conservation
in Eq. (3), gives rise to

ϕ2
0 = 1

1 +
√

1 + 2(1 + α2)ξ 2 + 2(α2�1/�6)2
,

ϕ2 = −ξϕ2
0 , ϕ4 = ξαϕ2

0 , ϕ6 = −α2 �1

�6
ϕ2

0 .

Clearly, we see that up to the first order in ξ , Eqs. (A1) become
Eqs. (4) in the main text.

APPENDIX B

In this appendix, we show how to obtain from Eq. (7) the
eigenvalues and eigenvectors (that are needed to derive the
adiabatic condition) in the limit of ξ � 1 for the special case
of �1,3,5 = 0. To begin, we divide M in Eq. (6) into two parts:

M = M0 + M′, (B1)
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where

M0 = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 �e 0 0 0 0

0 0 �e 0 �o 0 0 0

0 0 0 �o 0 �e 0 0

0 0 0 0 �e 0 �o 0

0 0 0 0 0 �o 0 0

0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)

M′ = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 �′
1 0 0 0 0 0

0 0 �′
1 0 0 0 0 0

�′
1 �′

1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 �6

0 0 0 0 0 0 �6 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, M0 is an unperturbed part including all the intermediate
Rabi frequencies �o and �e, while M′, consisting of only
the initial and final fields �′

1 and �6, can be regarded as a
perturbation to M0 in the limit of ξ � 1. Next, we determine
from the equation

M0

∣∣λ(0)
j

〉 = λ
(0)
j

∣∣λ(0)
j

〉
(B3)

eigenvalues λ
(0)
j and eigenstates |λ(0)

j 〉 of the unperturbed part

M0. We find that λ
(0)
j take the following values:

λ
(0)
1,2,3,4 = 0, (B4a)

λ
(0)
5,6 = ±�e

√
1 + α + α2

2
, (B4b)

λ
(0)
7,8 = ±�e

√
1 − α + α2

2
. (B4c)

The zero eigenvalue has a four-fold degeneracy, and the
corresponding (orthonormalized) eigenstates are found from
Eq. (B3) to take the form∣∣λ(0)

1

〉 = (1, 0, 0, 0, 0, 0, 0, 0)T , (B5a)∣∣λ(0)
2

〉 = (0, 1, 0, 0, 0, 0, 0, 0)T , (B5b)∣∣λ(0)
3

〉 = (0, 0, 0, 0, 0, 0, 0, 1)T , (B5c)

∣∣λ(0)
4

〉 =
(

0, 0,
α2

β
, 0,−α

β
, 0,

1

β
, 0

)T

, (B5d)

where β = √
1 + α2 + α4. This degeneracy, however, can be

partially lifted by the perturbation M′, as we will show shortly.
λ

(0)
5,6 and λ

(0)
7,8 are proportional to �e and are far larger in

magnitude than those split from the zero eigenvalue by M′;
the modes associated with the former eigenvalues are far
more difficult to populate than those associated with the latter
eigenvalues. Thus, it suffices, for our purpose, that we only
focus on the eigensubspace spanned by the four base vectors
in Eqs. (B5), in which M′ in Eq. (B2) has the following matrix
representation:

M′ = 1

2β

⎛
⎜⎜⎜⎝

0 0 0 �′
1α

2

0 0 0 �′
1α

2

0 0 0 �6

�′
1α

2 �′
1α

2 �6 0

⎞
⎟⎟⎟⎠ , (B6)

where the use of M′
ij = 〈λ(0)

i |M′|λ(0)
j 〉 has been made. In

the spirit of degenerate perturbation theory [35], we form
the following linear combination of degenerate states in the
four-dimensional Hilbert space:

|λ̄n〉 =
4∑

i=1

ani

∣∣λ(0)
i

〉
, (B7)

where an = (an1, an2, an3, an4)T is the eigenvector of matrix
M′ with an eigenvalue λ̄n or equivalently it satisfies the
following equation:

M′an = λ̄nan. (B8)

By solving Eq. (B8), we find the following set of eigenvalues:

λ̄1,2 = 0, λ̄3,4 = ±�eff

2β
, (B9)

where �eff =
√

2�′2
1 α4 + �2

6. As can be seen, M′ reduces the
degeneracy of the zero mode from four folds to two folds,
creating a pair of so-called soft modes, whose eigenvalues,
λ̄3,4, are symmetrically displaced from zero eigenvalue. The
(unit-normalized) eigenvectors a3,4 for λ̄3,4 are found from
Eq. (B8) to take the form

a3,4 = 1√
2

(
α2�′

1

�eff
,
α2�′

1

�eff
,

�6

�eff
,±1

)T

, (B10)

which, when combined with Eq. (B7), yields the desired soft
modes in Eq. (11).

At this point, we stress that the zero mode of two-fold
degeneracy cannot be lifted by M′ as one can easily check
directly from Eq. (7) with λj = 0 that it supports two linearly
independent (but nonorthogonal) solutions

|b1〉 = (−1, 1, 0, 0, 0, 0, 0, 0)T , (B11)

|b2〉 =
(

−�e

�′
1

, 0, 0, 1, 0,−α, 0,
α�o

�6

)T

. (B12)

Finally, we apply Gram-Schmidt orthogonalization to trans-
form |b1,2〉 into a set of orthonormalized vectors |λ1,2〉 in
Eq. (9).
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