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We study ordinary solitons and gap solitons (GS’s) in the framework of the one-dimensional Gross-Pitaevskii
equation (GPE) with a combination of both linear and nonlinear lattice potentials. The main points of the analysis
are the effects of (in)commensurability between the lattices, the development of analytical methods, viz., the
variational approximation (VA) for narrow ordinary solitons and various forms of the averaging method for broad
solitons of both types, and also the study of the mobility of the solitons. Under the direct commensurability
(equal periods of the lattices, Llin = Lnonlin), the family of ordinary solitons is similar to its counterpart in the
GPE without external potentials. In the case of the subharmonic commensurability with Llin = (1/2)Lnonlin, or
incommensurability, there is an existence threshold for the ordinary solitons and the scaling relation between
their amplitude and width is different from that in the absence of the potentials. GS families demonstrate a
bistability unless the direct commensurability takes place. Specific scaling relations are found for them as well.
Ordinary solitons can be readily set in motion by kicking. GS’s are also mobile and feature inelastic collisions.
The analytical approximations are shown to be quite accurate, predicting correct scaling relations for the soliton
families in different cases. The stability of the ordinary solitons is fully determined by the Vakhitov-Kolokolov
(VK) criterion (i.e., a negative slope in the dependence between the solitons’s chemical potential µ and norm
N ). The stability of GS families obeys an inverted (“anti-VK”) criterion dµ/dN > 0, which is explained by
the approximation based on the averaging method. The present system provides for the unique possibility to
check the anti-VK criterion, as µ(N ) dependencies for GS’s feature turning points except in the case of direct
commensurability.
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I. INTRODUCTION

It is well known that periodic potentials, induced by
optical lattices (OL’s), provide a versatile tool for control-
ling dynamics of Bose-Einstein condensates (BEC’s). This
tool is especially efficient for the creation and stabilization
of solitons—both ordinary ones and gap solitons (GS’s),
which are supported by the interplay of the OL potential
and self-repulsive nonlinearity. Many results obtained in
both theoretical and experimental studies of this topic were
summarized in reviews focused on one-dimensional (1D) [1]
and multidimensional [2] matter-wave dynamics. Earlier a
similar model was introduced in optics for the description
of spatial solitons in nonlinear waveguides with a periodic
transverse modulation of the refractive index [3]. In the
experiment, lattices controlling the transmission of optical
beams were implemented in the form of photoinduced gratings
in photorefractive crystals, which made it possible to create
various species of 1D and two-dimensional (2D) spatial
solitons [4]. Gratings were also created as permanent structures
written by femtosecond laser beams in silica [5]. Recently, this
topic was reviewed in Ref. [6]; a closely related topic is the
study of discrete solitons in optics, which was the subject of
another comprehensive review in Ref. [7].

A different possibility, which has drawn much attention in
studies of BEC (thus far, primarily at the theoretical level) is
the use of a spatially profiled effective nonlinearity that may
be implemented by means of properly designed configurations
of external fields via the Feshbach-resonance effect. In terms
of the condensed-matter theory, the nonuniform nonlinearity
coefficient induces an effective pseudopotential [8,9] that

can be used to control the dynamics of localized modes.
Various problems of this sort were considered in 1D settings
with periodic pseudopotentials in the form of nonlinear
lattices (NL’s) [10–12], as well as with spatial modulations
of the nonlinearity coefficient represented by one [13] or
two [9] δ functions (actually, the model with the self-attractive
nonlinearity concentrated at a single δ function was introduced
long ago as a model for tunneling of interacting particles
through a junction [14]). In particular, the configuration with
two δ functions makes it possible to study the spontaneous
symmetry breaking of matter waves trapped by a symmetric
double-well pseudopotential [9]. Specially chosen profiles of
the nonlinearity coefficient may also be employed to design a
pulse-generating atomic-wave laser [15], as well as traps and
barriers for such pulses [16]. The analysis of 1D matter-wave
solitons in NL’s was further extended for two-component
models [17,18] and for some spatiotemporal patterns of the
nonlinearity modulation [19]. Certain results for solitons
supported by 2D nonlinear pseudopotentials were reported
also, although the stabilization of 2D solitons in this setting is
a tricky problem [20].

In addition to the BEC, a periodic modulation of the non-
linearity is possible in optics, where it was analyzed in terms
of temporal [21] and spatial [22,23] solitons. A discussion of
practical possibilities to create NL’s in optical media in the
“pure form” (without affecting the linear properties, i.e., the
refractive index) can be found in Ref. [18]. An experimental
observation of NL-supported optical solitons (in the form of
surface solitons at an interface between lattices) was reported
in Ref. [24].
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A natural generalization of the study of NL pseudopoten-
tials is to consider the atomic and optical media equipped
with a combination of nonlinear and linear lattices in 1D
[12,25,26] and 2D [27] settings. In the experiment this
may be implemented by applying the previously mentioned
techniques simultaneously—for instance, combining the OL,
which induces the linear periodic potential in the BEC
and the patterned magnetic field, which gives rise to the
nonlinear pseudopotential via the Feshbach resonance. Ac-
tually, photonic-crystal fibers, where various species of spatial
solitons were predicted [28], also belong to this type of
media. Under special conditions the combined models admit
analytical solutions (see Ref. [12] and references therein). In
particular, exact solutions were elaborated in detail for the
lattices of the Kronig-Penney (piecewise-constant) type [23].

The objective of this work is to investigate the existence,
stability, and mobility of ordinary 1D solitons and their GS
counterparts in the combined NL-OL model, with an emphasis
on the effects of the commensurability (spatial resonance)
between the nonlinear and linear lattices. In the general case
the solitons are found in a numerical form. For narrow ordinary
solitons (those where the chemical potential µ falls into the
semi-infinite gap of the linearized version of the model) we also
develop a variational approximation (VA). For broad solitons,
both ordinary ones and GS’s with µ belonging to the first
finite band gap, we elaborate analytical approximations based
on different versions of the averaging technique.

The stability of the solitons is investigated by means of sys-
tematic simulations of their perturbed evolution. We conclude
that the well-known Vakhitov-Kolokolov (VK) criterion [29]
completely determines the actual stability of the ordinary
solitons (the criterion states that a necessary stability condition
is a negative slope in the dependence of the solitons’ chemical
potential µ, on their norm N , i.e., dµ/dN < 0). For the GS
families, our analysis leads to a different conclusion: Their
stability fully obeys an “anti-VK” criterion, viz., dµ/dN > 0.
As a matter of fact, all stable GS families in previously studied
models had only the positive slope of µ(N ), thus satisfying
the latter criterion automatically. However, the present model
offers a rather unique chance to test it in a nontrivial situation,
when µ(N ) curves for the GS’s may have portions with both
positive and negative slope, separated by turning points. Using
the averaging method, we also produce a justification for the
anti-VK criterion, which is relevant, at least, for subfamilies
of broad GS’s.

The rest of the article is organized as follows. The model
is formulated in the next section, which also reports the basic
numerical results. In the case of the direct commensurability
between the nonlinear and linear lattices (for those with equal
periods, Llin = Lnonlin), it is concluded that ordinary solitons
are similar to soliton solutions of the nonlinear Schrödinger
equation (NLSE) in the free space (without an external
potential), in the sense that there is no threshold for their
existence, the entire soliton family is stable and the amplitude
and width of the soliton, A and W , obey the usual scaling
relation, A ∝ 1/W . On the contrary, there is an existence
threshold for ordinary solitons in the case of the incom-
mensurability, or if the commensurability (spatial resonance)
between the lattices is subharmonic, with Llin = Lnonlin/2. In
those cases, the scaling relation between the amplitude and

width is also different—featuring, in particular, A ∝ 1/W 2

for the subharmonic resonance. The same commensurability-
dependent change in the scaling is observed in GS families,
which also demonstrate a bistability in cases different from the
direct commensurability.

Analytical results, which may explain a considerable part
of the numerical findings, are collected in Sec. III. First, we
develop the VA for narrow ordinary solitons and then the
averaging method is reported, in different forms for different
cases. It is demonstrated that both the VA and averaging
produce results that are in good agreement with numerical
observations, in relevant regions of the parameter space. In
particular, as briefly mentioned earlier, the averaging lends an
explanation to the “anti-VK” stability criterion for GS’s. In the
case of Llin = Lnonlin/2, an average equation for the envelope
amplitude includes a quintic nonlinear term rather than
the cubic one, which accounts for the previously mentioned
change in the scaling relation between A and W . The article
is concluded by Sec. IV.

II. NUMERICAL RESULTS

A. The model

The model combining the linear OL potential and nonlinear
NL pseudopotential is based on the known effectively 1D
Gross-Pitaevskii equation for the mean-field wave function
φ(x, t) [12,23,25,26]. In the scaled form, the equation is

iφt = − (1/2) φxx − [ε cos(2πx) + g cos(πqx)|φ|2]φ, (1)

where ε is the strength of the linear OL and g = ±1 is fixed by
the normalization. The NL wavenumber is q, the previously
mentioned periods of the linear and nonlinear lattices being
Llin ≡ 1 and Lnonlin = 2/q. For q = 0 and g = −1, Eq. (1)
amounts to the NLSE with the OL potential and a constant
coefficient in front of the self-defocusing cubic term. As is well
known, this equation supports families of stable GS solutions
[1,30]. On the other hand, in the absence of the OL, ε = 0, the
NL supports ordinary solitons, but not GS’s [10–12].

Stationary solutions with the chemical potential µ are
looked for in the form of φ(x, t) = u(x) exp(−iµt), where
u(x) is a real function. The substitution of this expression into
Eq. (1) yields an ordinary differential equation,

µu = −(1/2)u′′ − [ε cos(2πx) + g cos(πqx)u2]u, (2)

which can be derived from the corresponding Lagrangian,

2L =
∫ +∞

−∞
[µu2 − (1/2)(u′)2 + ε cos(2πx)u2

+ (g/2) cos(πqx)u4]dx. (3)

We constructed numerical solutions for localized stationary
modes by means of the shooting method applied to Eq. (2). The
stability of the so-found solutions against small perturbations
was tested through direct simulations of Eq. (1). The results
were also compared to predictions of the VK criterion for
the ordinary solitons and to the already mentioned “anti-VK”
criterion for GS’s. The numerical results reported in the
following are obtained for the OL strength ε = 5, which
adequately represents the generic situation for the ordinary
solitons and GS’s alike.
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FIG. 1. (a) Typical examples of a stable broad ordinary soliton
and (b) stable gap soliton at g = +1 and −1, respectively, in the
case of the nonlinear lattice with period Lnonlin = 2 (i.e., q = 1). The
amplitudes of both solitons are A = 1.5. The chemical potential and
norm are, respectively, µ = −1.198 and N = 1.628 for the ordinary
soliton and µ = 2.629 and N = 2.176 for the gap soliton.

Figures 1(a) and 1(b) display, respectively, examples of
ordinary solitons (for g = +1, q = 1) and GS’s (for g =
−1, q = 1) with equal amplitudes. The choice of q = 1
corresponds to the already mentioned case of the subharmonic
resonance between the OL and NL, Llin = (1/2)Lnonlin. In this
case, stable ordinary solitons and GS’s coexist for either sign
of g. If, for instance, g = +1, ordinary solitons are located
around even sites of the NL, x = 2n (with integer n), while
GS’s may be centered at odd sites, x = 2n + 1.

B. Ordinary solitons

Figure 2(a) represents a family of the ordinary solitons by
means of the relation between their norm, N = ∫ +∞

−∞ u2(x)dx,
and chemical potential µ, at three characteristic values of
the NL’s wave number, q = 1,

√
5 − 1, and 2 for g = +1.

These values are chosen because q = 2 corresponds to the
direct commensurability between the linear and nonlinear
lattices (Llin = Lnonlin), q = 1 represents, as said earlier, the
subharmonic commensurability [Llin = (1/2)Lnonlin], and q =√

5 − 1 corresponds to incommensurate lattices. All values of

µ for the ordinary solitons fall into the semi-infinite gap of the
spectrum induced by the OL potential in the linearized version
of Eq. (1).

At q = 2, direct simulations demonstrate that the entire
soliton family is stable, precisely as suggested by the VK
criterion, dµ/dN < 0 [see Fig. 2(a)]. For q = 1 and q =√

5 − 1, the results are different, featuring nonmonotonous
relations µ(N ). Accordingly (again in agreement with the
prediction of the VK criterion), narrow solitons with larger
amplitudes, which correspond to the branches of µ(N ) with
dµ/dN < 0 in Fig. 2(a) are stable, while their loosely bound
(broad) counterparts, corresponding to the branches with
dµ/dN > 0, are unstable. Another difference from the case
of the direct commensurability is that there is a minimum
value of the norm, Nmin (the threshold), which is necessary for
the existence of the ordinary solitons at q = 1 and

√
5 − 1,

while there is no threshold at q = 2.
In fact, the situation in the case of q = 1 and

√
5 − 1—the

existence of the threshold value Nmin, which separates stable
and unstable branches of the ordinary-soliton solutions—is
qualitatively similar to what is known in the model with
the NL but no linear potential [10]. On the other hand, the
situation in the case of q = 2—the absence of Nmin and the
existence of the single branch of the soliton solutions, which
is entirely stable—resembles the well-known properties of
soliton solutions of the NLSE without any lattice, linear or
nonlinear.

The evolution of those ordinary solitons, which are un-
stable, is illustrated in Fig. 3 for q = 1 and g = +1. It
is observed that the unstable soliton, with initial amplitude
A = 0.9, rearranges itself into a narrower persistent breather,
with time-average amplitude Abr ≈ 1.1, while the norm is kept
constant. The transformation of the unstable ordinary solitons
into stable breathers is also similar to what was reported in the
model without the OL [10].

Properties of the ordinary solitons in the same three
families, with q = 1,

√
5 − 1, and 2 (and g = +1), are further

illustrated in Fig. 2(b) through relations between the soliton’s
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FIG. 2. (a) Chemical potential µ versus norm N for families of ordinary solitons at different values of q and g = +1. Portions of the
curves with dµ/dN < 0 and dµ/dN > 0 represent, respectively, stable and unstable (sub)families, in agreement with the VK criterion.
(b) The log-log plot of amplitude A versus width W [the latter is defined as per Eq. (4)]. Bold dashed lines correspond to unstable branches of
the soliton families, for q = 1 and

√
5 − 1. Thin dashed reference lines designate scalings, which different families obey at small values of A,

namely, W ∝ 1/A and W ∝ 1/A2. (c) The stability boundary for the ordinary solitons, which is defined, as per the VK criterion, by condition
dN/dµ = 0. As predicted by the criterion and verified in direct simulations the solitons are stable above the boundary.
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FIG. 3. An example of the spontaneous rearrangement of an unstable ordinary soliton, with amplitude A = 0.9 and norm N = 1.32, into
a robust breather, at q = 1 and g = +1. (a) The evolution of the soliton’s amplitude. (b) The field profile, |φ(x, t)|, at t = 110. (c) The profile
at t = 140. Panels (b) and (c) display the shape of the breather at points where its width is close, respectively, to the minimum and maximum
values.

amplitude A and its width W , which we define by

W 2 = N−1
∫ +∞

−∞
|φ(x)|2 (x − L/2)2 dx, (4)

where x = L/2 is the central point of the integration domain.
At q = 2, relation W (A) features scaling W ∝ 1/A for
relatively small values of A. This is the same scaling as featured
by exact soliton solutions of the NLSE in the free space, which
is in line with the previous observation that the soliton family
at q = 2 is similar to that in the NLSE without any lattice.
However, the scaling is different in the other families, featuring
W (A) ∝ 1/A2 for q = 1 and W (A) ∝ 1/A1.8 for q = √

5 − 1.
The two latter scaling relations imply that the width of the
respective solitons is essentially larger than in their free-space
counterparts, therefore we call them broad solitons.

Figure 2(c) summarizes the results by means of the stability
boundary for the ordinary solitons in the plane of (q,N ).
The boundary is identified as a VK-critical curve along which
dµ/dN vanishes, the stability area (with dµ/dN < 0) being

located above the curve. Systematic simulations performed
in regions below and above the boundary confirmed that the
solitons in these regions are, respectively, unstable and stable
(unstable solitons transform themselves into breathers, as
shown in Fig. 3). The stability area reaches the limit of N = 0
(very broad solitons with a vanishingly small amplitude) in the
form of the cusps in Fig. 2(c) at q = 0 and q = 2. Recall that
q = 0 with g = +1 corresponds to the constant coefficient
of the self-attractive nonlinearity in Eq. (1), while q = 2
corresponds to the direct commensurability between the linear
and nonlinear lattices.

C. Static gap solitons

In this work the consideration of GS families was confined
to the first finite band gap induced by the OL potential, in
terms of the linearized version of Eq. (1). The N (µ) and W (A)
curves for these families are displayed in Figs. 4(a) and 4(b),
for the same three cases as previously, viz., q = 1,

√
5 − 1,

and 2, fixing g = −1 [width W is again defined as per
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FIG. 4. (a) The relation between norm N and chemical potential µ of gap solitons for q = 1,
√

5 − 1, and 2 for g = −1. Portions of
the curves with dµ/dN > 0 and dµ/dN < 0 represent stable and unstable (sub)families, respectively, obeying the “anti-VK” criterion (see
the text). (b) The log-log plot of amplitude A versus width W , for the gap solitons. Bold dashed portions of the curves correspond to
unstable solutions with dµ/dN < 0. Thin dashed reference lines designate scalings W ∝ 1/A and W ∝ 1/A2. (c) Critical lines dN/dµ = 0 in
the plane of (q,N ). There is a single stable gap soliton above the upper line and beneath the lower one and three solutions—two stable and one
unstable—in the bistability region between the two lines.
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Eq. (10)]. The VK criterion does not apply to GS’s. Never-
theless, the results strongly suggest that the stability of all
GS families follows an “anti-VK” condition, dµ/dN > 0. For
subfamilies of broad GS’s, this condition is derived in the
following from an effective envelope equation for broad GS’s,
which amounts to an “inverted” NLSE, with the self-repulsive
nonlinear term and negative effective mass, see Eq. (18). In
that approximation, GS’s reduce to ordinary solitons if the
wave function is subjected to the complex conjugation, which
implies the inversion of the sign of µ and of dµ/dN as well.

In accordance with what is said earlier, the entire GS family
for q = 2, which satisfies the “anti-VK” condition everywhere
in Fig. 4(a), is found to be completely stable in direct
simulations. On the other hand, the µ(N ) curves for q = 1
and q = √

5 − 1 feature two folds and direct simulations
corroborate the instability of portions of the GS families
with dµ/dN < 0. To the best of our knowledge the present
model produces the first example of µ(N ) characteristics for
GS’s with turning points, which makes the anti-VK criterion
amenable to the actual verification. In the standard model
with the constant nonlinearity coefficient [1,31], as well
as in its version with the quasiperiodic OL potential [32],
the monotonous character of the curves does not allow the
verification of the criterion.

The stability diagram in the plane of (q,N ), as predicted by
the “anti-VK” criterion, is displayed in Fig. 4(c). It includes
two critical curves with dN/dµ = 0. As suggested by Fig. 4(b)
and completely confirmed by systematic simulations, in the
regions above the top curve and below the bottom one there
is a single solution, which is stable. Between the curves,
there are three solutions, two of which are stable (i.e., this
is a bistability region). The critical curves feature cusps
near q = 0 and q = 2, similar to the situation displayed in
Fig. 2(c).

From Fig. 4(b) we conclude that the scaling relations
between the GS’s width and amplitude for broad solitons
(with small values of A) take the following form: for q = 2,
W ∼ 1/A; for q = √

5 − 1, W ∝ 1/A1.85; and for q = 1,
W ∝ 1/A2 (i.e., almost exactly the same as their counterparts
for the ordinary solitons). All portions of the GS families
obeying these scaling relations are stable. On the other
hand, the simulations demonstrate that unstable GS’s (those
with dµ/dN < 0) are not transformed into breathers, unlike
unstable ordinary solitons, but rather suffer a gradual decay
into quasilinear waves (not shown here).

D. Mobility of the solitons

It is known that both the ordinary and gap solitons may
move without any tangible loss through the OL in the usual
model, with the constant coefficient in front of the cubic term,
provided that the norm of the soliton does not exceed a certain
critical value [30]. The mobility of solitons in the present
model is an especially interesting issue, as a moving soliton
should periodically pass regions of the self-repulsive and self-
attractive nonlinearity, hence its survival is not obvious (similar
to the situation for alternate solitons in the model with the
time-modulated nonlinearity, periodically switching between
the self-attraction and self-repulsion [33]).
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FIG. 5. (a) The evolution of an unstable ordinary soliton with
initial amplitude A = 0.4, which was set in motion by the kick with
momentum k = 3π/100 at q = 1 and g = 1. (b) The motion of the
soliton’s center of mass defined as per Eq. (5).

1. Ordinary solitons

The simulations of Eq. (1) demonstrate that ordinary
solitons can be readily set in motion by the application of
multiplier exp(ikx) to the stationary waveforms. This is true
even for unstable solitons (recall that, unless q = 2 or q = 0,
the ordinary solitons with a relatively small amplitude A are
unstable, as shown in Figs. 2 and 3). Figure 5(a) displays a
typical example of the evolution of |φ(x)| with A = 0.4 for
g = +1 and q = 1, under the action of the initial kick with
k = 3π/100 [this soliton is unstable, according to Fig. 2].
Figure 5(b) displays the motion of the soliton’s center-of-mass
coordinate Xp, defined as

Xp = N−1
∫ +∞

−∞
|φ(x)|2(x − L/2)dx, (5)

cf. Eq. (4). Prior to the onset of the intrinsic instability, the
soliton moves at a constant velocity v ≡ dXp/dt = 0.083.
Accordingly, one can identify the effective mass of the ordinary
soliton,

m
(ord)
eff ≡ k/v = 1.13. (6)

This mass is very accurately predicted by the averaging
method, see Eq. (14). Near t = 1400, the instability transforms
the soliton into a narrow breather, which gets pinned by the
underlying lattices with its velocity nearly dropping to zero.

2. Gap solitons

GS’s are also robust mobile objects. Fixing q = 1, g = −1,
and applying the same kick as previously, with k = 3π/100,
Figs. 6(a) and 6(b) display a typical example of the evolution
of |φ(x)| for the kicked GS with A = 0.4 and the motion of
its center [in the quiescent state this soliton is stable, as per
Fig. 4(b)]. The respective velocity is v = −0.28, hence the
effective mass of the GS is

meff ≡ k/v = −0.336. (7)

As usual for gap modes, this effective mass is negative. In
the following it is shown that it is accurately produced by the
averaging method, see Eq. (21).

As shown in Fig. 6(c) the application of a much stronger
kick gives rise to the generation of a small wavelet that splits
off from the main pulse. In the system with periodic boundary
conditions, the GS and the wavelet collide many times and
eventually the wave field becomes chaotic.
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FIG. 6. (a) The evolution of a stable gap soliton with initial amplitude A = 0.4, which was set in motion by the kick with momentum
k = 3π/100 at q = 1 and g = −1. (b) The motion of the soliton’s center of mass, defined as per Eq. (5). (c) The evolution of the same gap
soliton under the action of a strong kick with k = 3π/20. (d) The inelastic collision of two stable symmetric gap solitons with initial amplitudes
A = 0.2 at q = 1 and g = −1 kicked by k = ±12π/400. For A = 0.4, which corresponds to panel (a), the collision is inelastic too.

The mobility of the GS’s suggests the possibility to consider
collisions between them. A typical example is presented in
Fig. 6(d). The collision is inelastic, giving rise to the formation
of an additional quiescent GS in the center. It is relevant to
mention that collisions between moving solitons in the usual
GS model, with the constant nonlinearity coefficient, may also
be inelastic [30].

III. ANALYTICAL METHODS

A. The variational approximation for ordinary solitons

Narrow stationary solitons of the ordinary type (corre-
sponding to g = +1) can be naturally approximated by means
of the VA, using the simplest Gaussian ansatz [3]

u(x) = A exp[−x2/(2W 2)], (8)

with norm N = √
πA2W. The substitution of ansatz (8) in

Lagrangian (3) yields the effective Lagrangian, written in
terms of the norm instead of amplitude A

2Leff = µN − N

4W 2
+ εNe−π2W 2 + N2

2
√

2W
e−π2q2W 2/8.

(9)

Variational equations following from Eq. (9), ∂Leff/∂W = 0
and ∂Leff/∂N = 0, take the form of

4π2εW 4e−π2W 2 + (1/
√

2π )(1 + π2k2W 2)

×NWe−(πqW )2/8 = 1, (10)

(4W 2)−1 − εe−(πW )2 − (1/
√

2π )(N/W )e−(πqW )2/8 = µ.

(11)

Figure 7 compares the µ(N ) curves produced by Eqs. (10)
and (11) to their numerically found counterparts for the NL
wave numbers q = 1 and 2. It is seen that the VA provides
for a good approximation for narrow solitons with values of
µ that are not too close to the edge of the semi-infinite gap.
The portions of the curves corresponding to broad solitons,
which are located near the gap’s edge, are not captured by the
VA as the actual shape of these solitons is different from the
Gaussian, see, e.g., Fig. 1(a).

B. The averaging method

1. Ordinary solitons

The approximation based on averaging can be applied to
broad solitons, which have a small amplitude and large norm.
In the case of the ordinary solitons (g = +1), this is the
situation opposite to that (narrow localized modes) for which
the VA was presented in the previous section. To develop the
averaging approach for ordinary solitons we adopt the ansatz

φ(x, t) = � (x, t) [1 + 2α cos(2πx)] , (12)

where the slowly varying amplitude function � multiplies the
simplest approximation for the Bloch wave function, which
may be used near the edge of the semi-infinite gap with α =
(
√

π4 + ε2/2 − π2)/ε (this approximation is obtained by dint
of the analysis presented in Ref. [30]). The substitution of
ansatz (12) into Eq. (1) and averaging, also performed along
the lines of Ref. [30], lead to the asymptotic NLSE for the
slowly varying envelope function

i
∂�

∂t
= − 1

2m
(ord)
eff

∂2�

∂x2
+ g

(ord)
eff |�|2�, (13)

where the calculations yield the following coefficients

m
(ord)
eff = 2π4 + ε2 + π2

√
4π4 + 2ε2

10π4 + ε2 − 3π2
√

4π4 + 2ε2
, (14)

-2

-1.5

-1

-0.5

0 0.5 1 1.5 2 2.5 3 3.5
N

FIG. 7. Comparison of the variational (dashed lined) and numer-
ically found (chains of symbols) curves µ(N ) for ordinary solitons
(g = +1).
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FIG. 8. (a) The numerically obtained profile of an ordinary soliton
with amplitude A = 0.1 for g = +1 and q = 2. (b) The profile
predicted for the same soliton by means of the averaging method,
see Eqs. (12), (16), (14), and (15).

g
(ord)
eff = −〈[1 + 2α cos(2πx)]4 cos(qπx)〉

1 + 2α2
, (15)

with 〈. . .〉 standing for the spatial average. Obviously the
effective nonlinearity coefficient given by expression (15)
vanishes unless q takes values 0, 2, 4, 6, or 8. In particular,
g

(ord)
eff = −(1 + 12α2 + 6α4)/(1 + 2α2) for q = 0 and g

(ord)
eff =

−4α(1 + 3α2)/(1 + 2α2) for q = 2. Actually g
(ord)
eff does not

vanish at q = 2n with any integer n if higher-order harmonics
are kept in the expansion of the Bloch function at the edge of the
semi-infinite gap 1 + 2

∑
n αn cos(2πnx), cf. the lowest-order

approximation used in Eq. (12). With the value of the OL
strength adopted in the numerical simulations reported earlier
ε = 5, Eq. (14) yields m

(ord)
eff ≈ 1.128, which is virtually

identical to the numerically found effective mass, see Eq. (6).
The soliton solution to Eq. (13) with an arbitrary amplitude

A is

� = A exp

(
i

2
g

(ord)
eff A2t

)
sech

(√
g

(ord)
eff m

(ord)
eff Ax

)
. (16)

This solution explains scaling W ∝ 1/A, which is observed
in Fig. 2(b) for broad ordinary solitons in the case of q = 2.
Figure 8 displays a direct comparison of profiles of a typical
broad ordinary soliton, as obtained in the numerical form and
produced by the averaging method. Good agreement between
the two profiles is obvious [note that the figure displays the
full wave function, |φ(x)| rather than the envelope �(x), see
Eq. (12)].

C. Gap solitons

1. Direct commensurability between the nonlinear
and linear lattices

To apply the averaging approximation to GS’s, which
correspond to g = −1 in Eq. (1), we follow Ref. [30] and
adopt the simplest ansatz that is relevant in this case

φ (x, t) = � (x, t) cos(πx), (17)

with a slowly varying amplitude �(x, t). The difference in the
form of the carrier wave in this expression, in comparison to
Eq. (12), is due to the fact that, near the edge of the first finite
band gap, the Bloch function is close to a periodic function, the
period of which is twice as large as that of the underlying OL
potential. On the contrary, near the edge of the semi-infinite

gap the period of the Bloch function coincides with the OL’s
period.

The substitution of ansatz (17) in Eq. (1) and the application
of the averaging method yields the respective asymptotic
NLSE equation for the amplitude function

i
∂�

∂t
= − 1

2m
(gap)
eff

∂2�

∂x2
+ g

(gap)
eff |�|2�, (18)

cf. Eq. (13). The effective mass and interaction coefficients in
Eq. (18) are found to be

m
(gap)
eff = ε/(ε − 2π2), (19)

g
(gap)
eff = 2〈cos(πx))4 cos(qπx)〉. (20)

Note that coefficient (20) is different from zero only for three
values of q, viz., g(gap)

eff (q = 0) = 3/4, g
(gap)
eff (q = 2) = 1/2 and

g
(gap)
eff (q = 4) = 1/8. Together with

m
(gap)
eff ≈ −0.339, (21)

which Eq. (19) yields for ε = 5 (recall this value of the OL
strength is fixed in the present work), the complex conjugate
form of Eq. (18) gives rise to the usual soliton solutions for
�∗, cf. solutions (16) for �. This fact gives the explanation
for the scaling W ∝ 1/A for the broad GS’s as observed in
Fig. 4(b) for q = 2. For stationary solutions, the complex
conjugation implies, as mentioned earlier, the reversal of the
sign of the chemical potential. This explains why the stability
of the broad GS’s obeys the “anti-VK” criterion dµ/dN > 0,
which is simply the reverse of the ordinary negative-slope VK
condition for the stable solutions of the equation for �∗.

This description is also relevant for moving GS’s. In particu-
lar, the comparison of the analytically predicted effective mass
(21) to the empirical dynamical mass (7), drawn for the moving
soliton from numerical data at q = 2, clearly demonstrates the
high accuracy of the averaging approximation for the broad
GS’s, both static and moving ones.

2. Subharmonic commensurability between the nonlinear
and linear lattices

The earlier approximation for GS’s does not produce any
definite result for q = 1 when the period of the NL in
Eq. (1) is twice as large as OL’s period (the subharmonic
resonance between the nonlinear and linear lattices). To derive
an effective envelope equation in this case, we notice that the
substitution of original ansatz (17) in Eq. (1) and making use
of the same effective mass as given by Eq. (19), but without
averaging the nonlinear term, gives rise to the following
equation

i
∂�

∂t
= − 1

2m
(gap)
eff

∂2�

∂x2
+ cos3(πx)|�|2�, (22)

where it is taken into regard that q = 1. This equation suggests
that ansatz (17) should be replaced by the following one, for
stationary solutions

φ(x, t) = e−iµt [�1(x) cos(πx) + �4(x) cos4(πx)], (23)

where both functions �1 and �4 are slowly varying ones. The
substitution of ansatz (23) into Eq. (1) and straightforward
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trigonometric expansions make it possible to eliminate �4 in
favor of �1

�4(x) =
(

µ − π2

2m
(gap)
eff

)−1

|�1(x)|2 �1(x). (24)

The remaining equation for �1(x) is the NLSE with the quintic
self-focusing nonlinear term

µ�1 = − 1

2m
(gap)
eff

∂2�1

∂x2
− 15m

(gap)
eff

8
(
π2 − 2m

(gap)
eff µ

) |�1|4�1. (25)

An obvious soliton solution to Eq. (25) with arbitrary ampli-
tude A is

�1 = A
√

sech (kx), k =
√

5m
(gap)
eff

(
π2 − 2m

(gap)
eff µ

)−1/2
A2,

µ = −
(

8m
(gap)
eff

)−1
k2. (26)

Solution (26) yields the scaling relation W ∝ 1/A2, which
explains the same scaling that was observed at q = 1 for broad
GS’s in Fig. 4(b).

It is necessary to mention that the nonstationary version
of Eq. (25), with µ�1 replaced by i∂�1/∂t , corresponds to
the 1D NLSE with the critical (quintic, in the 1D case) self-
focusing nonlinearity, the solutions of which is tantamount to
those given by Eq. (26), are the so-called “one-dimensional
Townes solitons.” It is well known that the entire family of
such solitons is unstable (see, e.g., Ref. [34]). Nevertheless,
simulations of Eq. (1) demonstrate that the GS’s approximated
by the asymptotic solution (26) form a stable family as long as
the solitons remain broad [see the corresponding stable branch
in Fig. 4(b)]. Thus the asymptotic description of the broad
GS’s by means of Eq. (25) is valid at q = 1 only for static
solutions, while their dynamical behavior does not obey the
straightforward time-dependent version of this equation.

IV. CONCLUSION

We investigate the existence, stability, and mobility of
ordinary solitons and GS’s in the 1D model combining

both nonlinear and linear periodic lattices in the Gross-
Pitaevskii equation for the nearly 1D BEC. The emphasis is
placed on the study of the effects of the commensurability
and incommensurability between the lattices, as well as on
the development of analytical methods—the VA for narrow
ordinary solitons and averaging method for broad solitons of
both types. We demonstrate that, in the case of the direct
commensurability between the lattices (equal periods), the
ordinary solitons are similar to their counterparts in the free
space. In the case of the subharmonic commensurability and
incommensurability the situation is different, featuring the
existence threshold for the solitons and a different scaling
relation between their amplitude and width. Similar scaling
relations are found for GS families, which demonstrate the
bistability in cases different from the direct commensurability.
Ordinary solitons may travel long distances if kicked. Broad
GS’s are mobile as well, although collisions between them are
inelastic.

The analytical approximations demonstrate good accuracy
in appropriate parameter regions. In particular, they correctly
explain different scaling relations for the soliton families at
different commensurability orders. As concerns the stability
of the ordinary solitons, it is accurately predicted by the
VK criterion. Simultaneously, the stability of GS’s obeys
the “anti-VK” criterion, an explanation for which was given
by means of the effective equation produced through the
averaging method. A notable feature of the present model
is that it gives rise to characteristics µ(N ) for the GS’s
that feature turning points (except for the case of the direct
commensurability). Unlike previously studied models with the
constant nonlinearity coefficient, the presence of the turning
points has made it possible to test the anti-VK stability criterion
for the GS families.

The analysis reported in this work may be naturally
extended by studying GS’s in higher finite band gaps; in
particular, a challenging issue is to verify the “anti-VK”
stability criterion in the higher gaps. It may also be interesting
to develop a systematic analysis of the commensurability for
solitons and solitary vortices in the 2D model based on the
combination of both linear and nonlinear lattices.
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[19] J. Belmonte-Beitia, V. M. Pérez-Garcı́a, V. Vekslerchik, and
V. V. Konotop, Phys. Rev. Lett. 100, 164102 (2008).

[20] H. Sakaguchi and B. A. Malomed, Phys. Rev. E 72, 046610
(2005); Phys. Rev. A 75, 063825 (2007); F. W. Ye, Y. V.
Kartashov, B. Hu, and L. Torner, Opt. Exp. 17, 11328 (2009);
Y. V. Kartashov, B. A. Malomed, V. A. Vysloukh, and L. Torner,
Opt. Lett. 34, 770 (2009).
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