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Probing phase separation in Bose-Fermi mixtures by the critical superfluid velocity
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We investigate the effect exerted by spin-polarized fermions on the interaction between superfluid bosons for
a Bose-Fermi mixture residing on an optical lattice, with particular emphasis on the possibility of an induced
phase separation. Using a set of microscopic parameters relevant to a 40K-87Rb mixture, we show how the
phase-separation criterion may be directly probed by means of the critical superfluid velocity of the bosonic
condensate. We report quantitative results for the magnitude of the superfluid velocity and its dependence on
the trap depth, the boson-fermion interaction, and the fermionic filling fraction. All of these parameters can be
controlled experimentally in a well-defined manner. We propose an experimental setup for probing the critical
superfluid velocity.
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I. INTRODUCTION

The scenario of trapped ultracold atoms residing on tunable
optical lattices offers a fertile arena for exploration of funda-
mental physics. One of the most intriguing features of such
systems is the possibility to exert experimental control over the
environment where the atoms are located. This is accomplished
by means of tuning the frequency of the lasers generating the
optical lattice, a feature that may be used to induce phase
transitions in the system. Trapped ultracold atoms host phases
including supersolidity, Mott insulation, and superfluidity, and
have been studied extensively (see Refs. [1–3] and references
therein).

The atoms on the optical lattice may be either bosons,
fermions, or a mixture of both. In particular, it is experimen-
tally possible to generate Bose-Fermi mixtures where the spins
of the fermions are frozen due to the influence of the confining
magnetic trap. Depending on the relative strength of the
intersite hopping and interaction parameters, respectively, the
system enters into a specific quantum phase. A key observation
in this context is that the interaction between the fermions and
the bosons may strongly influence the preferred ground state
of the system.

A convenient way of treating Bose-Fermi mixtures theoret-
ically is to integrate out the fermionic sector, thus obtaining
an effective interacting boson theory. This is possible when
the fermion spin is frozen, leading to a vanishing fermionic
onsite interaction. It turns out that the resulting effective
boson-boson interaction Ub is very sensitive to the presence of
a fermionic density [4]. In fact, the boson-fermion interaction
may render the Bose system thermodynamically unstable and
lead to phase separation provided the effective boson-boson
interaction becomes attractive. Such a phase separation is
certainly interesting in its own right, but also represents a
serious obstacle for observing novel quantum phases arising
out of an interacting mixture of bosons and fermions, since it
narrows the parameter range in which the bosons and fermions
coexist.

From an experimental point of view, the phase-separation
criterion may be probed by means of monitoring the critical
superfluid velocity in the Bose-Fermi mixture. This has pre-
viously been accomplished experimentally in Bose-Einstein
condensates by means of stirring the trapped gas with a

blue-detuned laser [5,6]. The superfluid quantum state then
becomes energetically unstable at a critical magnitude of the
velocity. Previously, several aspects of the critical superfluid
velocity have been investigated in the context of single- and
multicomponent Bose-Einstein condensates [7–15] as well as
in Fermi superfluids [16–18].

However, an analysis of the critical velocity for the bosonic
superfluid phase in a Bose-Fermi mixture is still lacking. Of
particular interest is the question of how the fermion-boson
interaction influences the critical velocity in a Bose-Fermi
mixture. Very recently, it was shown in Ref. [19] how the
fermion-boson interaction can be tuned over a wide range
using a Feshbach resonance, allowing for both an attractive or
repulsive character. This finding opens up new possibilities in
terms of probing the various quantum phases that may arise in
such Bose-Fermi mixtures [20].

In this article, we calculate quantitatively the critical super-
fluid velocity vc in a Bose-Fermi mixture using a set of realistic
experimental parameters pertaining to a 40K-87Rb mixture. We
focus especially on how vc depends on the trap depth, the
boson-fermion interaction, and the fermionic filling fraction,
which all are parameters that can be tuned experimentally in a
controllable fashion. Our results yield numbers that are similar
in magnitude to the critical velocity obtained experimentally
in a Bose-Einstein condensate [5], namely of order O(mm/s).
We also propose an experimental setup for probing the critical
superfluid velocity in a Bose-Fermi mixture.

This work is organized as follows. In Sec. II, we introduce
the theoretical framework and previously obtained results that
we will rely on in our study of the critical superfluid velocity.
In Sec. III, we present our main results, which is a study of
how vc is influenced by the trap depth, the boson-fermion
interaction, and the fermionic chemical potential. We discuss
our results in Sec. IV, suggesting also a possible experimental
setup that may probe the predicted effects, and finally conclude
in Sec. V. Note that to obtain quantitative results for vc, we
will not use units such that h̄ = c = 1, but instead use their
actual values.

II. THEORY

To begin with, we briefly account for the route employed
to obtain our main results. A general Hamiltonian describing
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interacting fermions and bosons reads

H = Hf + Hb + Hbf , (1)

where we have defined

Hf =
∫

drψ†
f (r)[−h̄2∇2/(2mf ) + Vf (r)]ψf (r), (2)

and f → b for Hb. The interaction term is

Hbf =
∫

dr[gbf ψ
†
b (r)ψb(r)ψ†

f (r)ψf (r)

+ gbψ
†
b (r)ψ†

b (r)ψb(r)ψb(r)]. (3)

Above, mα and Vα denote the mass and optical lattice potential
for α = {f, b}, whereas gb and gbf are the boson-boson
and boson-fermion interactions, respectively. It is implicitly
assumed above that we are dealing with a fully spin-polarized
fermion system. By expanding the field operators ψα in Bloch
wave functions {uk, vk} for a periodic potential [21],

ψ
†
f (r) = 1√

N

∑
k

vk(r)c†k,

(4)

ψ
†
b (r) = 1√

N

∑
k

uk(r)b†k,

we arrive at an effective lattice Hamiltonian

H =
∑

k

εk,bb
†
kbk +

∑
k

εk,f c
†
kck

+ Ub

2N

∑
{kj }

b
†
k1

b
†
k2

bk3bk4 + Ubf

N

∑
{kj }

b
†
k1

bk2c
†
k3

ck4 . (5)

This procedure is justified when the optical potential is strong
enough, typically Vα > Erec

α , where

Erec
α = 2h̄2π2/(λ2mα) (6)

is the atom recoil energy and λ is the wavelength of the laser
light. For later purposes, we define the optical trap depth sα =
Vα/Erec

α . To evaluate the critical superfluid velocity explicitly
from the microscopic parameters of an experimental setup,
we make use of the following expression for the hopping and
interaction parameters [20]:

tα = 2
(
Erec

α V 3
α

)1/4

√
πe

√
4Vα/Erec

α

,

(7)

Ub =
√

32π
(
Erec

b V 3
b

)1/4
ab

λ
.

For the fermion-boson interaction, one has

Ubf = 8
√

π
(
Erec

f V 3
b V 3

f

)1/4
(1 + mf /mb)abf

λ
(√

Vb +
√

Vf Erec
b /Erec

f

)3/2
. (8)

It is also useful to introduce the scattering lengths {ab, abf },
which are related to the interaction parameters in Eq. (3) as
follows:

ab = gbmb

4πh̄2 , abf = gbf mf mb

2π (mf + mb)h̄2 . (9)

The onsite potentials in Eqs. (7) and (8) are obtained by relating
them directly to the Wannier functions { (r), (r)} used to

approximate the wave functions in the lowest Bloch band. For
instance, one has [21]

Ubf = gbf

∫
dr| (r)|2| (r)|2, (10)

where we have defined

(r − R) = 1

N

∑
k

uk(r)e−iR·k,

(11)

(r − R) = 1

N

∑
k

vk(r)e−iR·k.

The energy dispersions are dictated by the geometry of the
optical lattice and are proportional to the nearest-neighbor
matrix elements tα , whereas the summation over {kj } should
be taken such that momentum is conserved in the scattering
process.

The Hamiltonian Eq. (5) is now quadratic in the fermion
sector, which allows us to integrate out the fermions in the
partition function by using a functional integral formulation.
After doing so, one identifies an effective boson-boson
interaction Ub of the form [4]

Ub = Ub + U 2
bf χ (T , q),

χ (T , q) = 1

N

∑
k

F (εk,f ) − F (εk+q,f )

εk,f − εk+q,f + iδ
, δ → 0. (12)

Here, χ (T , q) is the Lindhard function describing the
fermionic polarization-bubble response, and F (ε) = [1 +
eβ(ε−µ)]−1, β = (kBT )−1 is the Fermi distribution function.

To proceed analytically, we restrict ourselves to the weak-
coupling regime and employ a Bogoliubov mean-field theory
for superfluidity [22] to arrive at the bosonic quasiparticle
excitation spectrum

q,b =
√

εq,b

{
εq,b + 2nb

[
Ub + U 2

bf χ (T , q)
]}

. (13)

The phase-separation criterion (the point at which the bosonic
excitation energies cease to be real) thus reads

Ub < −U 2
bf lim

q→0
χ (T , q). (14)

Phase separation is triggered by the effective boson-boson
interaction becoming attractive, which leads to a negative
compressibility and an unstable homogeneous superfluid state
[23]. Note that the critical value of Ubf where phase-separation
sets in is independent of the sign of the interaction Ubf . As an
example of how the phase separation may be manifested, it was
shown in Ref. [24] how the bosonic density in a Bose-Fermi
mixture confined in a three-dimensional harmonic trap would
be strongly enhanced in the center of the trap surrounded by a
fermionic density shell in the phase-separated regime.

Denoting the Fermi level by εf , one finds that

χ (T , q → 0) =
∫

dεN (ε)∂εF (ε) = −N (εf ). (15)

The effective boson-boson interaction then takes the form
Ueff = Ub − U 2

bf N (εf ), and remains at a constant positive or
negative value when varying the temperature in the regime
T � Tf , where Tf is the Fermi temperature. In a two-
dimensional (2D) lattice structure, the energy bands feature
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saddle points at distinct wave vectors, thus giving rise to
well-known van Hove singularities. In the vicinity of a van
Hove singularity, the density of states (DOS) is not a smooth
function of the energy and Eq. (15) no longer holds. When the
fermionic chemical potential is tuned to match the van Hove
singularity, the Lindhard function diverges logarithmically as
follows [25]:

χ (T → 0, 0) = −χ0 ln

(
tf

kBT

)
, (16)

in the zero-temperature limit T → 0. Here, χ0 is a prefactor of
dimension inverse energy, whereas is a numerical prefactor.
For a square lattice, one finds χ0 = 1/(2π2tf ) and � 18.08,
whereas, for example, a triangular lattice one would find
χ0 = 3/(4π2tf ) and = 9.04 [25]. It should be noted that
we have considered the static limit iεn → 0 for the Lindhard
function, where εn is a bosonic Matsubara frequency. This
approximation is valid for a scenario where the fermion
response time is much faster than the bosonic equivalent, which
means that one can disregard retardation effects [25].

III. RESULTS

From now on, we will consider a simple square lattice for
concreteness, which is the easiest setup to realize experimen-
tally. In this case, the van Hove singularity is located at ε = 0
and the DOS has a bandwidth of W = 8tf . We find that the
energy dispersion in the long wavelength limit reads

b(T , q → 0) =
√

4nbtba2
[
Ub + U 2

bf χ (T , 0)
]|q|. (17)

The critical superfluid velocity vc is obtained in the standard
way

vc = min

(
b

h̄|q|
)

, (18)

leading to

vc =
√

4nbtba2
[
Ub + U 2

bf χ (T , 0)
]
/h̄. (19)

Some properties of Bose-Fermi mixtures with a fermionic
chemical potential tuned to the van Hove singularity were
discussed in Refs. [4,21]. Here, we will consider a situation
of a nonzero chemical potential, thus moving away from
half-filling. To model a realistic experiment, we will employ
the following parameters for a 40K-87Rb Bose-Fermi mix-
ture [26,27]: TBEC = 100 nK, mf = 6.64 × 10−26 kg, mb =
1.44 × 10−25 kg, ab = 98a0. Here, a0 � 52.9 × 10−3 nm
is the Bohr radius. To ensure equal lattice depths sα ≡ s for
the fermions and bosons, measured relative to their respective
recoil energies Erec

α , we fix λ = 755 nm [19]. In general,
the effective potentials seen by the fermions and bosons can
be tuned by detuning the lattice wavelength relative to the
wavelengths λf (b) of the fermions (bosons) according to [28]

Vb

Vf

= 
f λ4
f �λb


bλ
4
b�λf

, (20)

where 
α is the natural linewidth, α = {f, b}. We set the
zero-temperature condensate fraction to nB(T = 0) = 0.5,
and employ a mean-field approximation for its temperature

0 2 4 6 8

−4

−2

0

2

4

N(ε)/N0

ε/
t f

µ/tf = 0.5

µ/tf = 3.5

FIG. 1. (Color online) Fermionic density of states on a square
lattice, featuring a van Hove singularity at ε = 0. We consider
two filling fractions characterized by µ/tf = 0.5 and µ/tf = 3.5,
respectively. Here, N0 = 1/(2π 2tf ).

dependence nB(T ). We will fix the temperature at T/TBEC =
0.6, which should be feasible to reach experimentally and
still within the regime of validity for a mean-field ap-
proximation [29]. The remaining parameters that must be
specified are the chemical potential and the boson-fermion
scattering length. As shown in Fig. 1, we will consider two
fermion fillings characterized by µ/tf = 0.5 (close to the
van Hove singularity) and µ/tf = 3.5 (close to the band
edge), respectively. The influence of inhomogeneous density
distributions and finite-size effects, leading to a spatially
dependent chemical potential, will be discussed in detail in
Sec. IV. The approximation of constant chemical potential is
here expected to be useful to obtain experimentally relevant
results, as we shall argue later. The boson-fermion scattering
length abf is tunable, as shown recently in Ref. [19]. By using
a Feshbach resonance, scattering lengths in a range ±800a0

were reached. We shall therefore consider both positive and
negative scattering lengths, reaching up to several hundreds
of a0. Finally, it should be noted that we here restrict our
attention to values of the trap depth s < 8 in light of a recent
experiment [30] where a 2D Bose gas was realized with a Mott
insulating phase above s � 8.

To evaluate the critical superfluid velocity, we employ a
numerical solution of the expression:

vc =
[

4nbtba
2

(
Ub − β

8π2tf
U 2

bf

∫ 4tf

−4tf

∫ π/2

0

× dε dγ√
[cos2 γ + (ε sin γ /4tf )2] cosh[β(ε − µ)]

)]1/2

.

(21)

As seen from Eq. (21), it becomes necessary to account
properly for the finite temperature T to describe the physical
properties of Bose-Fermi mixtures, unlike the purely bosonic
case.

In what follows, we will investigate how vc depends on the
fermion-boson interaction parameter abf and the trap depth s,
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FIG. 2. (Color online) Plot of the critical superfluid velocity vc

for the bosons and its dependence on the trap depth for several values
of the boson-fermion scattering length a = abf . Here, we have set (a)
µ/tf = 0.5 and (b) µ/tf = 3.5. All other parameter values are given
as follows: TBEC = 100 nK, mf = 6.64 × 10−26 kg, mb = 1.44 ×
10−25 kg, ab = 98a0, λ = 755 nm, and T/TBEC = 0.6.

using the set of experimentally realistic parameters described
above. Consider first its dependence on the trap depth s, as
shown in Fig. 2. One of the main features is that vc exhibits
a robustness toward the trap depth for relatively low values
of abf . For high values of s, one would expect a transition
into a Mott insulating state for commensurate fillings. When
the interaction abf becomes strong compared to the intrinsic
bosonic repulsion ab, any increase in trap depth s is much
more efficient in suppressing the critical velocity. We have
distinguished between two fermionic fillings corresponding
to µ/tf = 0.5 and µ/tf = 3.5 in Fig. 2 to compare the cases
with a chemical potential close to the van Hove singularity and
close to the band edge, respectively. As seen, the difference
is minor except at large values of the interaction abf , where
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FIG. 3. (Color online) Plot of the critical superfluid velocity vc

for the bosons and its dependence on the fermion-boson interaction
for several values of the trap depth s. Here, we have set (a) µ/tf = 0.5
and (b) µ/tf = 3.5. All other parameter values are given as follows:
TBEC = 100 nK, mf = 6.64 × 10−26 kg, mb = 1.44 × 10−25 kg, ab =
98a0, λ = 755 nm, and T/TBEC = 0.6.

vc is substantially reduced with ∼50% for a given trap depth,
in addition to a much smaller critical trap depth s where the
superfluid velocity vanishes.

Next, we consider how the critical superfluid velocity vc is
influenced by the fermion-boson interaction abf . The result
is shown in Fig. 3. Since the critical velocity in Eq. (21)
depends on U 2

bf , the sign of the interaction is irrelevant for
the magnitude of vc. Upon increasing the magnitude of the
interaction abf , the superfluid velocity is strongly reduced and
eventually vanishes, indicating a phase-separated regime. This
may be understood physically by noting that the contribution
from the Lindhard function is negative in Eq. (21), meaning
that the fermionic contribution to the induced boson-boson
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FIG. 4. (Color online) Plot of the critical superfluid velocity as
a function of the intrinsic boson-boson scattering length ab and
the boson-fermion interaction abf . We have set µ/tf = 0.5 and
considered a trap depth s = 5. All other parameter values are given
as follows: TBEC = 100 nK, mf = 6.64 × 10−26 kg, mb = 1.44 ×
10−25 kg, λ = 755 nm, and T/TBEC = 0.6.

interaction is attractive. As the Bose-condensed phase is
unstable toward attractive interactions, the critical velocity
vanishes when the fermionic contribution eventually overtakes
the intrinsic bosonic repulsion. In Ref. [19], it was very
recently experimentally demonstrated how the fermion-boson
interaction abf could be tuned in a well-defined manner over
a wide range ±800a0 by exploiting a Feshbach resonance.
It should therefore be experimentally viable to monitor the
critical velocity vc as a function of the interaction abf by using
such techniques.

Finally, the mutual dependence on the intrinsic boson-boson
interaction and the fermion-boson interaction is plotted in
Fig. 4, setting µ/tf = 0.5 and s = 5. While the critical
velocity is suppressed with increasing abf , it is enhanced by
increasing ab. The reason for this is that the effective boson-
boson interaction becomes more repulsive, in favor of the
phase-coexistent state. It should nevertheless be emphasized
that above a critical magnitude for the effective interaction
Ub, a phase transition from superfluid to Mott insulator
takes place. As shown in Ref. [22], the present mean-field
Bogoliubov approach does not capture this transition as it treats
the interaction only in a weak-coupling regime. Therefore,
the results reported here are obviously only valid inside the
superfluid regime.

IV. DISCUSSION

The experimental detection of a critical superfluid velocity
requires measurements at temperatures well below TBEC, thus
in the nano-Kelvin regime. One possible route to probing the
critical velocity was described in Ref. [5]. There, dissipation
in a Bose-Einstein condensed gas was monitored by means
of moving a laser beam through the condensate at different
velocities (see Fig. 5). The laser effectively plays the role of a
massive macroscopic object, which creates a moving boundary

FIG. 5. (Color online) Proposed experimental setup for probing
the critical superfluid velocity in a Bose-Fermi mixture. A laser
beam serves as a macroscopic object flowing through the condensate,
thereby creating a moving boundary condition for the quasiparticle
excitations.

condition. The main finding in Ref. [5] was that strong heating
was observed only above a critical velocity, and the laser was
enabled to move back and forth through the condensate at
a constant velocity by applying a triangular waveform to an
acousto-optic deflector.

In the treatment of the critical superfluid velocity, it is im-
plicitly assumed that the bosons are in the superfluid phase for
the relevant parameter regime. To verify this, a full numerical
self-consistent solution is required. Our main purpose here
is to report on the magnitude of the critical velocity and its
dependence on tunable parameters, using a set of realistic
parameters employed in real experiments [19,26,29] in which
the bosons indeed were in the condensed state, which should
justify our assumption. We have restricted our attention to trap
depths satisfying s < 8 [30], as should be reasonable for the
superfluid regime. Finally, we note that the results we have
obtained quantitatively agree with previous measurements
for the critical velocity in Bose-Einstein condensates. In
particular, vc ∼ 1.6 mm/s was reported in Ref. [5].

In our treatment of the critical velocity, we have employed
a mean-field treatment, which thus neglects phase-fluctuations
of the superfluid order parameter near the phase separation
point. In this sense, the magnitude of the critical velocity
estimated by our mean-field theory should be somewhat larger
than the real critical velocity. Nevertheless, to obtain analytical
results and understand the role of the different interactions
with respect to the critical velocity, we have assumed in
our manuscript that the mean-field theory gives a reasonable
quantitative measure for vc. It should then be noted that critical
fluctuations near the phase-separation point, assuming thus a
second-order phase transition, could render the actual vc to
be lower than the value estimated here. We also note that
in the presence of an inhomogeneous environment such as a
confinement trap of the condensate setup by utilizing magnetic
fields, the local chemical potential for the fermions and bosons
may be expected to vary locally depending on the position.
From an experimental point of view, measurements on the
condensate are often performed after the confinement trap has
been switched off such that the condensate will expand and the
chemical potential should over time relax to a slower spatial
variation. Granted, the chemical potential will most likely still
feature some local variations and one might, for instance,
expect a critical velocity that depends on the radial distance
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from the trap center. However, as our results show, the specific
value of the chemical potential does not seem to have a large
impact on the results, whereas, for example, the boson-fermion
interaction strongly modifies the critical velocity. It therefore
seems reasonable to expect that local variations in the chemical
potential should not drastically change our results. Moreover,
one may in any case envision a situation where the critical
superfluid velocity is measured in a region where the chemical
potential is largely homogeneous. In fact, a recent study [31]
used large-scale Monte Carlo simulations to investigate the
influence of density inhomogeneities and finite size effects
of a trapped Bose-Einstein condensate. It was concluded in
Ref. [31] that predictions based on a uniform density could
have robust finite-size realizations in actual experimental,
inhomogeneous trapped systems. In other words, although
a trapping potential effectively models a spatially dependent
chemical potential, leading to a density that typically is high in
the center of the trap, the approximation of a uniform chemical
potential turns out to be a reasonable approximation as verified
directly in Ref. [31].

V. SUMMARY

In conclusion, we have studied how the fermion-boson
interaction for a Bose-Fermi mixture residing on an optical

lattice modifies the effective interaction between the superfluid
bosons. In particular, we have investigated how the phase-
separation criteria is manifested through the critical superfluid
velocity. Employing a set of microscopic parameters relevant
to a 40K-87Rb mixture [19,26,29], we report quantitative
results for the magnitude of the superfluid velocity and its
dependence on the trap depth, the boson-fermion interaction,
and the fermionic filling fraction. All of these parameters can
be tuned experimentally by means of the laser intensity and
by exploiting Feshbach resonances. We find that the overall
tendency of the boson-fermion interaction is to suppress
vc, and our quantitative results are of similar magnitude
as previous measurements of the critical velocity in Bose-
Einstein condensates, where vc � 1.6 mm/s was estimated
[5]. We have proposed an experimental setup for probing
the critical superfluid velocity, which may serve as a direct
tool to monitor a phase-separation scenario in a Bose-Fermi
mixture.

ACKNOWLEDGMENTS

J. Linder thanks I. B. Sperstad for helpful comments. This
work was supported by the Research Council of Norway under
Grant Nos. 158518/431 and 158547/431 (NANOMAT), and
Grant No. 167498/V30 (STORFORSK).

[1] O. Morsch and M. Oberthaler, Rev. Mod. Phys. 78, 179
(2006).

[2] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[3] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys.
80, 1215 (2008).

[4] H. P. Büchler and G. Blatter, Phys. Rev. Lett. 91, 130404
(2003).
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