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Loading atom lasers by collectivity-enhanced optical pumping

Mihai A. Macovei* and Jörg Evers†

Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
(Received 4 November 2009; published 27 January 2010)

The effect of collectivity on the loading of an atom laser via optical pumping is discussed. In our model, atoms
in a beam are laser-excited and subsequently spontaneously decay into a trapping state. We consider the case
of sufficiently high particle density in the beam such that the spontaneous emission is modified by the particle
interaction. We show that the collective effects lead to a better population of the trapping state over a wide range
of system parameters, and that the second-order correlation function of the atoms can be controlled by the applied
laser field.
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I. INTRODUCTION

Motivated by the many interesting features and applications
of both Bose-Einstein condensates (BEC) and of optical lasers,
significant effort is devoted toward the creation of a continuous
atom laser. An atom laser is an intense coherent matter wave,
and is typically extracted from a Bose-Einstein condensate
[1,2]. Proposed applications include precision measurements
and fundamental tests of quantum mechanics [3]. So far, only
pulsed atom lasers could be realized experimentally [4–10].

Recently, the second-order correlation function of an
atom laser could be measured in a Hanbury Brown–Twiss
type experiment [6]. In [7], a quasicontinuous atom laser
was demonstrated. Similar, the Heisenberg limit could be
approached in an atom laser [8], and high peak brightness
was achieved in [9]. The first experiment on a guided quasi-
continuous atom laser was performed in [10]. Experimental
realization of a multibeam atom laser was reported in [11],
while interference of an array of atom lasers was observed
in [12]. The propagation of atom laser beams is discussed [13],
and the steady-state quantum statistics of a non-Markovian
atom laser was investigated in [14]. Atom laser coherence and
its control via feedback was analyzed in [15]. Also paired-atom
laser beams created via four-wave mixing were discussed [16].
A scheme for creating quadrature- and intensity-squeezed
atom lasers that do not require squeezed light as an input
was described in [17].

So far, however, no continuous atom laser could be realized,
despite significant effort. For example, a continuous source of
BEC atoms was obtained in [18]. Promising mechanisms for
providing a pumping mechanism consistent with a continuous
atom laser have recently been demonstrated [19]. Loading a
continuous-wave atom laser by optical pumping techniques
was shown in [20] while the continuous pumping of atoms
into a BEC via spontaneous emission from a thermal reservoir
of atoms was investigated in [21]. Continuous loading of
a nondissipative atom trap was studied in [22]. Stability of
continuously pumped atom lasers was discussed as well [23].
In [24], an atom laser that is simultaneously pumped and
output-coupled to a free beam was achieved.
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The optical pumping techniques in [20] aim at loading
atoms into a magnetic trap without heating the system or
destroying the condensate. For this, a laser field is used to
pump atoms initially in a ground state to an excited state,
which subsequently decays into a trapping state, see Fig. 1.
The authors showed that photon reabsorptions, which are a
major limitation to such schemes as they can remove atoms
from the cloud or lead to a heating, could be minimized by
adjusting the system geometry and by inducing spontaneous
emission frequencies which do not coincide with the resonance
frequencies for reabsorption. Overall, the figure of merit is the
final population in the trapping state.

It is well known that collective interactions between closely
spaced particles can lead to a significant modification of
spontaneous emission processes. The quantum dynamics of
a collective system can be N times faster than for a single
particle, and the intensity of the emitted electromagnetic
field scales as N2 in multiparticle samples, where N is the
number of atoms [25]. It has been shown that the collective
dynamics can be controlled [26]. Interestingly, recently a clear
N2 dependence of the fluorescence light emitted by inverted
three-level �-type indium atoms could be observed already
at rather low densities [27]. Also the super-radiant emission
of a driven thin solid sample in an optical resonator was
observed [28].

Motivated by this, here, we study the effect of collectivity
on the loading of an atom laser via optical pumping. We
base our analysis on the model presented in [20], but assume
that the particle density in the beam is sufficiently high such
that collective interactions become relevant. We discuss the
influence of particle density, laser parameters, reabsorption,
and the ratio of the natural spontaneous emission rates in the
studied atoms on the final population in the trapping state.
We find that collective effects lead to a better population of
the trapping state over a wide range of system parameters,
starting already at the onset of collectivity. Finally, we study the
second order correlation function of the atoms, and show that
it can be controlled, e.g., via the detuning of the applied laser
field.

II. THE MODEL

We analyze a scheme for loading a thermal cloud into a
magnetic trap by optically pumping atoms from an external
cold atomic-beam source (see Fig. 1). In this model, atoms
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FIG. 1. (Color online) The scheme for obtaining a steady-state
BEC and a cw atom laser.

are injected into the trap in the state |g〉 (see Fig. 2). A laser
field excites the particles when they enter the spatial region
containing the thermal cloud into state |e〉. From the excited
state |e〉 the atoms collectively emit photons and ideally end
up in the trap state |t〉 (see Figs. 1 and 2). This setup allows
for evaporative cooling in the steady state [20,29]. The atoms
in the trapping state may escape the trap by absorbing photons
or due to collisions.

We model the dynamics via the master equation

ρ̇ + i

h̄
[H0, ρ]

= −�e(1 + n̄e)[Set , Steρ] − �en̄e[Ste, Setρ]

−�t (1 + n̄t )[Stg, Sgtρ] − �t n̄t [Sgt , Stgρ] + H.c., (1)

where

H0 = h̄�See + h̄ωtgStt + h̄�(Seg + Sge). (2)

The detuning � = ωeg − ωL and the overdot denotes differ-
entiation with respect to time. ωαβ = ωα − ωβ are transition
frequencies, with α, β ∈ {g, t, e}. The system of N atoms
is described using collective operators Sαβ = ∑

j S
(j )
αβ . Here,

Sαβ = ∑N
j=1 |α〉j j 〈β|, which describes populations for α = β,

transitions for α �= β. The Hamiltonian (2) contains free
energies and transitions induced by the laser field with Rabi
frequency �. In Eq. (1), the terms proportional to �α(1 + n̄α)
represent spontaneous and bath-induced transitions to the
lower levels while those proportional to �αn̄α describe the
bath-induced transitions to the upper states. We have omitted
the coherent part of the dipole-dipole interaction, which is
justified if the Rabi frequency � dominates over the dipole-

Ω
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FIG. 2. (Color online) Level scheme. The laser couples the states
|g〉 and |e〉 with Rabi frequency �. Spontaneous emission of photons
occurs with rates �e and �t , respectively.

dipole induced energy shifts. This in essence sets an upper
bound for the particle density for a given Rabi frequency.
Finally, we note that the collective atomic operators obey the
commutator relation

[Sαβ, Sα′β ′] = δβα′Sαβ ′ − δβ ′αSα′β, (3)

where α, β ∈ {g, t, e}.
It is convenient to work in a laser-dressed picture. For

this, we represent the collective operators Sαβ via Bose
operators, i.e., Sαβ = c†αcβ with {α, β} ∈ {e, t, g}, and perform
the dressed-state transformation

cg = cos θq− + sin θq+, (4a)

ct = qt , (4b)

ce = − sin θq− + cos θq+, (4c)

with

cot 2θ = �

2�
. (5)

Assuming again a sufficiently strong laser field, we apply the
secular approximation, and arrive at the master equation

ρ̇ + i

h̄
[H̃0, ρ]

= −{�e(1 + n̄e) sin2 θ + �t n̄t cos2 θ}[R−t , Rt−ρ]

−{�e(1 + n̄e) cos2 θ + �t n̄t sin2 θ}[R+t , Rt+ρ]

−{�t (1 + n̄t ) cos2 θ + �en̄e sin2 θ}[Rt−, R−t ρ]

−{�t (1 + n̄t ) sin2 θ + �en̄e cos2 θ}[Rt+, R+t ρ] + H.c.

(6)

Here,

H̃0 = h̄ωtgRtt + h̄�̃(R++ − R−−) + h̄
�

2
(R++ + R−−), (7)

with �̃ =
√

�2 + (�/2)2 and Rαβ = q†
αqβ ({α, β} ∈

{+,−, t}).
Next, we solve the master equation Eq. (6) in order to

estimate the population of the trapping state. We make an
ansatz for the steady-state solution in the form

ρs = Z−1e−ξR++e−ζR−− , (8)

where the normalization Z is determined by the requirement
Tr(ρs) = 1. Inserting Eq. (8) in Eq. (6) and assuming steady
state ρ̇ = 0, one obtains

ξ = ln

[
�e(1 + n̄e) cos2 θ + �t n̄t sin2 θ

�en̄e cos2 θ + �t (1 + n̄t ) sin2 θ

]
, (9a)

ζ = ln

[
�e(1 + n̄e) sin2 θ + �t n̄t cos2 θ

�en̄e sin2 θ + �t (1 + n̄t ) cos2 θ

]
. (9b)

Note that leading corrections to the steady-state results
obtained in the secular approximation are of the order of
N�α(1 + n̄α)/�̃ and can be neglected in the intense field limit.

In order to calculate the relevant expectation values, we
introduce atomic states |N, n,m〉 corresponding to the su(3)
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algebra of the operators Rαβ (for details see, for instance, [30]).
The state |N, n,m〉 describes a system of N atoms with n atoms
in state |+〉, m − n atoms in state |t〉, and N − m atoms in state
|−〉. For example, we find (k1, k2 ∈ {0, 1, 2, . . .})

〈Rk1++R
k2−−〉s = Z−1

(
− ∂

∂ξ

)k1
(

− ∂

∂ζ

)k2

Z, (10)

where

Z = e−(ξ+ζ )N [eξ (N+1) − eξ (N+2) − eζ (N+1) + eζ (N+2)

+ e(ξ+ζ )(N+1)(eξ − eζ )]/(eξ − 1)(eζ − 1)(eξ − eζ ),

(11)

and 〈R++〉 + 〈R−−〉 + 〈Rtt 〉 = N . In the next section, we will
discuss our results based on Eqs. (8)–(11).

III. RESULTS

We start by analyzing the population of the trapping state
|t〉. In Fig. 3, we plot this population as a function of cot2 θ ,
which depends on the laser parameters via Eq. (5). We have
assumed a ratio of the two incoherent decay rates η = �e/�t =
2, and compare the single atom case (N = 1) to a case with
strong collectivity due to a rather large number of atoms (N =
1000). The curve (i) for n̄e = n̄t = 0 models the dynamics
without reabsorption of the photons in the trap. This situation
may occur if spontaneous photons are emitted at frequencies
other than the bare transition frequencies [20]. We find that in
this case, the population of the trapping state almost achieves
the maximum value 〈Rtt 〉 = N , see the solid line in Fig. 3.
If reabsorption is considered (n̄e = n̄t = 5), the trapping state
population decreases as shown by curve (ii) in Fig. 3. The
other curves (iii) and (iv) show the corresponding results for
the case N = 1 without collective interactions. We thus find
that the collective case N > 1 can lead to a much more efficient
population of the trapping state. We will find later, however,
that this result also depends on parameter η describing the ratio
of the spontaneous emission into and out of the trapping state.

In order to study the dependence of the population
efficiency on the collectivity better, in Fig. 4, we plot the
population of the trapping state for different numbers of atoms.
It can be seen from curve (ii) that already for a rather low
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FIG. 3. (Color online) Population in the trapping state as a
function of the laser parameters. Curve (i) is for N = 1000 and
n̄e = n̄t = 0, curve (ii) corresponds to N = 1000 and n̄e = n̄t = 5,
(iii) shows N = 1 and n̄e = n̄t = 0, and (iv) has parameters N = 1
and n̄e = n̄t = 5. The ration of spontaneous emission rates is η = 2.
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FIG. 4. (Color online) Population in the trapping state for differ-
ent beam densities. Particle number is (i) N = 100, (ii) N = 10, and
(iii) N = 1. The other parameters are η = 2 and n̄e = n̄t = 0.

N = 10, a significant increase of the trapping state population
is achieved. Interestingly, from this figure, we see that an
increase in the number of atoms leads to a more efficient
population of the trapping state only in a finite range of θ ,
with 0.5 � cot2 θ � 2. This can be understood by analyzing
the incoherent pumping rates into and out of the trappings
state. These pumping rates Pij from |i〉 to |j 〉 from Eq. (6)
follow as

P+t = �e(1 + n̄e) cos2 θ + �t n̄t sin2 θ, (12a)

Pt+ = �t (1 + n̄t ) sin2 θ + �en̄e cos2 θ, (12b)

P−t = �e(1 + n̄e) sin2 θ + �t n̄t cos2 θ, (12c)

Pt− = �t (1 + n̄t ) cos2 θ + �en̄e sin2 θ. (12d)

We define the ratios P+ = P+t /Pt+ and P− = P−t /Pt− and
show them together with the population in the trapping state
in Fig. 5. It can be seen that the trapping state is efficiently
populated if P+ > 1 and P− > 1. In this case, from Eqs. (12)
it follows that there is a net pumping from the laser-dressed
states |±〉 into the trapping state. If either P+ < 1 or P− < 1,
a pumping channel out of the trapping state exists, and it is
virtually empty. From these conditions, we can derive the range
of laser parameters over which the trapping state is populated,

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

(i)

(iii)(ii)

cot2 θ

〈R
tt
〉/
N
,P

±

FIG. 5. (Color online) Analysis of the laser parameters leading
to an efficient population of the trapping state. The dashed straight
(green) lines indicate cot2 θ = η, cot2 θ = 1/η, and 〈Rtt 〉/N = 1. The
red curve (i) shows the scaled population in the trapping state 〈Rtt 〉/N
for parameters as in Fig. 4(i). The blue curve (ii) shows the ratio P+,
and the black curve (iii) depicts P−.
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FIG. 6. (Color online) Population in the trapping state as a
function of the ratio η of the spontaneous decay rates into and out of
the trapping state. The parameters are (i) N = 100 and n̄e = n̄t = 0,
(ii) N = 100 and n̄e = n̄t = 2, (iii) N = 1 and n̄e = n̄t = 0, (iv)
N = 1 and n̄e = n̄t = 2. The laser parameters are cot2 θ = 1.

which evaluates to

1

η
� cot2 θ � η. (13)

As expected, by comparing Figs. 3 and 4 and other results
not shown here, we find that increasing N leads to the
appearance of sharp jumps between states with almost all
atoms either in or out of the trapping state. This occurs already
at a moderate number of atoms. For example, increasing the
number of atoms beyond N = 100 in Fig. 4 to N = 1000 in
Fig. 3 induces only relatively small changes in the trapping
population. At higher atom numbers, we also find that the
influence of the repumping is suppressed, as can be seen from
the different n̄ in Figs. 3 and 4 which do not lead to a strong
modification as it is the case for small N .

Next, we analyze the trapping population as a function
of the ratio η of the spontaneous decay rates into and out
of the trapping state, see Fig. 6. We see that the trapping
state population strongly depends on η. Larger trapping state
populations can be expected for η > 1, because then the decay
out of the trapping state is smaller than the decay into it. Only
then, increasing the sample size N enhances the trapping state
population. In the opposite case η < 1, only little population
can be transferred into the trapping state, and increasing the
sample size N even can have a negative effect. Thus we
conclude that efficient population of the trapping state in
steady-state via collectivity requires that η > 1. From Fig. 6,
it can also be seen that for medium-sized samples, already
η ≈ 2 leads to almost perfect population of the trapping state
if incoherent repumping is weak.

We also calculated the second-order coherence function of
the atoms in the trapping state |t〉, which is given by

g(2)(0) = 〈q†
t q

†
t qtqt 〉

〈q†
t qt 〉2

= 〈Rtt (Rtt − 1)〉
〈Rtt 〉2

. (14)

Figure 7 shows this second-order coherence function as
a function of the laser parameters, and for the case with
and without incoherent repumping. Interestingly, the atom
statistics can be controlled via the laser field parameters. In
particular, for negligible incoherent repumping, the atomic
statistics changes from super-Poissonian (g(2)(0) > 1) to sub-
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FIG. 7. (Color online) Second order correlation function g(2)(0) of
the atomic trapping state. (i) N = 100 and n̄t = n̄e = 0, (ii) N = 100
and n̄t = n̄e = 2, (iii) N = 10 and n̄t = n̄e = 0, (iv) N = 10 and
n̄t = n̄e = 2. The spontaneous emission ratio is η = 2.

Poissonian (g(2)(0) < 1) if θ is varied, as depicted by the
short-dashed curve in Fig. 7. Incoherent pumping due to
reabsorption of particles, however, restricts the statistics to
g(2)(0) > 1 (see the long-dashed and dotted curves in Fig. 7).
As it is the case with the trapping state population, also the
second-order coherence can be improved, i.e., g(2)(0) ∼ 1, for
smaller samples if η � 1, or for η > 1 and larger samples
N � 1.

Finally, we estimate the requirements of the atom beam for
collectivity to occur. Present guided ultracold atom beams can
achieve fluxes of the order of 1010 atom/s with velocities of
order of 1 m/s, which corresponds to densities of order n0 =
3 × 1010 cm−3, or n0λ

3 ≈ 0.015 (λ ≈ 795 nm in rubidium)
[31,32]. This is close to the densities at which Dicke super-
radiance could be observed in an indium sample in a similar
level scheme as considered here [27]. There, a N2 dependence
of the super-radiance intensity was observed starting from 3 ×
1011 cm−3, or n0λ

3 ≈ 0.027 (λ ≈ 450 nm in indium). Thus we
conclude that, e.g., an increase of the flux or a decrease of the
average velocity by about one order of magnitude compared to
the results in [31] could allow to enter the regime of collectivity.
Note that the collective decay rates will depend on the sample
geometry as �(col)

α ∝ µN�α with a geometrical factor µ [33].
Often, µ can be adjusted to be much smaller than unity. Then,
the condition � � �(col)

α is satisfied, justifying the secular
approximation.

IV. SUMMARY

In summary, we discussed effects of collectivity in a model
for loading a magnetic trap. The particle interactions lead
to collective decay into a desired trapping state, enhancing
the loading performance. We discussed conditions for an
efficient increase of the trapping state population, focusing
on the ratio of the spontaneous emission rates, the incoherent
repumping via photon absorption in the trap, and the pump
laser parameters. Finally, we discussed the second order
correlation function of the atoms and show that the laser
field parameters can lead to a controlled transition between
classical and quantum properties of the atoms in the trapping
state.
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