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Localization by bichromatic potentials versus Anderson localization
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The one-dimensional propagation of waves in a bichromatic potential may be modeled by the Aubry-André
Hamiltonian. This, in turn, presents a localization transition that has been observed in recent experiments using
ultracold atoms or light. It is shown here that, in contrast to the Anderson model, the localization mechanism has
a classical origin, namely it is not due to a quantum suppression of a classically allowed transport process, but
rather is produced by a trapping by the potential. Explicit comparisons with the Anderson model as well as with
experiments are presented.

DOI: 10.1103/PhysRevA.81.013614 PACS number(s): 67.85.−d, 72.15.Rn, 03.65.Sq

I. INTRODUCTION

It is by now well established that disorder may lead to the ab-
sence of diffusion in the propagation of linear waves (Anderson
localization). The phenomenology of Anderson localization
strongly depends on dimensionality. In one-dimensional (1D)
and uncorrelated disorders it has been shown that all wave
functions are exponentially localized. This implies that the
transmission of a wave packet incident on a disordered region
of length L decreases as exp(−L/Lloc), where Lloc � L is
the localization length. This phenomenon is valid for arbitrary
energies, even when the energy E of the incident wave packet
is much higher than the highest barrier of the disordered
potential. In this respect, Anderson localization is a strongly
nonclassical phenomenon.

Another class of interesting potentials are quasiperiodic
potentials. They arise, typically, from the superposition of
two periodic lattices with incommensurate periods. Part of
their interest is that they provide an example of intermediate
potentials between ordered (e.g., periodic) and disordered
potentials: The system has neither translational symmetry
nor true disorder. In particular, the model we consider here
(the Aubry-André Hamiltonian) is known to present a local-
ization transition as a parameter varies; thus wave functions
change from extended to exponentially localized [1].

In recent experiments both random [2] and quasiperiodic
potentials [3] were used to directly observe the localization of
matter waves. The expansion of noninteracting Bose-Einstein
condensates through one-dimensional quasiperiodic potentials
was shown to clearly display a delocalized-localized crossover
(with a shift, however, with respect to the predicted critical
value of the parameter) [3]. A similar transition was recently
observed with light propagating in quasiperiodic photonic
lattices [4]. Our purpose here is to provide a semiclassical
analysis of the experiments and, more generally, of the
Aubry-André Hamiltonian, which allows for a simple and
lucid picture of the underlying physical phenomena (for related
semiclassical analysis see, e.g., Refs. [5–10]). In particular,
and in contrast to what is quite often claimed, the analysis
shows that there are deep fundamental differences between
the Anderson localization and the localization in quasiperiodic
potentials, although both present exponential localization of
the wave functions.

As already pointed out, Anderson localization is a strongly
nonclassical phenomenon where a quantum particle of energy

E incident on a 1D disordered region of length L → ∞ is
reflected with probability one even though its incident energy
is much higher than the maximum height of the disordered
potential. Thus, in Anderson localization a quantum particle
is perfectly reflected, whereas its classical counterpart is
perfectly transmitted. In this sense, Anderson localization
is a purely wave-mechanical effect. In contrast, as shown
in the following, localization in quasiperiodic potentials is
different. It is a purely classical effect due to the trapping of the
particle by the potential barriers. It is not due to a destructive
interference process. Quantum mechanically, there is thus
no suppression of a classical diffusive process. Moreover,
the delocalized phase of the model corresponds to classical
trajectories with a kinetic energy higher than the potential.
Thus, in this integrable model the wave functions, quantized
through a Wentzel-Kramers-Brillouin (WKB) semiclassical
approximation, simply follow the classical behavior. It is our
purpose to stress these aspects of the model and to clarify the
connections with recent experiments.

II. THE MODEL

The Hamiltonian we are interested in is of the tight-binding
form with nearest-neighbor hopping between discrete position
sites qn and a superimposed quasiperiodic potential

Ĥ = J
∑

n

(|qn+1〉〈qn| + |qn〉〈qn+1|)

+W
∑

n

cos(2πβn)|qn〉〈qn|, (1)

where β is the commensurability parameter, |qn〉 is a localized
Wannier state on site n of the lattice, and J and W are
parameters that control the amplitude of the hopping transi-
tions and of the quasiperiodic potential, respectively. Since the
Hamiltonian is invariant under the increase of β by an arbitrary
integer, we can restrict it to 0 < β � 1. This Hamiltonian
is known as the Aubry-André or Harper Hamiltonian in the
literature [1,11]. There are two well-known physical problems
effectively described by Eq. (1). The first is the motion of elec-
trons in two dimensions for a periodic potential in the presence
of a magnetic field applied perpendicular to the plane when in-
terband transitions are neglected [12]. In this case, β is related
to the ratio of the area of the magnetic flux quantum to the unit
cell in coordinate space. The second, directly related to the
experiments described here, is the 1D motion of particles in
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the presence of two superimposed periodic potentials, the main
one of period λ1 that determines the position of the discrete
lattice points qn and the perturbing one of period λ2; in this
case β = λ1/λ2. The connection between the latter problem
and Eq. (1) is explicitly described in the next section and in
Appendix A.

Expressing the hopping between nearest-neighbor sites
of the main lattice in terms of the translation operator
exp(−iλ1p̂/h̄) (q̂ and p̂ are the usual position and momentum
operators, respectively), one can transform Eq. (1) into the
more symmetric form

Ĥ = 2J cos(2πp̂/P ) + W cos(2πq̂/Q), (2)

where P = 2πh̄/λ1 and Q = λ2. The classical analog of
this Hamiltonian is obtained by replacing the operators by
c numbers

H(q, p) = 2J cos(2πp/P ) + W cos(2πq/Q). (3)

This classical Hamiltonian is periodic in both position and
momentum. Therefore, its study can be restricted to a single
cell of size (Q,P ). Note that H(q, p) contains, through the
momentum scale factor P = h/λ1, quantum Planck’s constant.
Its validity and applicability as well as the apparent paradox
that it contains a quantum scale will be discussed.

H(q, p) defines a time-independent 1D problem that con-
serves the energy. It is thus an integrable system with Eq. (3)
defining, for different values of the energy E = H(q, p),
1D curves in the phase-space plane (q, p). The classical
phase-space dynamics is sketched in Fig. 1 for different values
of α = W/J . For α = 0 there is no potential and all trajectories
are extended in space, a simple ballistic motion (e.g., the
projection of the classical curves onto the q axis covers the
entire interval [0,Q], in contrast to localized orbits that cover
only a fraction of it) and have constant momentum. For α � 1
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FIG. 1. (Color online) Phase-space trajectories of
Hamiltonian (3) for different values of the parameter α = W/J

solid lines. In the right-hand column, the Husimi representation of
several eigenstates for β = 1/51 is superimposed on the classical
trajectories (see text).

exactly the opposite happens; the potential part dominates,
the kinetic energy becomes negligible, and trajectories are
trapped or localized in space by the potential and delocalized
in momentum. This latter behavior is a consequence of the
boundedness of the kinetic term. In between, a crossover is
observed with the presence of two separatrices that delimit
three different types of trajectories. The first type are closed
localized orbits that oscillate around (q, p) = (Q/2, P/2).
This is a standard clockwise oscillation around the minimum of
cos(2πq/Q). The second type is also a closed localized oscil-
lation, now around (q, p) = (0, 0), mod(Q,P ), which is a less
standard counterclockwise oscillation around the maximum of
cos(2πq/Q) due to a local negative mass. Finally, the third
type, in between the separatrices, is an extended orbit in q for
α < 2 and p for α > 2. At α = 2 the two separatrices merge to-
gether. This is the critical value of the parameter α above which
the potential part dominates over the kinetic one and all classi-
cal trajectories are localized in space by the potential barriers.

The quantum-mechanical motion is richer than the classical
one as a result of the additional parameter β = λ1/λ2 =
2πh̄/QP . Its presence in the quantum Hamiltonian is a
consequence of the discrete nature of the motion in the q

direction, defined by the position of the main lattice sites and
the commensurability effects with respect to the secondary
lattice. The quantum operator Eq. (2) commutes with the trans-
lation operators T̂Q = exp(−iQp̂/h̄) and T̂P = exp(iP q̂/h̄),
which translate by one unit cell in each phase-space direction.
However, quantum dynamics simultaneously periodic in both
directions, as in the classical one, are possible if and only if the
translation operators also commute with each other. The most
general condition enforces commutation by translations over
a phase-space domain of dimensions (MQ,P ), where M is an
arbitrary positive integer. It is easy to show [9] that the opera-
tors TMQ and TP commute if and only if β is a rational number

1

β
= QP

2πh̄
= N

M
, (4)

where N is an arbitrary positive integer. Keeping in mind the
old Weyl rule “one quantum state per phase-space volume
h,” the physical interpretation of this condition is clear: To
be periodic in both directions, the extended phase-space cell
(MQ,P ) made of M units in the q direction should contain
an integer number N of quantum states. This defines the torus
(MQ,P ) as the quantum phase space. An arbitrary quantum
state now satisfies the generalized boundary conditions

TMQ|ψ〉 = eiθ1 |ψ〉,
(5)

TP |ψ〉 = eiθ2 |ψ〉,
where �θ = (θ1, θ2) are good quantum numbers preserved by
the dynamics (the Bloch phases). Hence the Hilbert space
breaks down into N -dimensional subspaces parametrized by
�θ . Ĥ is therefore a finite-dimensional periodic operator where
the spectrum is absolutely continuous. The latter term consists
of N Bloch bands Ei(�θ), defined by

Ĥ |ψi(�θ )〉 = Ei(�θ )|ψi(�θ)〉 i = 0, . . . , N − 1, (6)

where |ψi(�θ )〉 are the eigenvectors that satisfy Eq. (5). Strictly
speaking, due to the periodicity all eigenstates are thus
delocalized for any value of the parameter α.
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Note that the semiclassical limit is obtained when N → ∞,
that is, when the number of quantum states is large (possibly
with M → ∞ but M/N → 0). In this case the fraction of
phase space occupied by one quantum state tends to zero and
the quantum dynamics is described with increasing precision
by the classical Hamiltonian, Eq. (3). The semiclassical limit
is thus equivalent to the limit β → 0 (or, more generally,
due to the periodicity, to the limit β tending to an arbitrary
integer from above). In practice, β plays the role of an
effective Planck’s constant. Since β = λ1/λ2, an appropriate
choice for the period of the two superimposed periodic
potentials allows to tune β and control whether the system
is quantum or classical. This limit is thus different from the
usual semiclassical limit, where one formally takes h̄ → 0 or
considers a high-energy regime. From this point of view, there
is no contradiction in the fact that the classical Hamiltonian
H(q, p) contains h since the path toward the classical behavior
described by that Hamiltonian is controlled by the two
frequencies λ1 and λ2. This emphasizes that the classical limit
β → 0 that we are considering has a more general character.
It is one example among a wider class of semiclassical limits,
sometimes generically called large-N limits, that are often en-
countered in physics (see, for instance, Ref. [13] and references
therein). In our case, the classical limit does not correspond
to the standard limit of a classical particle of kinetic energy
p2/2m moving in the presence of two superimposed periodic
potentials [cf. Eq. (10)]. Although purely classical, the struc-
ture of H(q, p) keeps information about some of the quantum
mechanical processes associated to the original model, Eq. (1).
The periodicity in the p direction arises from the discreteness
of the lattice sites distant by λ1 imposed by the tight-binding
form of the dynamics related to a tunneling process. As
mentioned earlier, the boundedness of the kinetic energy term
has important consequences, in particular in the appearance
of the unusual localized-in-space delocalized-in-momentum
classical trajectories observed in the limit of a large α.

Now we turn to the case of irrational β, the quantum-
mechanical behavior of which deserves special attention.
Contrary to our previous discussion, in this case the phase
space is not compact, the Bloch angles are not good quantum
numbers, and the matrix Ĥ is of infinite dimension. For any
irrational value of β it can be shown [14] that the spectrum is a
Cantor set (among which is the famous Hofstadter butterfly for
α = 2). In addition, the model displays a localization transition
[1,15]. For α < 2, the spectrum is absolutely continuous and
all states are extended. For α > 2, the spectrum is pure point
and all states are localized. Finally, at α = 2 the spectrum is
singular continuous with multifractal eigenstates [1].

The ideal situation concerning any physical experiment,
the aim of which is to display the localization transition,
is to implement an irrational β, typically the golden mean
(
√

5 − 1)/2. In practice, one can only approach an irrational as
some rational approximation. It is thus of interest to analyze an
irrational β as the limit of a sequence of rational numbers. The
most efficient sequence (in terms of convergence) is known to
be the continuous fraction expansion

β = 1

m1 + 1
m2+ 1

m3+···

. (7)

This sequence of rational approximations β1 = 1/m1, β2 =
m2/(m1m2 + 1), and so on generates a sequence of periodic
systems that approximate the quasiperiodic one with increas-
ing accuracy. In the lowest-order approximation β1 = 1/m1,
only one unit cell is quantized (M = 1), with N = m1 quantum
states supported by this cell. For such a situation, the WKB
method semiclassically allows us, in 1D, to construct the
eigenstates ψi(�θ) and eigenvalues Ei(�θ ) from the quantization
of some specific classical trajectories in a one-to-one corre-
spondence. The m1 states are selected by the Bohr-Sommerfeld
quantization rule [16]

S =
∫

t

pdq = βQP

[
i +

(
1

2

)
+ w1

θ1

2π
+ w2

θ2

2π

]
, (8)

where i = 0, . . . , m1, (w1, w2) are the winding numbers of
the quantized classical trajectory t in the (q, p) directions,
respectively, and S = S(E) is the action of t . The Maslov
index half applies only to trajectories with (w1, w2) = (0, 0)
(closed trajectories). The eigenvalues of states associated
to (0, 0) trajectories are thus, at this semiclassical level of
approximation, independent of �θ .

Equation (8) associates one quantum state to one classical
trajectory of the elementary phase-space cell and defines the
spectrum of energies Ei(�θ). In this description, the associated
quantum state ψi(�θ) can be shown to strongly concentrate
or localize around the corresponding quantized classical
trajectory. To illustrate this point it is useful to display the
eigenstates in the phase-space Husimi representation [9],
defined in Appendix B. In this representation, each eigenstate
ψi(�θ ) of energy Ei(�θ ) corresponds to a positive-definite
phase-space function Wi(q, p; �θ ), which, in the semiclassical
limit 1/β1 = m1 → ∞, behaves as [10]

Wi(q, p; �θ ) ∝ 1

v(q, p)
exp

⎡
⎣− 2

m1

(
H(q, p) − Ei(�θ )

v(q, p)

)2
⎤
⎦ ,

(9)

where v(q, p) =
√

q̇2 + ṗ2 is the phase-space velocity
of the classical trajectory of energy Ei . The right-hand
column of Fig. 1 superimposes on the classical trajectories
the corresponding quantized eigenstates for N = m1 = 51,
M = 1, �θ = (0, 0), and different values of α. One can clearly
see that, for a given α, the concentration over the corresponding
classical trajectory as well as, for varying α, the transition from
extended to localized states, which simply follow the classical
crossover (e.g., localization by the potential barriers). For
open trajectories (either in the q direction for α < 2 or in p for
α > 2) the quantum state is supported by two symmetric and
isoenergetic classical curves coupled by tunneling. This effect
is observed at �θ = (0, 0) where the eigenstates are real. The
quantum state combines both classical trajectories, each of
which has a current but whose overall superimposed net current
vanishes. As �θ is varied, the eigenstate becomes complex and
can concentrate on one or the other of the classical trajectories.

At the second step of the rational approximation to an
irrational β, β ≈ β2 = m2/(m1m2 + 1), the quantum phase
space is an extended torus of dimensions (m2Q,P ). This
space now supports N = m1m2 + 1 quantum states. With
respect to the previous approximation β ≈ β1 = 1/m1, the
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size of the quantum cell and the number of states N ≈ m1m2

increases by a factor m2; in contrast, the number of quantum
states per unit of phase-space cell remains almost constant.
The scheme repeats as one further increases the order of
the continuous-fraction approximation. Along this process,
the size of the extended phase-space cell increases in the q

direction (thus tending toward a cylindrical geometry); the
dimension of the corresponding Hilbert space also increases,
while the effective Planck constant β, which measures the
fraction of the elementary phase-space cell occupied by one
quantum state remains approximately constant. At a given
step of the approximation and a given �θ , it can be shown
from Eq. (8) that two types of quantum states exist classified
according to the structure of the wave function in the extended
phase space (MQ,P ). First, the delocalized ones, which are
associated to classical orbits open in the q direction of the
(±1, 0) type with a kinetic energy higher than the potential
barriers (that exist only for α < 2). Second, localized states
associated to either closed orbits [of the (0, 0) type] or to open
orbits in the p direction [of the (0,±1) type], in other words,
orbits that are trapped by the potential barriers. These states
are typically localized over one (or several, when resonances
occur) isoenergetic classical orbits of the extended phase
space. Their width, controlled by β, remains almost constant
along the continuous-fraction approximation. Thus, as the size
of the extended torus increases in the q direction, the relative
width of the localized states compared to MQ diminishes.
Husimi plots of wave functions that confirm our general
picture can be found in Ref. [17] for sequences of rational
approximations of the golden mean.

III. RELATION TO EXPERIMENTS

In recent experiments [3], a cloud of noninteracting
ultracold 39K atoms created from a Bose-Einstein condensate
is released in a bichromatic potential produced by superimpos-
ing two lasers of wavelengths λ1 and λ2 (and of corresponding
wave numbers k1 and k2) in a standing-wave configuration.
The dynamics is described by the following Hamiltonian

ĤB = − h̄2

2m

∂2

∂x2
+ V1 cos2(k1x) + V2 cos2(k2x), (10)

where V1 and V2 denote the amplitude of each of the two laser
beams and m is the mass of the atom. If the primary lattice
(say, V1) is deep enough, that is if the recoil energy ER =
h̄2k2

1/2m is much lower than V1, one can approximate the
motion in the primary lattice using a tunneling process between
localized states of neighboring sites, each of which feels the
presence of the superimposed additional periodic potential V2.
The Hamiltonian can thus be reduced to the tight-binding
form of Eq. (1) where β = λ1/λ2. The effective parameters
J and W in Eq. (1) are directly related to V1, V2, and ER

(see Appendix A).
Several different laser frequencies were used in the ex-

periments. In Ref. [3] they realized the system described by
the Hamiltonian (10) with λ1 = 1032 nm and λ2 = 862 nm,
which yields λ1/λ2 = 516/431 (431 is a prime number).
By restricting to 0 < β � 1, we have β = 85/431 � 0.1972.
Moreover, the typical amplitude of the primary lattice is ten
times larger than the corresponding recoil energy, which makes

Eq. (1) a good approximation to the experiment. With the above
values of λ1, λ2, and β the quantum system under study is there-
fore periodic in both q and p directions (because β is rational),
with N = 431 states accommodated in M = 85 elementary
cells. This means that every 431 wells of the primary lattice
the system repeats. The Hamiltonian (1) is thus a finite matrix
of dimension N = 431 and the eigenvalues and eigenstates
depend parametrically on the two phases �θ = (θ1, θ2). It can
be shown (see Ref. [9] and Appendix B) that the two phases
are determined by the relative position of the two lattice sites.
Though not directly measured in the previous experiments,
the Bloch phases are fixed by the experimental conditions.
To be specific, we fix them here to �θ = (0, 0). Coming
back to β, its continuous-fraction decomposition gives two
lower-order approximants, β1 = 1/5 and β2 = 14/71. The
system is thus nearly periodic after five wells of the primary lat-
tice. The approximation β ∼ β1 also means that approximately
five quantum states are accommodated in one elementary
phase-space cell (Q,P ). Moreover, the relatively low value
of β ≈ 0.2 indicates that the classical approximation of the
dynamics given by Eq. (3) as well as the the semiclassical
picture developed in the previous section is a meaningful
framework, as discussed in the following.

Figure 2 shows the Husimi function of several eigenstates
of Eq. (1) represented in the quantum phase space (MQ,P )
for the experimental conditions, namely β = 85/431, and
different values of α, assuming �θ = (0, 0). One verifies
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FIG. 2. (Color online) Husimi functions for N = 431 and M =
516 for two arbitrary quantum states as a function of α. Their evolution
clearly illustrates the delocalized-localized crossover.
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that the eigenstates follow, for different α’s, the general
description given at the end of the last section. For α � 2 the
eigenstates are concentrated along the delocalized classical
trajectories [mixing right and left-propagating orbits because
�θ = (0, 0)] while for α � 2 the eigenstates are concentrated
on localized trajectories that wind around in the p direction. In
between, a crossover among these two limits is observed. This
figure illustrates, under the experimental conditions, that the
transition from delocalized to localized states as α increases
may be interpreted in terms of classical dynamics and is
therefore different in nature from the Anderson localization.
Moreover, as already pointed out in the introduction, this
behavior is generic and not restricted to the special set of
parameters used in the experiment.

Experimentally, the transition was probed through the
evolution of different values of α of an initial cloud of atoms
released from the ground state of a confining magnetic trap.
The initial state is thus a Gaussian wave packet centered
around some initial point q0 and contains zero average initial
momentum with an extension of about ten main lattice sites.
After letting the cloud expand for some time (750 ms), the
final root-mean-square (RMS) width of the wave packet is
measured. These results are reported in Fig. 3. To test our
setting, we computed, using the eigenstates discussed earlier,
the time evolution |φ(t)〉 of such an initial state, given by

|φ(t)〉 =
N−1∑
i=0

exp[−iEi(�θ )t/h̄]ψi(z0)|ψi(�θ)〉, (11)

where, for the actual experiment, N = 431, ψi(z0) is the
coherent-state representation of the eigenstate i, where z0 =
q0/

√
2 (cf. Appendix B), and the Bloch angles �θ are set to

zero. In Fig. 3 the width averaged over the initial position
computed from Eq. (11) (dashed-dot line) is compared to the
experimental data. The agreement is quite good. Note that the
transition takes place here for α ≈ 2, as predicted by theory,
and not around α ≈ 7, as obtained in Ref. [3]. The difference is
due to an improved estimate of the dependence of the effective
parameters W and J upon V1, V2, and ER (see Appendix A
and Ref. [18]). Note also that the maximal experimental width
observed after expansion of the order of 40 µm corresponds
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FIG. 3. (Color online) RMS width of a cloud of 39K atoms after
t = 750 ms of expansion in a (quasi)periodic potential characterized
by β = 85/431 = 0.1972, . . . as a function of α. The initial width
of the cloud is 5 µm, indicated by a horizontal dashed line. Dots
represent the experimental results for different values of J/h (taken
from Ref. [3]) and dashed-dots the theory (see text).

to ∼ 80 main lattice sites, much smaller than the phase-space
cell, which covers 431 main lattice sites.

IV. COMPARISON WITH THE ANDERSON MODEL

In the previous sections we stress the classical origin of the
localization transition and the localized phase in bichromatic
potentials. Let us be more explicit, in particular in the
comparison with respect to the Anderson model of localization
by emphasizing their differences and similarities (comparisons
between the quantum motion in disordered and quasiperiodic
potentials may also be found in Refs. [17,19,20]).

The original Anderson model of localization [21] with
diagonal disorder is described, in 1D, by a Hamitonian similar
to Eq. (1). The difference is that the energy of site n, instead
of being cos(2πβn), is now given by a random variable
Vn having, for instance, a uniform distribution between
−1 and 1. Then W simply controls the amplitude of the
random potential and WVn has a uniform distribution between
−W and W .

If one wishes to follow a semiclassical analysis similar to
the previous one but for the Anderson model, the first difficulty
is to define appropriately the classical limit. The potential, as
defined earlier, is not continuous and has no direct classical
limit. One way to get around this difficulty is to smooth the
previous random potential, for instance, by convoluting Vn

with a Gaussian of width σ

V (q) = W
∑

n

Vn

e−(q−qn)/2σ 2

√
2πσ 2

, (12)

where qn denotes, as in the previous sections, the position of
the sites of the discrete lattice separated by a distance λ1. Then,
the classical limit of the Anderson model is described by the
Hamiltonian

H(q, p) = 2J cos(2πp/P ) + WV (q), (13)

where P = h/λ1. The classical phase-space trajectories of
such a Hamiltonian are, qualitatively, not very different from
those of the quasiperiodic potential in Eq. (3), in particular in
the two extreme limits α → 0 and α → ∞ (see Fig. 4): They
are given, again, by delocalized constant-p trajectories in the
former limit where the kinetic part of the energy dominates
over the potential and localized constant-q trajectories in the
latter one, where the potential traps the orbits (we are using,
as before, the parameter α = W/J ). The main difference is
in the intermediate regime where, for the Anderson model,
the classical trajectories are more irregularly shaped and
a larger number of separatrices is observed. Thus, as in
the quasiperiodic Hamiltonian, in the Anderson model a
delocalized to localized crossover is observed classically as
α increases.

As we saw in the previous sections, the quasiperiodic case
qualitatively follows the classical behavior. For α < 2 the
kinetic part dominates, the classical trajectories lie above the
potential barriers and are delocalized in space. In contrast, at
α = 2 the last delocalized classical trajectory disappears and
all orbits are, for α > 2, trapped by the potential barriers and
thus are localized in space. Quantum mechanically, a crossover
that simply follows this classical behavior is observed from
delocalized states that dominate at α < 2 to localized ones at
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FIG. 4. (Color online) Husimi distributions (gray code) of several
eigenstates and their corresponding classical orbits (solid lines) in
phase space for the Anderson model with N = 401 and σ = λ1. As
α increases the classical model also exhibits a delocalized-localized
crossover. Localized quantum eigenstates already exist for α < 2
even if the corresponding classical orbits are delocalized in space as
shown for α = 1.

α > 2 (cf. Fig. 3). This behavior contrasts with the Anderson
model, where quantum states are localized for arbitrary values
of α > 0, in spite of having a qualitatively similar classical
behavior. Figure 4 illustrates this point by showing several
quantum states for different values of α. We numerically
diagonalized the Anderson model on a finite chain of N = 401
sites with �θ = (0, 0) and obtained the classical phase-space
orbits from Eq. (13) with σ = λ1. For the sake of clarity,
Fig. 4 does not show all the classical orbits at a given energy
but only the ones directly associated to a quantum state. In
the two limiting cases, namely α = 0 and α � 1 (here 100),
the quantum states are associated to very simple classical
orbits (i.e., fully delocalized and fully localized trajectories,
respectively). However, at finite α the eigenstates are localized,
even those where the energy corresponds to classical orbits
above the potential barriers, as shown in Fig. 4 for α = 1
(of course the length of the system should be longer than the
corresponding localization length). This latter behavior is not
observed in the quasipariodic case.

Thus, the main difference between the quantum behavior
of the two models is in the range α < 2, where the Anderson
model, in contrast to the classical behavior (orbits above
the barriers), has localized states while the quasiperiodic
model follows the behavior of the classical trajectories. For
large values of α, the localization in the Anderson model
has, as the quasiperiodic potential, a classical interpreta-
tion because the classical orbits are themselves localized
(e.g., trapped by the potential barriers). In this respect, the
nontrivial regime in the Anderson model is the nonclassical

localization observed for small values of α, an effect that is
absent in the bichromatic potential. A particularly interesting
way to stress this difference is to look at the effects of
decoherence. It is well known that decoherence drives the
system dynamics toward the classical motion by suppressing
the interference effects [22]. In the regime α < 2, decoherence
will therefore destroy localization in the Anderson case leading
to a classical diffusion, whereas it will fundamentally not
affect the dynamics, aside from quantum corrections, in
the quasiperiodic potential. This stresses the differences and
similarities between the two models in their quantum and
classical behavior.

V. CONCLUSION

In the present article we analyze, using semiclassical
methods, the localization transition observed in quasiperi-
odic potentials. A general analysis of the corresponding
Aubry-André Hamiltonian in terms of the commensurability
properties of the parameter β is given. Particular attention is
devoted to the interpretation of recent cold-atom experiments
as well as to a comparison with the 1D Anderson model of
localization.

Several extensions and generalizations of the dynamics
considered here are of interest, with possible experimental
realizations. They are motivated by the possibility of exploring
more complex transport effects. Among them, we can mention
the possibility of pulsating in time one of the two super-
imposed potentials, thus introducing chaotic motion in the
dynamics described by the kicked Harper Hamiltonian [23].
Along similar lines of research concerning kicked systems,
it is worthwhile to mention recent cold-atom experiments
that explore the three-dimensional Anderson metal-insulator
transition [24]. Another important issue is related to the effects
of interactions on the localization properties of quasiperiodic
as well as random potentials [20,25].
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APPENDIX A: CORRECTION TO THE HAMILTONIAN
PARAMETERS

In Ref. [3] they use the following notations. The original
Hamiltonian describing the motion of cold atoms in a bichro-
matic potential is written

ĤB = − h̄2

2m

∂2

∂x2
+ s1ER1 cos2(k1x) + s2ER2 cos2(k2x),

(A1)

where ki = 2π/λi and ERi
= h̄2k2

i /2m, i = 1, 2, denote the
wave numbers and the two recoil energies, respectively. Its
reduction to a tight-binding form is expressed as

Ĥ = J
∑
m

|wm+1〉〈wm| + |wm〉〈wm+1|

+W
∑
m

cos(2πβm)|wm〉〈wm|, (A2)
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where β = λ1/λ2 (not restricted to [0, [1]). The parameters
in (A2), namely J and W , were calculated as follows

J = 1.43s0.98
1 exp(−2.07

√
s1),

(A3)

W = s2ER2

2ER1

,

and thus

α = W

J
= β2

2.86

s2

s0.98
1

exp(2.07
√

s1). (A4)

On the other hand, in Ref. [26] the mapping between the
two Hamiltonians (A1) and (A2) was studied very carefully
to analyze the presence of possible mobility edges due to
deviations from the tight-binding approximation. Writing their
formulas with the same set of notations as in Ref. [3] yields

α = W

J
=

√
πβ 2

8

s2

s
3/4
1

exp(2
√

s1 − β 2/
√

s1), (A5)

which turns out to present significant deviations with respect
to Eq. (A4). Indeed, if one takes, for instance, s1 = 10 and β =
1.2, which are of the order of magnitude of the experimental
parameters in Ref. [3], there is about a factor 2 between the
two expressions.

APPENDIX B: BARGMAN REPRESENTATION ON
THE TORUS

Following Ref. [9], we present here the Bargman’s rep-
resentation on the extended torus. Classically, the two-
dimensional toroidal phase space is a periodically repeated
cell having sides (Q,P ) in suitable coordinates (q, p).
The classical dynamics is invariant under translations by the
elementary cell. Quantum mechanically, the states of the
Hilbert space are required to be periodic functions (up to a
phase) under translations defined on an extended torus of size
(MQ,P ) (M is an arbitrary, strictly positive integer)

TMQ|ψ〉 = eiθ1 |ψ〉,
(B1)

TP |ψ〉 = eiθ2 |ψ〉,

where �θ = (θ1, θ2) are two Bloch phases ranging from 0 to 2π

and

T̂Q = exp(−iQp̂/h̄),

T̂P = exp(iP q̂/h̄). (B2)

To simultaneously satisfy Eq. (B1) TQ and TP must commute.
This imposes that the area of the extended phase space,
measured in units of Planck’s constant h, must be an integer

MQP

2πh̄
= N. (B3)

Thus, the Hilbert space is an N -dimensional space
parametrized by �θ and denoted HN (�θ). For a fixed area MQP

the semiclassical limit h̄ → 0 is equivalent to N → ∞.

For each HN (�θ) one can define normalizable basis
states |qn, �θ〉 and |pm, �θ〉 in the q and p representations,
respectively,

|qn, �θ〉 =
∞∑

ν=−∞
e−iνθ1 |qn + νMQ〉, n = 0, . . . , N − 1,

|pm, �θ〉 =
∞∑

ν=−∞
e−iνθ2 |pm + νP 〉, m = 0, . . . , N − 1,

(B4)

where

qn = MQ

N

(
n + θ2

2π

)
,

(B5)

pm = P

N

(
m − θ1

2π

)
.

In Eq. (B4), |qn + νMQ〉 and |pm + νP 〉 are the usual position
and momentum eigenstates, respectively, that have to be
distinguished with respect to their periodized counterpart,
|qn, �θ〉 and |pm, �θ〉. The latter states satisfy the boundary
conditions in Eq. (B1) and 〈n, �θ |m, �θ〉 = exp(iqnpm/h̄)/

√
N .

As Eq. (B5) shows, the arbitrariness in the boundary conditions
may be viewed as an arbitrariness under shifts of order
1/N in the position of the discrete basis states |n, �θ〉 and
|m, �θ〉 with respect to the intervals q : [0,MQ[ and p : [0, P [,
respectively.

Diagonalization of the Harper Hamiltonian in, for in-
stance, the |qn, �θ〉 basis gives the eigenstates |ψi(�θ )〉 =∑N−1

n=0 ψi,n(�θ )|qn, �θ〉 and i = 0, . . . , N − 1, characterized by
N complex numbers that satisfy

∑N−1
n=0 |ψi,n(�θ )|2 = 1. An

alternative representation is in terms of coherent states [9],
or Bargman representation, defined as

ψi(z, �θ ) =
N−1∑
n=0

ψi,n(�θ )〈z|qn, �θ〉, (B6)

where

〈z|qn, �θ〉 = (πh̄)−1/4 exp

{
−1

h̄

[
1

2

(
z2 + q2

n

) −
√

2zqn

]}

× θ3

[
−θ1

2
− i

πN

P
(
√

2z − qn)

∣∣∣∣ iMNQ

P

]
.

(B7)

The complex variable z = (q − ip)/
√

2 denotes the central
position of the coherent state and

θ3(v|τ ) =
+∞∑

ν=−∞
exp(iπτν2 + 2ivν), (B8)

is the Jacobi θ function [27].
Finally the Husimi representation Wψ (z) of an eigenstate

corresponds to the normalized squared modulus of the coherent
state representation

Wi(q, p) = |ψi(z, �θ )|2
〈z|z〉 = e−|z|2/h̄|ψi(z, �θ )|2. (B9)
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