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Phase separation in optical lattices in a spin-dependent external potential
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We investigate the phase separation in one-dimensional Fermi gases on optical lattices. The density distributions
and the magnetization are calculated by means of the density-matrix renormalization method. The phase
separation between spin-up and spin-down atoms is induced by the interplay of the spin-dependent harmonic
confinement and the strong repulsive interaction between intercomponent fermions. We find the existence of a
critical repulsive interaction strength above which the phase separation evolves. By increasing the trap imbalance,
the composite phase of the Mott-insulating core is changed into one of the ferromagnetic insulating core, which
is incompressible and originates from the Pauli exclusion principle.
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I. INTRODUCTION

Ultracold atoms in optical lattices provide a new test bed
for interacting quantum many-body systems [1]. Fermionic
atoms in optical lattices can be used to realize the clean Fermi-
Hubbard model, which is free of lattice defects, impurities,
and phonons, in contrast to those in solid-state systems.
Over the past few years, many interesting phenomena were
observed in optical lattices, for example, the Fermi surface
of the atoms in the lattice, the transform from a normal
state into a band insulator [2], and fermionic superfluidity
of attractively interacting fermions [3]. Two other major
breakthroughs achieved recently in fermionic superfluidity
are the Bose-Einstein-condensate Bardeen-Cooper-Schrieffer
(BEC-BCS) crossover [4] and imbalanced superfluidity [5].

The spatial inhomogeneity due to the confinement essential
for ultracold atomic experiments is always present, which
leads to a spatially varying local density distribution and
normally invalidates a reliable analytical method usually used
in the homogeneous system. Many numerical schemes such
as the density-matrix renormalization group (DMRG) [6–8],
quantum Monte Carlo [9–12], exact diagnolization [6,13,14],
and density-functional theory based on the exact Bethe-ansatz
solution [8] are used in studying the many interesting quantum
effects in spin-balanced or imbalanced systems. Among them,
intriguing properties such as phase separation in a trap and the
transition from superfluidity to a normal state have attracted a
great deal of attention both experimentally and theoretically.

In the experiments a phase separation was observed
between the normal component and the superfluidity of
interacting fermionic atom gases with imbalanced spin pop-
ulations [5]. In theory, the mean-field approach provides a
qualitative explanation of the phase separation of imbalanced
fermionic atom gases in a trap [15]. The imbalance of the
two species with N↑ �= N↓ can be produced by different
trapping frequencies [16], namely, spin-dependent trapping
potentials. Phase separation can occur in trapped spinor
boson gases with a weak anisotropic spin-spin interaction
[17] and in multicomponent Fermi gases with different
values of the scattering lengths and particle number [18]. In
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two-dimensional optical lattices, the phase separation due to
the imbalanced mixture, antiferromagnetic order [19], and
pairing symmetries [20] is investigated by the mean-field
theory. For a one-dimensional (1D) system of two-component
Fermi gases in a continuous space, it is found that there
exists a critical interaction strength beyond which one atomic
component expels another from the center of the trap [21]. For
a 1D attractive Hubbard model, a phase separation between
the condensate and unpaired majority atoms occurs for a
certain range of the interaction and population imbalance. At
T = 0 beyond a critical spin polarization, the phase separation
always exists no matter how strong the interaction is [22].
For a 1D repulsive Hubbard model, the phase separation
due to the different trap frequencies is discussed within the
local magnetization by the spin-dependent density-functional
theory [23].

In the present work, we are interested in the phase
separation between different fermion species induced by the
spin-dependent external potentials. The interplay between the
external spin-dependent potentials and the repulsive interac-
tion of intercomponent fermions will be explored.

II. THE MODEL

We consider a two-component Fermi gas in a tube with
Nf atoms and Ns lattice sites with the unit lattice constant,
which can be described by a one-band inhomogeneous Fermi-
Hubbard model [24]

Ĥs = −t
∑

i,σ

(ĉ†iσ ĉi+1σ + H.c.) + U

Ns∑

i=1

n̂i↑n̂i↓

+
∑

i,σ

Vσ [i − (Ns − 1)/2]2n̂i , (1)

where the spin degrees of freedom σ =↑,↓ are pseudospin-
1/2 labels for two internal hyperfine states and ĉiσ (ĉ†iσ ) are
fermionic operators annihilating (creating) particles with spin
σ in a Wannier state at site i. n̂i = ∑

σ n̂iσ = ∑
σ ĉ

†
iσ ĉiσ is the

total site-occupation operator, t is the tunneling between the
nearest neighbors, U is the strength of the on-site interaction,
and Vσ describes the strength of the spin-dependent harmonic
trapping potentials Vhar,σ = Vσ [i − (Ns − 1)/2]2.
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The inhomogeneous Fermi-Hubbard model can be realized
by a strong confinement in transverse directions [25] with
an additional periodic potential applied along the tube.
Concerning the experimental realization of the spin-dependent
external potentials, one can use magnetically trapped Fermi
mixtures of a particular atom in the two different hyperfine
states [26,27], or two different trapped atoms of unequal
masses [28], where the different magnetic moments make
V↑ �= V↓. In the experiment of two 40K fermion species,
the ratio of frequencies V↑/V↓ = √

9/7 is discussed [29].
In optical lattices, a spin-dependent optical trap can be
realized by asymmetrically detuning the laser frequencies
with respect to the two hyperfine states [27]. Experimentally,
the atomic density we calculated is the most convenient and
clear observable detectable by electron beams, high-resolution
cameras, or noise interference. Recently, a composite phase
of an incompressible Mott-insulator phase in the core was
identified [30], where the core is composed of strongly
repulsive fermionic atoms in two hyperfine states. It is shown
how the system evolves by increasing confinement from a
compressible dilute metal into a band-insulating state, which
also provides a way to polarize a spin-balanced system where
N↑ = N↓ = Nf /2 [30].

The homogeneous 1D Fermi-Hubbard model belongs to
the universality class of Luttinger liquids. At zero temperature
the properties of this model in the thermodynamic limit
(Nσ ,Ns → ∞, but with finite Nσ/Ns) are determined by
the fillings nσ = Nσ/Ns and by the dimensionless coupling
constant u = U/t . According to Lieb and Wu [31], the
ground state (GS) properties for different fillings in the
thermodynamic limit are described by the coupled integral
equations (for details see Refs. [32,33]).

For the inhomogeneous system described by Eq. (1), the
coexisted phases induced by the external spin-independent
trapping potentials (V↑ = V↓) were well identified by many
authors [9,10,34–36]. We focus in this work on the spin-
dependent potentials (V↑ �= V↓) by applying the DMRG
techniques, performed by using the Algorithms and Libraries
for Physics Simulations (ALPS) libraries [37]. During our
DMRG calculations, the states kept are 500 to 1000 so that we
can restrict the cut error to be less than 10−11.

III. NUMERICAL RESULTS

In this section we present our numerical results. In the
following discussion we keep the total number of particles
constant (Nf = 40) and vary the number of spin-up and spin-
down atoms in the system. We characterize the confinement
imbalance by defining the ratio between the spin-up and spin-
down dependent external potentials as

γ = V↑
V↓

. (2)

In Fig. 1 we show schematic plots for the spin-dependent
harmonic potentials and the density distributions of the two
fermion species with small or large confinement imbalances.
The effects of γ are manifested in that two atoms coexist
for small γ where the spin-up and spin-down atom mixture
in the center of the trap forms a phase-mixing (PM) region
and separate with only spin-up atoms left for large γ where

V↑

n↑

n↓

V↓

(a) (b)

V↓

V↑ n↑

n↓

FIG. 1. (Color online) Schematic illustrations for spin-dependent
harmonic potentials Vhar,σ (in units of t) and the density distributions
nσ (in units of the lattice constant) of both spin-up and spin-down
atoms in the presence of interactions. The left panel (a) is for the
system of small trap imbalance, where the spin-up and spin-down
atom mixture in the center forms a PM region and the right panel
(b) for the system of large trap imbalance, where the PS region is
formed.

the phase separated (PS) region is formed. The PS region is
determined with the local occupation in the trap center (i.e.,
i = 0) satisfying n0 � 10−3. We distinguish in the following
the different phases by showing the atomic density profiles
and the local magnetization for different repulsive interactions
and confining strengths in the system of spin-unpolarized or
spin-polarized atoms.

First, we study the phase separation between the two-
component fermions induced by the interplay between the
repulsive interaction and the spin-dependent parabolic poten-
tials in the unpolarized system of an equal number of spin-up
and spin-down atoms (N↑ = N↓ = 20) and V↓ = 1.0 × 10−3.
The lattice size chosen here and in the following is always
large enough to make sure that the GS densities smoothly
drop down at the edges. In Fig. 2 the phase diagram is shown
as a function of u and the confinement ratio γ . Two regions
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FIG. 2. (Color online) Phase diagram as a function of u and the
confinement ratio γ . The system consists of N↑ = 20 and N↓ = 20
fermions. The spin-down trap strength is V↓ = 1.0 × 10−3. The arrow
in the top indicates the position where γ = 1 and the arrow in the
right where uc = 1.64. The solid line is a power-law fit u = uc +
α/(γ − 1) to the data with α = 10.932. The two phases PM and PS
are manifested in Fig. 1 and explained in the text.
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FIG. 3. (Color online) GS density profiles for ni↑, ni↓ and local
magnetization mi = (ni↑ − ni↓)/2 as a function of i in the spin-
dependent external potentials of γ = 3. The spin-down trap strength
is 10−3. The system consists of N↑ = 20 and N↓ = 20 fermions.
Three different interaction strengths are shown: (a) u = 1, (b) u = 8,
and (c) u = 20. The local magnetization mi is shown in (d). The
solid line connecting the symbols serves as a guide for the eyes. For
comparison, the GS densities of the noninteracting case (u = 0) for
spin-up (bold solid line) and spin-down (thin solid line) atoms are
included in (a) and the corresponding local magnetization (thin solid
line) is also shown in (d). We find that the repulsive interaction can
induce a complete phase separation between the two components in
the spin-dependent external potentials.

are seen—the PM region with both spin-up and spin-down
mixtures in the center of the trap and the PS region with only
spin-up atoms remaining in the center. A critical interaction
strength uc = 1.64 is obtained, below which there is no phase
separation no matter how large the confinement ratio. For
the system considered here, the condition in which the phase
separation happens can be simply fitted by a power-law relation
u = uc + α/(γ − 1), with α = 10.932. We further illustrate in
Fig. 3 an explicit example by choosing γ = 3 and changing
the interaction strength. We confirm that there exists a critical
value of the interaction strength (u = 8) beyond which the
spin-down atoms are depleted from the center of the trap and
repelled into the periphery regions between V↑ and V↓. In
this case, a phase separation begins to appear (i.e., the Fermi
components tend to stay in different spatial regions). Thus,
upon approaching the phase separation point and beyond, the
local polarization of the atomic gases in the center becomes
stronger and stronger. When the complete phase separation is
realized, fermions become fully polarized due to the strong
repulsive interaction. As a result, spin-up atoms locate in the
center and spin-down atoms at the periphery of the trap, which
is clearly seen in Fig. 3(c) for u = 20. Upon reaching the
complete phase separation, further increasing the repulsive
interaction only makes the spin-up density a little more
confined and spin-down density more spread out. In Fig. 3(d),
we plot the local magnetization of the system, which is defined
as mi = (ni↑ − ni↓)/2. For the strong repulsive interaction
where the phase separation begins to evolve mi changes from
negative to positive with a big slope.
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FIG. 4. (Color online) Ground state density profiles for ni↑, ni↓
and local magnetization mi as a function of i for the system of weak
repulsive interaction (u = 1) in the spin-dependent external poten-
tials. The system consists of N↑ = 30 and N↓ = 10 fermions with
V↓ = 2.5 × 10−4. Three different ratios of confining potentials are
shown. (a) γ = 1, (b) γ = 3, and (c) γ = 6. The local magnetization
mi is plotted in (d). From (d), we can see that upon reaching the phase
separation point and beyond, the local magnetization mi becomes
more negative at the periphery and more positive in the bulk region
of the trap signaling that more spin-down fermions are repelled from
the center and more spin-up fermions are constrained there.

Now, let us concentrate on the phase separation induced
by spin-dependent parabolic potentials. In Figs. 4 and 5
we study the polarized systems of an unequal number of
spin-up and spin-down particles (N↑ = 30 and N↓ = 10)
with weak (u = 1) and strong (u = 4) repulsive interactions.
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FIG. 5. (Color online) Same as Fig. 4 but for the system of strong
repulsive interaction (u = 4). From (b) we notice that a complete
phase separation occurs. For comparison, in (a), (b), and (c) the GS
densities of the noninteracting case (u = 0) for the spin-up (bold solid
line) and spin-down (thin solid line) atoms are also plotted. In (d) we
include the corresponding local magnetizations for the noninteracting
case with γ = 1 (bold solid line), 3 (thin solid line), and 6 (dotted
line), respectively.
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FIG. 6. (Color online) Density distributions for spin-up and
spin-down fermions together with their sum (the total GS density)
and difference (the local magnetization) plotted against the site with
strong repulsive interaction (u = 6) in the spin-dependent external
potentials. The system consists of N↑ = 20 and N↓ = 20 fermions
with V↓ = 6.0 × 10−3. Three different ratios of confining potentials
are shown: (a) γ = 1, (b) γ = 2.6, and (c) γ = 6.

We illustrate the effects of the confinement ratio on the
local density distributions and the local magnetization. We
increase γ by keeping the spin-down external potential V↓
as invariant and increasing V↑ (i.e., γ � 1). In Fig. 4 the
density profiles for the weak repulsive interaction (u = 1) are
shown with different confinement imbalances (γ = 1, 3, and
6). While increasing the confinement for the spin-up atoms,
the interaction between the spin-up and spin-down atoms in
the center of the trap repels the spin-down atoms into the
edges of the trap. However, the repulsive interaction is not
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FIG. 7. (Color online) Same as Fig. 6 but for the spin-polarized
system of N↑ = 30 and N↓ = 10. Three different ratios of confining
potentials are shown: (a) γ = 1, (b) γ = 1.45, and (c) γ = 6.

strong enough and only a small amount of phase separation
appears. From Fig. 5(b), we can see that, in the system of
strong repulsive interaction (u = 4) and a large trap imbalance
(γ = 3), almost all the spin-down atoms are repelled from the
bulk of the trap and a complete phase separation is realized.
Due to the depletion of the spin-down fermions, fully polarized
gases of spin-up fermions are obtained, as can be seen in
Figs. 5(b) and 5(c). For comparison, the GS density distribu-
tions of the spin-up and spin-down atoms for the noninteracting
case (u = 0) are also included, where no phase separation is
observed. We conclude that the intercomponent interaction
is essential in achieving a phase separation between the
two-component fermions in a spin-dependent trap.
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The local magnetization mi , in Figs. 4(d) and 5(d), gives
another signature of the phase separation. For small γ , a flat
region of mi is seen in the center of the trap and two bumps
are shown at the edges with the excess spin-up atoms. The
increase of the trap imbalance and the repulsive interaction
strength shows a signature that mi is more negative at the
edges, that is, more and more spin-down atoms are repelled
from the center of the trap and accumulate at the periphery
region between V↑ and V↓.

In the following we study how the spin-dependent potentials
influence the composite phase of the Mott-insulating core in
the bulk. In Fig. 6 we show the GS density distributions of
an unpolarized system of N↑ = N↓ = 20 under the influence
of the different trap imbalances with V↓ = 6.0 × 10−3 and
a strong repulsive interaction of u = 6. For γ = 1, a Mott
phase is formed in the bulk region of the trap. With the
increase of the confinement for the spin-up atoms, the
spin-down atoms are repelled from the center of the trap.
The Mott phase induced by the interaction between the
locally spin-balanced fermions is changed into the Mott-like
phase induced by both the interaction between the locally
spin-imbalanced fermions and the spin-dependent potentials.
At the critical point of γ = 2.6, the phase separation starts
[see Fig. 6(b)] and an insulating core of fully polarized
fermions is formed in the center of the trap due to the strong
confinement for the spin-up atoms, where the local occupancy
is one. This insulating core is regarded as a ferromagnetic
insulating phase since it is incompressible in nature and
originates from the Pauli exclusion principle, which differs
from the Mott-insulating phase induced by the repulsive
interaction between fermions [39], such as in Fig. 6(a). The unit
core becomes stable for γ > 6 by further increasing γ . Upon
reaching the phase separation point and beyond, a plateau
of constant mi = 0.5 is formed in the center of the local
magnetization.

In Fig. 7 we show the case of a polarized system of N↑ = 30
and N↓ = 10 with a strong repulsive interaction of u = 6. For
γ = 1, the spin-up fermions form Wigner-lattice-type profiles
inside the Mott core [38], which occurs at low fillings or
equivalently at large u and can be explained by mapping Eq. (1)
into the antiferromagnetic Heisenberg model [39]. We notice
that, compared to the unpolarized system of that in Fig. 6,
the polarized system more easily reaches the phase separation
point (γ = 1.45). That is, the Mott phase in the polarized
system is less robust against the increase of the interaction
strength and confinement.

IV. CONCLUSION

In this article we perform a theoretical study of a 1D
Fermi-Hubbard model in a spin-dependent harmonic trap
within the DMRG techniques. The interplay between the
repulsive interaction and the spin-dependent harmonic trap
is studied for the system of spin-balanced or spin-imbalanced
Fermi gases. We find that, for the system in the spin-dependent
external potentials, there exists a critical interaction strength
beyond which a phase separation can occur with two Fermi
components staying in the different spatial regions. For the
system with a weak interaction strength, upon increasing
the trap imbalance, the spin-up atoms are confined more
and more in the center of the trap and a depletion occurs
for the spin-down atoms due to the intercomponent repul-
sive interactions. However, the weak repulsive interaction
below a critical value is not capable of achieving a full
phase separation. For the system with strong intercomponent
repulsive interactions a complete phase separation is real-
ized at the strong confinement imbalance where spin-down
atoms are repelled out of the bulk region with only spin-up
atoms remaining.

For the system with both strong confinement and
strong repulsive interactions, where a composite phase
of the Mott-insulating core is formed in the center, we
show that, upon increasing the trap imbalance, the Mott
phase induced by the interaction between the locally spin-
balanced fermions is changed into the Mott-like phase
induced under the interplay between the interaction
of the locally spin-imbalanced fermions and the spin-
dependent confining potentials. Upon reaching the phase
separation point and beyond, the ferromagnetic insulat-
ing phase due to the Pauli exclusion principle appears,
which is of the unit core. In the distribution of the local
magnetization, a step structure contributed by spin-up atoms
alone is formed with a big slope from a negative to positive
value.
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