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Matter-wave bistability in coupled atom-molecule quantum gases
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We study the matter-wave bistability in coupled atom-molecule quantum gases, in which heteronuclear
molecules are created via an interspecies Feshbach resonance involving either two-species Bose or two-species
Fermi atoms at zero temperature. We show that the resonant two-channel Bose model is equivalent to the
nondegenerate parametric down-conversion in quantum optics, while the corresponding Fermi model can be
mapped to a quantum optics model that describes a single-mode laser field interacting with an ensemble of
inhomogeneously broadened two-level atoms. Using these analogies and the fact that both models are subject to
the Kerr nonlinearity due to the two-body s-wave collisions, we show that under proper conditions, the population
in the molecular state in both models can be made to change with the Feshbach detuning in a bistable fashion.
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I. INTRODUCTION

The ability to cool and trap neutral atoms down to quantum
degenerate regime has created a host of new and exciting
problems that are increasingly interdisciplinary, bridging
in particular atomic, molecular, and optical physics and
condensed-matter physics. The rich knowledge and experience
accumulated over the past several decades in these fields
have dramatically accelerated the progress of ultracold atomic
physics. An example that serves to illustrate how the inter-
disciplinary fields learn and benefit from each other is the
phenomenon of atomic pairing where a bosoinc molecule is
coupled to two bosonic or fermionic constituent atoms via
Feshbach resonance or photoassociation. So far this is the
only viable approach to creating ultracold molecules. It is also
an ideal testing ground for studying coupled atom-molecule
condensates and the BCS–Bose-Einstein condensate (BEC)
crossover [1–3]. The latter is thought to be underlying the
mechanism of high-temperature superconductors and has been
extensively studied in the realm of condensed-matter physics.
In addition, the coupled atom-molecule systems have deep
quantum optical analogies [4,5]: bosoinc molecules coupled
to bosonic atoms (which we will refer to as the bosonic
model in this article) is the matter-wave analog of parametric
coupling of photons, which has important applications in
generating nonclassical light fields and, more recently, in
quantum information science; the system of bosonic molecules
coupled to fermionic atoms (which we will refer to as the
fermionic model) can be mapped to the Dicke model, where
a light field interacts with an ensemble of two-level atoms, a
model having fundamental importance in the field of quantum
optics.

In this work, we will further explore these quantum optical
analogies of the atom-molecule system and focus on the
important effects of binary collisional interactions between
atoms which are largely ignored in previous studies [4,5].
We show that the atom-atom interaction introduces extra
nonlinear terms which, under certain conditions, give rise to
matter-wave bistability in both bosonic and fermionic models.
Hence, we may establish the connection between the coupled

atom-molecule quantum gases and the nonlinear bistable
systems [6] that have been extensively studied in the 1980s
in the context of nonlinear optics, due both to its fundamental
interest and to its many practical applications in fast optical
switches, optical memory, laser pulse shaping, etc.

II. BOSONIC MODEL

In what we call the bosonic model, a molecule associated
with annihilation operator âm is coupled to two nonidentical
atoms labeled as |↑〉 and |↓〉 with corresponding annihilation
operators â↑ and â↓, respectively. Here we consider two
types of atoms in order to make direct comparisons with the
fermionic model to be treated in the next section, for which
only unlike fermionic atoms can pair with each other and form
a bosonic molecule. Futhermore, in this work we only consider
zero-temperature homogeneous case so that all the bosons are
condensed into zero center-of-mass momentum states.

The second quantized Hamiltonian reads

Ĥ = δâ†
mâm + g(â†

mâ↑â↓ + H.c.) +
∑
i,j

χij â
†
i â

†
j âj âi , (1)

where the detuning δ represents the energy difference between
the molecular and atomic levels which can be tuned by external
field, g is the atom-molecule coupling strength, and χij = χji

is the s-wave collisional strength between modes i and j .
This system has been studied in Ref. [7]. For completeness
and better comparison with the fermionic model, we briefly
state some of the main results relevant to the focus of this
work—matter-wave bistability—and direct readers to Ref. [7]
for more details.

For our purpose, we take the standard mean-field ap-
proximation and replace operators âj with c-numbers aj =√

Nje
iϕj . The mean-field Hamiltonian takes the form

H = 2�(y2 − y) + 2νy + (1 − 2y)
√

2y cos ϕ, (2)

where

y = 0.5[1 − (N↑ + N↓)/N] = Nm/N, ϕ = ϕ↑ + ϕ↓ − ϕm
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are a pair of conjugate variables representing the molecular
population and the relative phase, respectively. Other quanti-
ties are defined as

G = g
√

2N,

� = N (χ↑↑ + χ↓↓ + χmm + 2χ↑↓ − 2χm↑ − 2χm↓)/G,

ν = [δ + χ↑↑ + χ↓↓ + (N − 1)χmm − Nχm↑ − Nχm↓]/G,

with N ≡ N↑ + N↓ + 2Nm a constant of motion representing
the total number of atoms, and we have assumed that the
number of atoms in states |↑〉 and |↓〉 are equal, that is, N↑ =
N↓.

The dynamical equations governing ϕ and y are

ẏ = ∂H

∂ϕ
= −(1 − 2y)

√
2y sin ϕ,

ϕ̇ = −∂H

∂y
= −2�(2y − 1) − 2ν −

√
2y

(
1

2y
− 3

)
cos ϕ.

At equilibrium, we have ẏ = ϕ̇ = 0. The first of these
equations shows that ϕ = π or 0. We will focus on the
stationary states with ϕ = π , which has lower energies than
the ones with ϕ = 0.

A. Quantum optical analogy

It is quite clear from the form of the second-quantized
Hamiltonian in Eq. (1) that without the collisional terms our
model will reduce to the trilinear Hamiltonian describing the
nondegenerate parametric down-conversion in quantum optics
[8,9]. In this analogy, the molecular mode plays the role of the
pump photon, where the two atomic modes are the signal
and idler photons, respectively. The collisional terms would
correspond to the Kerr-type cubic nonlinearity which will be
present in the optical system if the light fields propagate in
some nonlinear medium [10].

B. Bistability

In the absence of the collisions or Kerr nonlinearity (i.e.,
� = 0), the system does not exhibit bistability. This can be
seen by studying the properties of the mean-field Hamiltonian
H in Eq. (2), which can be simplified as (taking ϕ = π )

H = 2νy − (1 − 2y)
√

2y. (3)

The stationary solution of the equation

∂H

∂y
= 2ν + 3

√
2y − 1/

√
2y = 0, (4)

with 0 < y < 0.5, corresponds to a mixed atom-molecule state
in which none of the (atomic or molecular) components is
zero so that the relative phase ϕ is well defined. However, this
system is also known to support a pure molecular (atomic) state
with y = 0.5 (=0) [11], as one can easily verify directly from
the Hamiltonian in Eq. (1). Thus, with these considerations,
we find, for a given detuning ν, a unique stationary state in the
form of

y0(ν) =
{

0.5, ν < −1
1

18 (−ν + √
ν2 + 3)2, ν � −1.

(5)

Equation (5) shows that the system goes through a second-
order phase transition at the critical detuing ν = −1, which
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FIG. 1. (Color online) (a) For given � and ν, the thick solid line
represents y0(ν ′) in Eq. (8) and the thin dashed straight line represents
Eq. (7). The intersections are the stationary solutions. Here we take
� = −5 and ν = −0.4�. For this particular value of ν, there are
three stationary solutions. (b) Steady-state molecular population y0

as a function of detuning ν for � = −5. The state represented by the
red dashed line is dynamically unstable.

separates a pure molecular state for ν < −1 from a mixture of
atom-molecule state for ν > −1.

For � �= 0, using Eq. (2), the stationary condition is given
by

∂H

∂y
= 2ν ′ + 3

√
2y − 1/

√
2y = 0, (6)

where we have defined

ν ′ = ν + �(2y − 1). (7)

Note that Eqs. (4) and (6) have the same form. In other words,
we can express the effect of collisions as a nonlinear phase shift
for molecules that modifies the detuning ν. Consequently, the
stationary solution for � �= 0 should have the same form as in
Eq. (5), only with ν replaced by ν ′:

y0(ν ′) =
{

0.5, ν ′ < −1
1

18 (−ν ′ + √
ν ′2 + 3)2, ν ′ � −1.

(8)

In Eq. (8), y0 is an implicit function of the detuning ν. To find
the explicit dependence of y0 on ν, we can use the graphic
method as illustrated in Fig. 1(a). For the example given,
we obtain three stationary states. The explicit dependence
of y0 on ν is shown in Fig. 1(b). In a certain region, there
are three stationary solutions. Further analysis shows that
the middle solution is dynamically unstable and the other two
are stable solutions [7]. Such a behavior is typical in bistable
systems [6].

Figure 1 also shows that, in order to have multiple stationary
solutions, the slope of the straight line (given by 1/2�) must
be negative and cannot be too steep. More specifically, the
slope of the straight line has to be larger than the slope of the
curve at ν = −1, and this leads to the condition

� < −1, (9)

in order for the system to exhibit bistability.

III. FERMIONIC MODEL

In the fermionic model, we denote âk,σ as the annihilation
operator for an atom with spin σ (=↑ , ↓), momentum h̄k,
and energy εk = h̄2k2/(2m), and as before denote âm as the
annihilation operator for a molecule in state |m〉 with zero
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momentum. The second quantized Hamiltonian reads

Ĥ =
∑
k,σ

εkâ
†
kσ âkσ + U

∑
k,k′,q

â
†
k↑â

†
−k+q↓â−k′+q↓âk′↑

+ νâ†
mâm + g√

V

∑
k

(â†
mâ−k↓âk↑ + H.c.), (10)

where V is the quantization volume. Hamiltonian (10) has
the form of the two-channel model of BCS-BEC crossover
where only the condensed molecule part is considered [3,12].
Following the Hartree-Fock-Bogoliubov mean-field approach
[13] by dividing the two-body collision into a part related to
the BCS gap potential 
 = Up, where

p =
∑

k

〈â−k↓âk↑〉/V,

and a part related to the Hartree potential

Vh = U
∑
kσ

〈â†
kσ âkσ 〉/(2V ), (11)

where we again assume equal population in |↑〉 and |↓〉
atomic states, i.e., 〈â†

k↑âk↑〉 = 〈â†
k↓âk↓〉, we may express the

Hamiltonian as

Ĥ =
∑
k,σ

(εk + Vh)â†
kσ âkσ + νâ†

mâm

+
∑

k

[(Up + gâm/
√

V )â†
k↑â

†
−k↓ + H.c.]. (12)

Defining N̂ = 2â
†
mâm + ∑

k,σ â
†
kσ âkσ as the number operator,

we may rewrite the term proportional to Vh in (12) as∑
k,σ

Vhâ
†
kσ âkσ = Vh(N̂ − 2â†

mâm)

= VhN̂ − (Un − 2U 〈â†
mâm〉/V )â†

mâm, (13)

where n = 〈N̂〉/V is the constant total atom number density.
In our derivation, Vh arises from the two-body atom-atom
collision. In general, additional terms representing atom-
molecule and molecule-molecule collisions are also present.
These additional terms will modify the coefficient U in the
definition of Vh [Eq. (11)], which is the counterpart of � in the
bosonic model, but the general form of Eq. (13) will remain
valid [14]. In the following, we will refer to this term as the
collisional term. Through Eq. (13), we have expressed the
effect of the two-body collisions as a nonlinear energy shift of
the molecules (along with an energy bias VhN , where we have
replaced the number operator by its expectation value as in
the stardard mean-field treatment), in complete analogy with
the bosonic model. We remark that in the usual one-channel
model of the mean-field BCS theory valid when the molecular
population is negligible, the collisional term just represents an
unimportant constant energy shift.

As usual, âkσ (t) and âm(t) obey the Heisenberg equations of
motion based on Hamiltonian (12). By replacing Bose operator
âm with the related c-number c = 〈b̂〉/√V and Fermi operators
âkσ (t) with the familiar uk(t) and vk(t) parameters through
the Bogoliubov transformation âk↑ = u∗

kα̂k↑ + vkα̂
†
−k↓ and

â
†
−k↓ = −v∗

k α̂k↑ + ukα̂
†
−k↓, where α̂kσ are the Fermi quasi-

particle operators, we arrive at the following set of mean-field

equations of motion:

ih̄ċ = νec + gp, (14a)

ih̄u̇k = −εkuk + 
evk, (14b)

ih̄v̇k = 
euk + εkvk, (14c)

where p = ∑
k u∗

kvk/V , 
e = gc + Up, and

νe = ν − Un + 2U |c|2 (15)

is the effective detuning which contains a Kerr nonlinear term
2U |c|2 whose origin can be traced to the two-body collisional
shift. This set of equations describes the dynamics at zero
temperature where the state of the system can be described as
the quasiparticle vacuum.

A. Quantum optical analog

In several previous studies where the collisional term is
neglected, it has been pointed out that the fermionic model
can be mapped to the Dicke model in quantum optics [4,15],
as schematically shown in Fig. 2 (see later in this article for
details). In fact, this model was recently shown to display
collective dynamics similar to photon echo and solitonlike
oscillations in transient collective coherent optics [16]. Such
a connection can be traced to Anderson’s spin analogy [17]
for the BCS problem.

To show what is the quantum optical analogy of the
collisional term, let us rewrite Eqs. (14) in a form more
familiar in cavity optics. To this end, we first introduce a set
of new variables,

Pk = 2u∗
kvk, Dk = |uk|2 − |vk|2 , EL = 2i
e,

and recast Eqs. (14b) and (14c) as

h̄Ṗk = −i2εkPk − ELDk, (16a)

h̄Ḋk = (E∗
LPk + ELP ∗

k )/2. (16b)

Interpreting Pk and Dk as the microscopic polarization and
population inversion, respectively, Eqs. (16) then become the
optical Bloch equation that describes the interaction between a
local electromagnetic field EL and a fictitious two-level atom,
characterized by a transition energy 2εk [18]. This analogy is

c

g
m›|

›| ›|

FIG. 2. (Color online) Mapping of the two-channel resonant
Fermi superfluid model to the Dicke model. The bosonic molecules
and the fermionic atoms in the former are mapped to the cavity laser
field and an ensemble of two-level atoms in the latter, respectively.
See text for details.
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consistent with the fact that there exists a one-to-one mapping
between pairs of fermion operators and Pauli matrices when
the BCS pairing mechanism is taken into account [17].

In this optical analogy, the local electric field EL = E +
Ei contains two contributions because of 
e = gc + Up.
The first of these (E = i2gc) is equivalent to an average
macroscopic field, whose dynamics is described by Eq. (14a),
which can now be interpreted as the Maxwell’s equation for the
cavity field E with cavity detuning νe, driven by a macroscopic
polarization density p = ∑

k Pk/(2V ) of an inhomogeneously
broadened medium (see Fig. 2). The second part Ei = i2Up

may be regarded as the internal field at the atom due to the
collective dipole polarization of the nearby two-level atoms in
the ensemble. As such,EL = E + Ei here bears a direct analogy
to the Lorentz-Lorenz relation in optics [19]. Note that had the
collisional term been neglected (i.e., U = 0), there would have
been no internal field contribution, nor would there have been
the Kerr nonlinearity in the equation for the bosonic mode.
For U �= 0, both of these terms will be present. Under such
a circumstance, Eqs. (14a) and (16) represent the generalized
optical-Bloch equations in which the Lorentz-Lorenz relation
is explicitly incorporated [20] and hence can lead to interesting
nonlinear phenomena just as they do in optical systems.

B. Bistability

Having established this analogy, we now look for the
steady-state solution from Eqs. (14a) and (16). As is well
known, the operation frequency of a laser field is not known
a priori but is established through the so-called mode pulling—
the dynamical competition between atomic and cavity reso-
nances. A similar argument holds for the molecular field c.
For this reason, we adopt the following steady-state ansatz:

c → ce−2iµt/h̄, Pk → Pke
−2iµt/h̄, Dk → Dk,

where the same symbols are used for both dynamical and
steady-state variables for notational simplicity. The molecular
chemical potential, 2µ, is just the corresponding lasing
frequency in the cavity optics model. From the steady-state
equations obtained by inserting this stationary ansatz into
Eqs. (14a) and (16), we can easily find that there always exists
(a) a trivial solution or a “nonlasing” state with 
e = 0 or
equivalently c = 0, which corresponds to the nonsuperfluid

normal Fermi sea; and (b) a nontrivial solution with its µ, 
e,
and c determinedself-consistently from the gap equation

1

U − g2/(νe − 2µ)
= − 1

2V

∑
k

1

Ek

, (17)

with Ek = √
(εk − µ)2 + 
2

e , the number equation

2|c|2 + 1

V

∑
k

(
1 − εk − µ

Ek

)
= n, (18)

and an auxiliary relation

|g
e| = |c(νe − 2µ)[U − g2/(νe − 2µ)]|. (19)

The integral in the gap equation (17), under the assumption
of contact interaction, is known to be ultraviolet divergent.
To eliminate this problem, we renormalize the interaction
strength U and g, as well as the detuning ν in (17), while U in
the collisional term is replaced by the background interaction
strength U0 [21,22].

Note that there exists, in the single-mode inhomogeneously
broadened laser theory [23], a similar set of steady-state
integral equations, which, due to lasers being open systems,
are obtained under different considerations. For example, the
requirement that the cavity loss balance the saturated gain
leads to the “gap” equation, whose primary role is to limit the
laser intensity; while the phase-matching condition translates
into the “number” equation, whose main responsibility is to
assign the amount of mode pulling of the laser field relative to
the cavity resonance.

An alternative way to derive Eqs. (17)–(19) is from
the energy density. The zero-temperature energy density
f (
e, c, µ) ≡ 〈Ĥ 〉/V can be calculated using Hamiltonian
(12) and the Bogoliubov transformation as [22]

f =
∑

k

εk−µ−Ek

V
− (
e−gc)2

U
+ (νe−2µ)|c|2 + µn. (20)

The extremum conditions ∂f/∂
e = ∂f/∂c = 0 lead to
Eqs. (17)–(19), respectively, while the condition ∂f/∂µ = 0
results in the number equation (18).

Figure 3 illustrates the energy density in the |c|2-
e plane
for different detuning ν. For any given pair of (c, 
e), µ is

e

c 2

(b)
x

x

+

c 2

(a)

x

FIG. 3. (Color online) Free energy density f as a function of 
e and |c|2 at ν = 0.2 (a) and ν = 0.02 (b). Extremum points are indicated
with “x” (minimum) and “+” (saddle point). f , 
e, and ν are all in units of EF = (3π 2n)2/3/(2m), the Fermi energy of the noninteraction
system. In all the examples shown in this article, the physical parameters corresponding to g0 and U0 are 1.2 EF /k

3/2
F and −60.7EF /k3

F ,
respectively.
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(a) (b)

FIG. 4. Molecular population |c|2 as a function of detuning. The vertical line in (b) indicates the critical point of a first-order phase transition.
In (b), the collisional term is included, while it is neglected in (a).

calculated self-consistently using the number equation (18).
Typically, f has only one extremum, which is a minimum
point, as shown in Fig. 3(a). However, in the regime ν ∈
(−0.08, 0.13)EF , f possesses three extrema: two of them are
local minima and the third a saddle point. An example with
ν = 0.02 is shown in Fig. 3(b).

To gain more insights into the bistable behavior, we
may carry out an analogous analysis as in Sec. II B. In
the absence of the collisional term, steady-state molecular
population |c|2 is a smooth monotonically decreasing function
of ν and the system does not exhibit bistability: As ν

increases, molecules decompose into atoms. This is shown
in Fig. 4(a). When collisional term is included, the relevant
equations of motion maintain the same forms if we substitute
ν with

ν ′ = ν + 2U0|c|2. (21)

Hence, the solution |c|2 as a function of ν ′ is represented by
the same curve as in Fig. 4(a). To find |c|2 as a function of
ν, we need to find the intersections between this curve and
the straight line representing Eq. (21). In direct analogy to
the graphic method in Fig. 1, for U0 sufficiently large and
negative, these two curves have three intersections and the
system exhibits bistability. One example is shown in Fig.
4(b). The vertical line in Fig. 4(b) indicates the critical point
of a first-order phase transition: across this line, the ground
state jumps from the upper branch to the lower one. For the
parameters used, this occurs at νc = −0.01EF .

To check the stability of these steady states, we have
solved the dynamical equations (14) using the slightly per-
turbed steady-state solution as the initial condition. From the
dynamical evolution of the system, one can see that, just
like in the bosonic model, the states in the upper and lower
branches are dynamically stable: when slightly perturbed,
they exhibit damped oscillations around their equilibrium
values. These oscillations can be further understood from the
excitation spectrum of the corresponding steady state. This
can be done using a linear stability analysis, which is also
the standard tool for studying laser instabilities [23,24]. The
spectrum is found to contain a discrete part which determines
the oscillation frequencies, and a continuous part which
contributes to the damping of these oscillations at a much
longer time scale [25]. By contrast, the states in the middle
branch are unstable as small perturbations will lead to large
departures.

C. Dynamics

The bistability has important ramifications in atom-
molecule conversion dynamics. When the collisional term
is unimportant and negligible, one can easily create bosonic
molecules from fermionic atoms by adiabatically sweeping
the Feshbach detuning across the resonance. As long as the
sweeping speed is sufficiently slow, the molecular population
will follow the steady-state curve as shown in Fig. 4(a).
By contrast, when bistability induced by the collisional term
occurs, the adiabaticity condition will necessarily break down.
Figure 5 displays the dynamical evolution of the bosonic
population when the detuning is swept starting either from
a large positive or a large negative value. We can see that
the steady-state curve can be followed up to the point where
the stable states of the upper and lower branches and the
unstable states of the middle branch join each other (indicated
by ν1 and ν2 in Fig. 5), where the population suddenly jumps
between the two stable branches. The subsequent population
dynamics depends not only on the steady-state structure but
also the whole energy landscape as well. In the absence of
dissipation as in our model, the system may not completely
reach the steady state. Note that the critical detuning νc for the
first-order phase transition as indicated by the vertical line in
Fig. 4(b) lies between ν1 and ν2. The dynamical population
curve thus exhibits hysteresis in the vicinity of the first-order
phase transition. In this way, by tuning the detuning in the
vicinity of ν1 or ν2, an atom-molecule switch can be realized.
Similar behavior is also found in the bosonic model.

ν

(a)

(b)

|c|2

ν1

ν2

FIG. 5. (Color online) Dynamics of atom-molecule conversion as
illustrated by the molecular population when the detuning ν is slowly
swept. Curve (a) is obtained by sweeping ν from positive to negative
values, while curve (b) is obtained by sweeping ν in the opposite
direction. The dotted line is the steady-state molecular population,
the same as in Fig. 4(b).
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IV. CONCLUSION

In conclusion, we have studied the matter-wave bistability
in coupled atom-molecule quantum gases in both the bosonic
and the fermionic models. These two cases can be mapped to
two very different quantum optical models: parametric down-
conversion in the former and the generalized Dicke model
in the latter. Nevertheless, one important common feature for
both cases is that bistability can be induced by collisional
interactions which give rise to Kerr nonlinearity. We hope that

our work will motivate experimental efforts in demonstrating
the matter-wave bistability we predicted here.
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