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Nonlinear patterns in Bose-Einstein condensates in dissipative optical lattices
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It is shown that the one-dimensional nonlinear Schrödinger equation with a dissipative periodic potential,
nonlinear losses, and a linear pump allow for the existence of stable nonlinear Bloch states which are attractors.
The model describes a Bose-Einstein condensate with inelastic two- and three-body interactions loaded in an
optical lattice with losses due to inelastic interactions of the atoms with photons.
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I. INTRODUCTION

Being an indispensable attribute of all natural processes, the
dissipation accompanied by properly adjusted compensation
of losses plays a constructive role in the generation of nonlinear
patterns that are observed in many natural sciences, including
physics, biology, chemistry, and life sciences [1]. As attractors,
the respective structures play a prominent role in practical ap-
plications, among which we particularly mention light patterns
in nonlinear optics, which are receiving a rapidly increasing
amount of attention [2]. Several mathematical models have
been developed for the description of the emergence of
dissipative patterns, the complex Ginzburg-Landau equation
being the most simple and widely used one. This model allows
for quantitative and often even qualitative descriptions of a
wide range of physical phenomena [3].

The dissipation is also an important factor in the theory
of Bose-Einstein condensates (BECs), where it appears in a
natural way either through the inelastic interactions of light
with atoms (see, e.g., [4]) or in a form of inelastic two-body
and three-body interatomic interactions [5–7]. Alternatively,
the dissipation can be introduced artificially, say, in the form of
a nonlinear dissipative lattice [8] or by probing the condensate
by means of an electronic beam [9], and can affect the matter
wave dynamics in a variety of ways [10]. It is then natural to
expect that a BEC where the dissipative losses are properly
compensated by an atom pump into the system, can give
rise to highly stable atomic density distributions. Probably
the simplest nontrivial and practically important realization of
such a situation can be a BEC loaded into a one-dimensional
(1D) optical lattice (OL).

This leads us to the aim of the present work: We report on
a theoretical study of stable matter wave patterns emerging in
an array of BECs when the linear and nonlinear dissipations
are compensated by a homogeneous atom pump. More
specifically, we show that in such systems, the emergence of
nonlinear dissipative Bloch waves is possible. Such periodic
patterns appear as attractors, and hence initial distributions in a
large range of the parameters rapidly evolve into the dissipative
Bloch waves. These are essentially nonlinear states, which in
a general situation do not allow for transition to the limit of
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zero density, and at the same time, when the dissipation is not
too strong, can be naturally associated with a specific edge
of the band of the underlying conservative part of the lattice
potential.

The organization of the present article is as follows. In
Sec. II we formulate the models of the dissipative cubic
nonlinear Schrödinger (NLS) equation and provide estimates
for the main effects to be observable. In Sec. III we perform
numerical study of the emergence and stability of the periodic
patterns. Section IV is devoted to extending the results to the
NLS equation with quintic dissipation. In Sec. V we present
the respective lattice models, which can be obtained using
the tight-binding approximation from the initial continuous
dissipative NLS equations. The results are summarized in the
Conclusion, Sec. VI.

II. THE MODEL AND ANALYTICAL ESTIMATES

A. The model

We start with the 1D Gross-Pitaevskii (GP) equation,

i�t = −�xx + 2α sin2(x)� + g|�|2� + i��, (1)

where α = α′ − iα′′ is the properly normalized complex
atomic polarizability whose imaginary part α′′ > 0 becomes
appreciable for relatively large electric fields (see, e.g., [4]),
g = g′ − ig′′ is the dissipative nonlinearity (with g′′ > 0
describing inelastic interatomic collisions), and � > 0 is the
linear gain.

It is relevant to mention that emergence of coherent
localized and periodic structures from the interplay between
periodicity and complex (i.e., conservative and dissipative)
nonlinearity has recently being addressed within the frame-
work of the complex Ginzburg-Landau equation [11], and
nonlinear dissipative Bloch waves in a model of optical
parametric oscillators were reported in Ref. [12]. Compared
to these previous studies, apart from the physical applications,
the present model (1) displays very different mathematical
features, which stem from the periodically varying dissipation
which is controlled by the OL.

For the next consideration it is convenient to introduce the
parameter

� = � − α′′, (2)
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which will play the role of the effective gain (discussed later
in this article), and the parameter φ, defined by the rela-
tions g′′/|g| = sin φ and g′/|g| = cos φ, which controls the
nonlinear dissipation (the parametrization introduced implies
that 0 � φ � π ). Then, renormalizing the macroscopic wave
function ψ = |g|1/2e−iα′t�, we rewrite Eq. (1) in the form

iψt = −ψxx − (α′ − iα′′) cos(2x)ψ + e−iφ|ψ |2ψ + i�ψ.

(3)

B. On a homogeneous linear pump

The model (3) explored in the present article is based
on the supposition that there exists some “gain” mechanism
compensating for dissipative losses. Generally speaking, such
a mechanism would require an infinite external reservoir of
atoms supplying the condensate. Inclusion of the linear gain
has been explored in the BEC applications [5,13] and is usually
associated with the growth of the number of condensed atoms
due to condensation from the thermal cloud [5].

In this subsection we outline an idea on how an effective
homogeneous gain can be implemented “mechanically.” It is
based on the fact that what really matters is the linear atomic
density rather than the total number of atoms. Hence, one
can consider a cigar-shaped condensate whose dimensions
decrease in time, thus resulting in increasing linear density.

To this end, we consider a 1D BEC loaded into a cigar-
shaped potential, which consists of a periodic OL and a
parabolic trap. In order to implement an effective linear
homogeneous pump, we assume that (i) both the longitudinal
and the transverse harmonic oscillator frequencies are growing
functions of time: ω‖(T ) = ω‖f (T ) and ω⊥(T ) = ω⊥f (T ),
where ω‖ and ω⊥ are the respective frequencies at initial time
T = 0 and f (T ) is a positive definite increasing function,
chosen to be f (T ) ≡ (1 − 2ω‖T )−1; (ii) the complex s-wave
scattering length grows over time: a(T ) = asf (T ), as = a′

s −
ia′′

s being the initial complex scattering length (the desired time
dependence can be achieved with the help of the Feshbach
resonance); (iii) the lattice amplitude and the lattice period
are functions of time: V (T ) = Vf (T ) and d(T ) = df −1/2(T ),
V = V ′ − iV ′′ and d being the respective initial values (this
can be achieved by changing the laser-beam intensity and
the angle between the beams creating the OL). Then, in the
mean-field approximation such a condensate is described by
the 3D GP equation with varying coefficients,

ih̄�T = − h̄2

2m
∇2� + 2V (T ) sin2

[
πX

d(T )

]
�

+ m

2
[ω2

‖(T )X2 + ω2
⊥(T )R2

⊥]� + 4πh̄2a(T )

m
|�|2�,

(4)

where � and m are the wave function (in the physical units)
and the mass of the atoms, respectively, and R⊥ = (Y,Z) is
the transverse coordinate.

In the case when the OL period d is much bigger than the
transverse harmonic oscillator length, d � a⊥ = √

h̄/(mω⊥),
Eq. (4) can be reduced to the 1D GP equation by means of the
multiple-scale expansion procedure [14]. To this end, the 3D

bosonic wave function has to be searched in the form

�(X, R⊥, T )

= πa⊥
2d|as |1/2

ψ(x, t)ζ (R⊥, T )

× exp

{
−i

V ′T
h̄

− i
ω⊥
2ω‖

ln[f (T )] − i
ω‖f (T )X2

2ω⊥a2
⊥

}
,

(5)

where ψ(x, t) is the unknown dimensionless function of the
new dimensionless independent variables

x = π

d

√
f (T )X and t = Er

2h̄ω‖
ln[f (T )] (6)

(hereafter Er = h̄2π2/(2md2) is the “initial” recoil energy),
and ζ (R⊥, T ) = π−1/2a−1

⊥ exp[−R2
⊥f (T )/(2a2

⊥)] describes
the linear transverse distribution varying in time due to
the change of the transverse trap. Then, introducing the
dimensionless parameters α = α′ − iα′′ = (V ′ − iV ′′)/Er ,
� = 3h̄ω‖/(2Er ) − α′′, and φ, the latter defined by the
relations a′′

s /|as | = sin φ and a′
s/|as | = cos φ, and substituting

the ansatz (5) in Eq. (4), one readily obtains the desirable
Eq. (3).

It is clear that the aforementioned mechanism formally
works only for T < 1/2ω‖ and implies change of the trap
dimensions, which should not affect the applicability of the
mean-field model.1 This means that the created effective pump
is relatively small and thus can properly work for small
dissipative losses. For example, if in the dimensionless units
� ∼ α′′ ∼ 0.001, for the rubidium condensate loaded in a
cigar-shaped trap with the initial dimensions a⊥ = 0.5 µm and
a‖ = 17.32 µm (corresponding to the ω‖ ≈ 2.42Hz) and with
the imposed OL with the constant d = 1 µm, one computes
that the time interval during which the constant pump can be
supported is T ≈ 155 ms (or t ≈ 1040 in dimensionless units)
and corresponds to the decrease of the linear dimensions of
the trap two times.

In this work, however, we explore more strong values of
the gain (and dissipation) in order to reduce the time during
which instabilities are developed and unstable initial condi-
tions converge to the respective attractors. More specifically,
following [6] for all numerical simulation we will choose
� = 0.1.

C. On the spectrum of the linear problem

We are particularly interested in periodic stationary
patterns. Therefore, we explore the ansatz ψ(x, t) =
ϕ(x) exp(−iµt), with a real chemical potential µ leading the
nonlinear eigenvalue problem

µϕ = Lϕ + i[� + α′′ cos(2x)]ϕ + e−iφ|ϕ|2ϕ, (7)

where we have introduced the linear operator L = − d2

dx2 −
α′ cos(2x). The eigenvalues and eigenfunctions of this operator

1The consideration in this article was restricted to 1D models,
whose validity is well justified in the limit of low densities and
tight transverse binding (see, e.g., [14]). The full 3D simulations
accounting for possible transverse effects will be published elsewhere.
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are obtained from the Mathieu equation

Lϕnk = En(k)ϕnk. (8)

It gives the band-gap spectrum, characterized by the number
of the band n � 1 (n = 1 corresponding to the lowest band)
and by the wave vector k in the first Brillouin zone, k ∈
[−1, 1]. Subsequently, the spectrum of the operator L is given
by En(k) ∈ [E(−)

1 , E
(+)
1 ] ∪ [E(−)

2 , E
(+)
2 ] ∪ · · · (E(−)

1 < E
(+)
1 <

E
(−)
2 < . . .). Here E(−)

n and E(+)
n are, respectively, the lower

and the upper edges of the nth band; E(−)
n = En(0), E(+)

n =
En(1) if n is odd, and E(−)

n = En(1), E(+)
n = En(0) if n is even.

The requirement for µ to be real readily gives the relation∫ π

0
[α′′ cos(2x)|ϕ|2 − sin(φ)|ϕ|4]dx + �N = 0, (9)

where N = ∫ π

0 |ψ |2dx is the normalized number of atoms per
one lattice period. We notice that the condition (9) can also be
obtained from the requirement for the number of condensed
atoms to conserve, that is, from ∂N/∂t ≡ 0.

Our analysis will be restricted to the case of weak
dissipation, which we express in terms of the small parameter
ε = √|α′′/α′| � 1 and, respectively, we require � = ε2δ with
|δ| <∼ 1. It is then natural to recall that, in the absence of the
dissipation, Eq. (3) possesses branches of periodic solutions
which in the linear limit, that is, when N → 0, are reduced to
the conventional Bloch states ϕnk . Moreover, when N � 1, the
modulational instability of the respective periodic solutions is
described in terms of the multiple-scale approximation [14].
Therefore, we start the description of the dissipative problem
at hand with this limit.

As the first step, we consider the case when in the respective
linear problem

Lϕ + iε2V (x)ϕ = Eϕ, (10)

the dissipation V (x) ≡ δ + α′ cos(2x) is treated as a pertur-
bation. Straightforward application of the perturbation theory
allows to obtain corrections for a chosen eigenvalue En(k) due
to the dissipative term

E = En(k) + ε2E
(1)
nk + ε4E

(2)
nk + · · · , (11)

with

E
(1)
nk = i

∫ π

0
V (x)|ϕnk(x)|2dx (12)

and

E
(2)
nk = −

∑
n′ �=n

∣∣∫ π

0 V (x)ϕnk(x)ϕn′k(x)dx
∣∣2

En(k) − En′ (k)
(13)

(hereafter an overbar stands for the complex conjugation). The
obtained result has several important consequences. Indeed,
for the eigenvalue to be real, one has to require E

(1)
nk = 0, or

explicitly,

� + α′′γ = 0, γ =
∫ π

0
cos(2x)|ϕnk(x)|2dx. (14)

This requirement for the eigenvalues to be real either cannot
be satisfied or can be satisfied only for a single gap edge
[since γ depends on the indexes (n, k) which are omitted for
the sake of brevity of notations]. Thus, in a general situation

� �= 0. If � < −α′′γ , then E
(1)
nk describes effective dissipation,

which means that the zero solution (ψ ≡ 0) is an attractor.
If, however, � > −α′′γ , the zero solution becomes unstable
and one should expect the emergence of nonlinear coherent
structures, which of course are possible if the respective linear
pump is compensated by the nonlinear dissipation. This is
precisely the case of sin φ > 0 in the parametrization chosen
earlier in this article [see also Eq. (9)].

For � = 0 (this is the situation explored in all numerical
simulations reported in this article), the aforementioned argu-
ments mean that the nonlinear stable structures are expectable
only for γ > 0. Then nonlinear patterns are generated from
arbitrarily small initial fluctuations (see also Fig. 2). In the
meantime, the sign of γ is not uniquely defined and depends
on the band-gap edge. For the cos-like lattice, explored here,
positive γ is verified only for the lowest bands. Hence, only
close to the lowest band edges can one expect to obtain low-
density stable nonlinear patterns. This conjecture is verified
for all numerical simulations performed in the present article.

Finally, we observe the validity of the inequality

|γ | < 1, (15)

which will be used for the discussion in what follows.

D. Multiple-scale analysis of the stability

By varying the pump one can selectively excite periodic
patterns, whenever more than one stable state exists. In the
low-density limit (i.e., at N → 0), the stability of the periodic
solutions can be tested using the multiple-scale analysis,
similar to the approach successfully used in the conservative
case [14]. Now ε has to be used as a small parameter of
the problem. Following this approach, for the chosen band
edge, say E(±)

n , the wave function is approximated by ψ ≈
εA(ξ, τ )ϕ(±)

n (x) exp [−iE(±)
n t], where A(ξ, τ ) is an amplitude

depending on slow variables ξ = εx and τ = ε2t and ϕ(±)
n (x)

is the Bloch wave function at the edge of the nth band.
We observe that by choosing ε to be the small parameter
we implicitly impose the conditions where the characteristic
scale of the excitations is determined by the complex part of
the potential (contrary to case of a conservative system, where
the small parameter of expansion is treated as a free parameter
related to the detuning of the chemical potential toward the
adjacent gap; see, e.g., [14]).

Using the standard algebra (the details can be found in
Ref. [14]), one verifies that A(ξ, τ ) solves the dissipative NLS
equation

iAτ = −(2M)−1Aξξ + i�A + e−iφχ |A|2A. (16)

Here M = (d2E(±)
n /dk2)−1 is the effective mass,

� = α′γ + δ = α′′γ + �

ε2
(17)

is the effective gain (according to the analysis of Sec. II C,
nonlinear patterns emerge near edges with � > 0, a conclusion
that is also confirmed by the following analytical consideration
and numerical simulations, which justify the definition of �

as a gain),

χ =
∫ π

0
|ϕ(±)

n |4dx (18)
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is the effective nonlinearity, and γ is defined in (14) with ϕnk =
ϕ(±)

n . Within the framework of the multiple-scale expansion,
the condition (9) for conservation of the number of atoms can
be recast as follows:

� − sin(φ)χ |A|2 = 0. (19)

Equation (16) possesses a stationary, coordinate-
independent solution in the form

Ast =
√

�

χ sin(φ)
e−i�τ . (20)

Here � = �/ tan(φ) is a constant determining the shift of the
chemical potential outward from the gap edge: recall that now
µ = E(±)

n + ε2�. Unlike in the case of conservative systems,
the value of � is fixed. It is determined by the linear density
of atoms and by the nonlinear dissipation controlled by the
parameter φ through the relations

N = α′′γ + �

χ sin φ
, µ = E(±)

n + α′′γ + �

tan(φ)
. (21)

Several important conclusions follow immediately from
Eqs. (21). First, the limit N → 0 can be reached only when
the condition (14) is satisfied, that is, only subject to the
requirement for the spectrum to be real. In this limit, µ →
E(±)

n . For the general case, one must have N > 0, which leads
us to the condition on the linear dissipation α′′γ + � > 0
necessary for existence of the nonlinear periodic solutions.
This constraint, which in Sec. II C was obtained form the
analysis of the linear spectrum, is equivalent to the requirement
� > 0 in Eq. (16), and under the chosen parametrization of
nonlinearity, phase φ is necessary for the particle conservation
(19). In the original notations, the obtained necessary condition
reads � > (1 − γ )α′′ and means that the pump should be
stronger than the dissipation α′′ reduced by the lattice factor
(1 − γ ) [notice that due to (15), this is a positive factor]. Now
the number of particles per one OL period cannot be smaller
than the minimal value Nmin = (α′′γ + �)/χ , which is the
number of particles in the case of pure dissipative nonlinearity
[i.e., when (φ = π/2)]. In this limit, µ → E(±)

n .
As the second relevant property of the system at hand,

following from (21) we emphasize that the chemical potential
is not a free parameter, as would happen in a conservative
system, but is determined by the balance of incoming and
dissipating atoms. This balance can be controlled, say, by
the nonlinear dissipation, parametrized by φ. Respectively,
obtaining solutions corresponding to different branches [see,
e.g., Figs. 1(b) and 1(d)] requires changing the nonlinear
dissipation. In practical terms this can achieved, say, by using
variations of the light with a frequency close to resonance with
one of the excited atomic states. Then the control parameter
between the real and the imaginary parts of the scattering
length is the relation between the frequency detuning δ̃ form
the excited level and the natural line width �̃, δ̃/�̃ [6], and
practically any value of the parameter φ is achievable (see,
e.g., the examples considered in [6]).

As is customary, to check the stability of constant-amplitude
solutions, we consider small perturbations of the stationary
solution: Ast + (aeikξ−iωτ + be−ikξ+iωτ )e−i�τ (here |a|, |b| �
|Ast|). Substituting this ansatz in Eq. (16) and linearizing with

FIG. 1. (Color online) The number of particles N [panels (a)
and (c)] and the phase of the nonlinearity, φ [panels (b) and (d)]
vs the chemical potential µ for α′ = 3.0, α′′ = 0.1, and � = 0.0
obtained analytically (dashed lines) from Eqs. (21) and numerically
(solid lines). Gray strips represent the first [in panels (a) and
(b)] and the second [in panels (c) and (d)] bands. Panels (A)–(F)
illustrate temporal evolution of periodic solutions corresponding to
the respectively labeled points in panels (a)–(d). Points A, C, and E
are chosen to have the same nonlinearity phase φ ≈ 3.055. Similarly,
points B, D, and F are characterized by the phase φ ≈ 0.116. The
corresponding parameters γ are γ = 0.641 [panels (A) and (B)],
γ = 0.536 [panels (C) and (D)], and γ = 0.123 [panels (E) and (F)].

respect to a and b, we obtain a dispersion relation in the
long-wavelength limit (k � 1):

ω = −i� ±
√

�k2/M − �2. (22)

Thus, for the stability of the background A, we have to require
two conditions:

� > 0 and [µ − E(±)
n ]M > 0. (23)

The first of these inequalities has the simple meaning of
positive effective dissipation, which must compensate for the
nonlinear losses. The second condition is of “conservative
origin” and coincides with the stability of Bloch states in the
conservative systems (see, e.g., [14]).
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Besides the stationary solution (20), Eq. (16) possesses a
time-dependent homogeneous solution,

A(τ ) = a(τ ) exp

[
−i cos(φ)χ

∫ τ

τ0

a2(τ ′)dτ ′
]
, (24)

where

a(τ ) =
√

�a0√
�e2�(τ0−τ ) + χ sin(φ)a2

0[1 − e2�(τ0−τ )]
,

a0 = a(τ0), and τ0 is the initial time.
For a positive � and nonzero a0, the distribution (24) at

τ → ∞ converges to the stationary solution (20). In other
words, the pattern (20) is an attractor for any nontrivial
initial distributions, corresponding to a smoothly modulated
Bloch function. The respective time dependence of the particle
number per period can be represented as

N = N0(α′′γ + �)

N0χ sin φ + e2(α′′γ+�)(t0−t) (α′′γ + � − N0χ sin φ)
,

(25)

where N0 is the initial number of particles and we restored to
the original dimensionless variables.

Later in this article we will also explore the dynamical
regimes where after some interval of time the pump is switched
off, that is, � = 0 and � = −α′′ (respectively, δ = −α′).
Recalling the definition (17) as well as the property (15),
we conclude that this is the case of � = α′(γ − 1) < 0.
Now the particle conservation condition (19) cannot be met
for the dissipative nonlinearity sin(φ) > 0. It is evident that
in this case, nonstationary solution (24) evolves toward zero;
that is, the zero solution becomes an attractor. The respective
dependence of the number of particles per period on time is
now expressed as

N (t) = N0α
′′(1 − γ )e2α′′(γ−1)(t−t0)

α′′(1 − γ ) + N0χ sin(φ)[1 − e2α′′(γ−1)(t−t0)]
. (26)

At t − t0 � [α′′]−1, this decay has the exponential asymptotic

N (t) ≈ N0α
′′(1 − γ )

α′′(1 − γ ) + χ sin(φ)N0
e2α′′(γ−1)(t−t0). (27)

III. NUMERICAL STUDY OF COHERENT STRUCTURES

When the external parameters of the system (i.e., α′, α′′, �,
and φ) are fixed, with each band edge one can associate only
one solution, having the number of particles and the chemical
potential determined from (21) and varying when either of the
parameters is changed. Bearing in mind physical applications
of the model, we concentrate on the study of the dependence of
the number of particles on the chemical potential N (µ) [which
is the same as N (�) due to the link between � and µ]. The
respective analysis was performed for the lowest bands and is
summarized in Fig. 1.

The first lowest band (n = 1) is associated to two branches
of periodic solutions of Eq. (3) depicted in Figs. 1(a) and
1(b). One branch is 2π periodic (the branch A–B), having
zeros of the density in maxima of the OL in Eq. (1); that
is, xp = π/2 + pπ (where p is an integer). For this branch,
the dependence N (µ) reaches its minimum in the vicinity of

E
(+)
1 . The second branch is π periodic (branch C–D). It has no

zeros in the whole space, reflecting the fact that the respective
linear Bloch wave of the underlying conservative system has
no zeros. The dependence N (µ) of the second branch reaches
minimum at E

(−)
1 . We notice that analytical expressions for

N (µ) and φ(µ) in the vicinity of E
(±)
1 match remarkably well

the numerical ones [respectively, dashed and solid lines in
Figs. 1(a) and 1(b)].

Turning to the upper edges, in Figs. 1(c) and 1(d) we show
the branch E–F, which is associated with the upper edge of the
second band. It has the minimum of the number of particles
in the vicinity of E

(+)
2 given by Nmin ≈ 0.026, that is, smaller

than the one in the vicinity of first band edges [Nmin ≈ 0.1, see
Fig. 1(a)]. We also clearly observe that the minimum of N (µ)
is considerably shifted to the lower values of µ in comparison
with the analytical prediction (21).

Passing to the stability of the solutions, direct numerical
integration of Eq. (3) reveals that 2π -periodic patterns are
stable at µ < E

(+)
1 [solution A in Figs. 1(a) and 1(b) and

correspondent dynamics in Fig. 1(A)] and unstable at µ >

E
(+)
1 [solution B in Figs. 1(a) and 1(b) and correspondent

dynamics in Fig. 1(B)]. As this is typical for dissipative
systems, the stable solution is an attractor, and therefore an
unstable initial condition rapidly evolves toward the stable one
having the same nonlinear phase φ. This process is illustrated
in Fig. 1(B), where the unstable solution transforms into the
attractor corresponding to the point D [cf. Figs. 1(B) and 1(D)].
At the same time π -periodic solutions are stable at µ > E

(−)
1

[see, e.g., solution D in Figs. 1(a) and 1(b) and correspondent
dynamics in Fig. 1(D)] and unstable at µ < E

(−)
1 [see, e.g.,

solution C in Figs. 1(a) and 1(b) and correspondent dynamics
in Fig. 1(C)], where we show the convergence of the unstable
solution to the attractor corresponding to the point A.

The described stability properties corroborate well with
the simple analysis performed in the preceding sections. This
is not the case, however, for the solutions associated with the
upper band edges. They appear to be dynamically unstable,
again rapidly converging to the stable lower branches having
the same parameter φ. This is illustrated by the evolution
of the patterns corresponding to points E and F shown in
the respective panels of Fig. 1, where they transform into
the solutions corresponding to points A and D, respectively.
This, however, should not be viewed as the discrepancy with
the preceding analysis of the stability. Indeed, the latter one
is done for slowly varying perturbations, thus representing
only a necessary but not yet sufficient condition for the
stability. Moreover, the reported behavior well agrees with
the conclusion about emergence of complex eigenvalues
due to weak dissipation [see (14), as well as the subsequent
discussion].

Having discussed the stability properties of the periodical
patterns, we address the following two natural questions:
How one can generate the aforementioned stable periodical
patterns? And how do they evolve if after some time the gain
is off? The answer to the first question is rather simple. Since
the final pattern is an attractor, it will be generated from any
initial distribution having small density. This is illustrated
in Figs. 2(a) and 2(b), where one observes evolution of a
homogeneous nonzero excitation toward the stable periodic
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FIG. 2. (Color online) (a), (b) The evolution of the density,
obtained from the numerical integration of Eq. (3) with the initial
condition ψ(x, 0) ≡ 0.01. (c), (d) The evolution of the density started
with the stable patterns corresponding to points A and D of Fig. 1
with the gain turned off at t0 = 500. (e), (f) Evolution of the number
of particles per one period corresponding to the dynamics shown in
panels (c) and (d), respectively, calculated numerically (solid curves)
and analytically from Eq. (26) (dashed curves). Notice that the solid
and dashed curves are indistinguishable on the scale of panels (e)
and (f). The other parameters are α′ = 3.0, α′′ = 0.1, � = 0.0, and
φ ≈ 3.055 [panels (a), (c), (e)] and φ ≈ 0.116 [panels (b), (d), (f)].

pattern, whose parameters (number of particles per OL period
and chemical potential) are determined by the fixed phase φ

of the nonlinearity. More specifically, in Fig. 2(a) the initial
excitation is transformed into the solution corresponding to
point A in Fig. 1, while the initial excitation in Fig. 2(b) evolves
toward the solution with the parameters of the point D in
Fig. 1. It is worth noticing that such a spatiotemporal evolution
confirms the behavior, qualitatively predicted by Eq. (24).

The answer to the second of the aforementioned questions
becomes evident from Figs. 2(c)–2(f), where we show the
evolution of the stable periodic patterns after the gain is turned
off (recall that turning off the gain is equivalent to setting
� = −α′′). Thus, after turning off the gain, the condensate
starts losing the atoms and its density homogeneously goes to
zero [as was predicted by Eq. (26)]. Figures 2(e) and 2(f)
demonstrate remarkably good correspondence between the
numerical results and the analytical predictions.

IV. COHERENT STRUCTURES WITH QUINTIC
DISSIPATION

Significant dissipative losses in a BEC can occur due to the
inelastic three-body interactions [5–7]. Therefore, as the next
step we address their effect on the emergence of the coherent

structures in the dissipative model

i�t = −�xx + 2α sin2(x)� + g′|�|2� + i��− ig′′|�|4�,

(28)

where g′′ > 0, and other parameters are defined as described
earlier in this article. Similar to the previous case, intro-
ducing the parameters � = � − α′′, g = g′/

√
g′′, and the

renormalized macroscopic wave function ψ = (g′′)1/4e−iα′t�,
we arrive at the equation

iψt = −ψxx − (α′ − iα′′) cos(2x)ψ + i�ψ

+ g|ψ |2ψ − i|ψ |4ψ. (29)

Now the conservation of the number of atoms requires
[cf. Eq. (9)]∫ π

0
[α′′ cos(2x)|ψ |2 − |ψ |6]dx + �N = 0. (30)

Following the approach developed earlier in this article for
the analysis of the cubic dissipative term, now we employ
the multiple-scale analysis of Eq. (29) representing the wave
function in the form ψ ≈ ε1/2A(ξ, τ )ϕ±(x) exp [−iE(±)

n t].
The slowly varying amplitude A now is governed by the
equation

iAτ = −(2M)−1Aξξ + i�A + Gχ |A|2A − iϒ |A|4A,

(31)

where ϒ = ∫ π

0 |ϕ±|6dx, g = εG (ϒ ∼ |G| ∼ 1), and other
parameters are defined as in (16). We emphasize that, unlike
in the cubic case, here we imposed the condition of smallness
of the conservative nonlinearity coefficient g, since in this case
the effects of the elastic two-body interactions and the inelastic
three-body interactions become of the same order and must be
accounted for simultaneously.

Now the constant-amplitude solution reads

Ast = (�/ϒ)1/4e−i�τ . (32)

The number of particles per OL period N and the chemical
potential µ depend on the nonlinearity g,

N =
√

α′′γ + �

ϒ
, µ = E(±)

n + gχ

√
α′′γ + �

ϒ
. (33)

As can be seen from Eqs. (33), in the case of dissipative quintic
nonlinearity, the analytically estimated density of particles in a
stationary mode does not depend upon the cubic nonlinearity g

[unlike how this happens in the cubic case; see (21)]. The two-
body interactions, however, determine the chemical potential
µ for given N . In particular, since χ > 0 [see the definition
(18)], we have that µ < E(±)

n (µ > E(±)
n ) when g < 0 (g > 0).

Figure 3 illustrates that the simple analytical estimate for N (µ)
[shown in panels (a) and (c) by dashed lines] is in agreement
with the numerical values only in the vicinity of the band
edges (this was not true in the case of the cubic dissipative
nonlinearity where the domain of quantitative coincidence of
the analytical and numerical results was significantly larger;
see Fig. 1). The analytical estimates for g(µ) is in much better
agreement with the dependence found numerically [Figs. 3(b)
and 3(d)].

Turning to the simple stability analysis of the dissipative
Bloch waves, first we notice that the analysis performed in
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FIG. 3. (Color online) Number of particles N [panels (a), (c)]
and cubic nonlinearity g [panels (b), (d)] vs chemical potential µ

for α′ = 3.0, α′ = 0.1, and � = 0.0 calculated analytically (dashed
lines) from Eqs. (33) or numerically (solid lines). Gray strips represent
the first [in panels (a), (b)] and the second [in panels (c), (d)] bands.
In panels (A)–(F) we show temporal evolution of periodic solutions
at respective points of panels (a)–(d).

Sec. II C continues to be valid. Moreover, analyzing the
stationary solutions (32), we arrive at the conditions (23)
obtained earlier for the cubic case. Also similar to the cubic
case, direct numerical simulations confirm the validity of (23)
for the first band [see Figs. 3(a) and 3(b), where modes A
and D are stable while modes B and C are unstable] and their
failure for the top of the second band [see Figs. 3(c) and 3(d)
showing that modes E and F are unstable].

V. ASSOCIATED DISSIPATIVE LATTICES

As the last point, we observe that the limit of a relatively
large potential depth can be described by the tight-binding
approximation which is obtained by discretizing Eq. (3) using
the expansion

ψ(x, t) =
∑
nk

cnk(t)wnk(x) (34)

over the basis of the Wannier functions:

wnm(x) = 1√
2

∫ ∞

−∞
ϕnq(x)e−iπmqdq. (35)

For more precise conditions of the validity of the approxima-
tion, as well as for the details of the expansion, we refer to [15],
only mentioning here that sufficiently fast convergence of the
coefficients ωnm of the Fourier expansion of the energy

ωn0 � ωn1 � · · · , ωnm = 1

2

∫ 1

−1
En(q)e−iπmqdq (36)

must be required, allowing one to restrict the consideration to
the hopping of only the nearest neighbors.

At this point, however, we emphasize one important feature
which distinguishes the Wannier function mapping of the
continuous model to a discrete one in the dissipative case.
While, in general, the tight-binding limit does not account for a
number if important features of the dynamics of the underlying
continuum model [15], the tight-binding approximation can
be formally performed for a number of the lowest bands
(provided the depth of the potential is high enough), still
giving reasonable approximation for the static solutions. In the
dissipative case the situation is dramatically changed because
of the stability properties. Namely, now the tight-binding
approximation makes sense only for a band where the periodic
solutions are attractors. Even when other bands result in
discrete dissipative models with stable solutions, the difference
between such solutions and those of the original contin-
uum model grows exponentially already at early stages of
the evolution. Therefore, in what follows, we assume that the
expansion (34) is performed for the band associated to the
stable solutions. Moreover, in accordance with the examples
considered earlier in this paper, we choose the first lowest band
with n = 1. This assumption allows us to drop the band index
n in what follows.

Then, using the orthogonality of the Wannier functions, we
readily obtain the dissipative discrete NLS equation for the
expansion coefficients cn:

i
dcm

dt
=

(
1 − i

α′′

α′

)
(ω0cm + ω1cm+1 + ω1cm−1)

+ e−iφW |cm|2cm. (37)

Here W = ∫ ∞
−∞ w4

1,m(x)dx and we have neglected hopping
integrals with the upper bands and among the next-nearest
neighbors. The obtained Eq. (37) was considered earlier in [16]
(it is also relevant to mention studies of a more general discrete
dissipative model in [17]). Therefore, we do not proceed with
the further analysis of (37), referring for the study of their
modulational instability to the mentioned work.

We complete this last section with the indication that the
qubic-quintic dissipative model (29) can be discretized in the
similar manner:

i
dcm

dt
=

(
1 − i

α′′

α′

)
(ω0cm + ω1cm+1 + ω1cm−1)

+ gW |cm|2cm − iB|cm|4cm, (38)

where B = ∫ ∞
−∞ w6

1,m(x)dx. This model was also addressed
in [16].
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VI. CONCLUSIONS

To conclude, we have reported the emergence of nonlinear
periodic structures in a NLS equation with a dissipative peri-
odic potential, nonlinear losses, and linear pump. The models
describe a BEC loaded in an OL, where the potential created
by the light interaction with the condensate accounts for
nonelastic interactions of photons with atoms. We addressed
nonlinear losses due to two- and three-body interactions. These
simple 1D model reveals the existence of stable nonlinear
Bloch waves (attractors) to which a large range of the initial
data converges. The obtained solutions do not have the linear
limit (i.e., the limit of the zero density) and the number
of particles is limited from below. In all the simulations
performed the observed stable periodic patterns correspond
to the lowest band. The existence of the attractor has an
important physical consequence: In the described models,
loading particles (using the linear pump) is only possible to

the given state, which is imposed by the nonlinear losses. By
changing the interatomic interactions, one can follow different
branches of the stable solutions.

In the meantime the simplest stability analysis performed
in the present article does not yet describe all the features
of the system which are related, in particular, to the scales
comparable with the lattice constant, and thus not accounted
for by the multiple-scale expansion. These issues of the theory
are left for further studies.
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and H. Ott, Nat. Phys. 4, 949 (2008).

[10] V. A. Brazhnyi, V. V. Konotop, V. M. Pérez-Garcı́a, and H. Ott,
Phys. Rev. Lett. 102, 144101 (2009).

[11] H. Sakaguchi and B. A. Malomed, Phys. Rev. E 77, 056606
(2008); 80, 026606 (2009).

[12] V. A. Brazhnyi, V. V. Konotop, and M. Taki, Opt. Lett. 34, 3388
(2009); Phys. Rev. A 80, 043814 (2009).

[13] B. Kneer, T. Wong, K. Vogel, W. P. Schleich, and D. F.
Walls, Phys. Rev. A 58, 4841 (1998); P. D. Drummond and
K. V. Kheruntsyan, ibid. 63, 013605 (2000); C. Yuce and
A. Kilic, ibid. 74, 033609 (2006).

[14] V. V. Konotop and M. Salerno, Phys. Rev. A 65, 021602(R)
(2002).

[15] G. L. Alfimov, P. G. Kevrekidis, V. V. Konotop, and M. Salerno,
Phys. Rev. E 66, 046608 (2002).

[16] N. K. Efremidis and D. N. Christodoulides, Phys. Rev. E 67,
026606 (2003); in Dissipative Solitons, edited by N. Akhmediev
and A. Ankiewicz (Springer-Verlag, Berlin, Heidelberg, 2005),
p. 309.

[17] F. Kh. Abdullaev, A. A. Abdumalikov, and B. A.
Umarov, Phys. Lett. A305, 371 (2002); F. Kh. Abdullaev,
in Dissipative Solitons, edited by N. Akhmediev and
A. Ankiewicz (Springer-Verlag, Berlin, Heidelberg, 2005),
p. 328.

013625-8


