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Bose-Fermi mixtures of self-assembled filaments of fermionic polar molecules
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Fermionic polar molecules in deep one-dimensional (1D) optical lattices may form self-assembled filaments
when the electric dipoles are oriented along the lattice axis. These composites are bosons or fermions depending
on the number of molecules per chain, leading to a peculiar and complex Bose-Fermi mixture, which we discuss
in detail for the simplest case of a three-well potential. We show that the interplay among filament binding energy,
transverse filament modes, and trimer Fermi energy leads to a rich variety of possible scenarios ranging from
a degenerate Fermi gas of trimers to a binary mixture of two different types of bosonic dimers. We study the
intriguing zero-temperature and finite-temperature physics of these composites for the particular case of an ideal
filament gas loaded in 1D sites, and we discuss possible methods to probe these chain mixtures.
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I. INTRODUCTION

A new generation of experiments is starting to explore
systems where the dipole-dipole interaction (DDI) plays a
significant and possibly dominant role. Due to the long-range
anisotropic character of the DDI, dipolar quantum gases
offer a fascinating novel physics [1,2]. Exciting phenomena
have been recently reported for experiments on Bose-Einstein
condensates (BECs) of atomic magnetic dipoles, especially on
chromium BEC [3], but also on spinor rubidium BECs [4],
potassium [5], and lithium [6]. Magnetic atomic dipoles are
however rather weak. In contrast, heteronuclear molecules,
especially at their lowest rovibrational state, may present a
very large electric dipole moment ( >∼1 Debye) [7–9]. Although
quantum degeneracy has not been yet achieved, the rapid pace
of development allows for expectation of degenerate gases of
polar molecules in the near future. These gases are expected
to be largely dominated by the DDI.

Deep one-dimensional (1D) optical lattices (formed by
counterpropagating lasers) may slice a gas into nonoverlapping
samples. For nondipolar (short-range interacting) particles,
these nonoverlapping gases may be considered as independent
parallel experiments. The situation is completely different in
dipolar gases since the DDI leads to intersite interactions.
For weak DDI (e.g., atomic magnetic dipoles), these intersite
interactions lead to scattering between BECs at different
sites [10], collective excitations shared by nonoverlapping sites
[11], or damping of Bloch oscillations [5]. For bosonic polar
molecules, the nonlocal dipolar effects may be much stronger,
leading to fascinating effects such as pair-superfluidity for
ladder-like lattices [12] and filament BEC [13].

Filamentation is indeed an interesting possibility introduced
by the DDI. This phenomenon, first suggested in the context
of ferrofluids by de Gennes and Pincus [14], has attracted
a considerable theoretical interest for the case of classical
dipoles [15]. Dipolar chains in classical ferrofluids were
recently observed in superparamagnetic iron colloids [16]
and single-domain magnetite colloids [17]. In Ref. [13], it
was shown that a similar filamentation process may occur
for bosonic polar molecules in deep lattices, which may
organize into chains sustained by an attractive intersite
DDI, forming a dipolar chains liquid (DCL) that may
Bose-condense [13].

In this article, we consider DCLs of fermionic polar
molecules. Far from being a trivial extension of the bosonic
case, fermionic polar molecules lead to a very different and
rich physics. Whereas for bosonic molecules the chains are
obviously bosons, for fermionic molecules, the bosonic or
fermionic character of the filaments depends on the number
of molecules in the chain. This has particularly relevant
consequences when the number of available lattice sites is
odd. Here we focus on the simplest nontrivial case, namely
a three-well potential (Fig. 1). For simplicity, we restrict
our discussion to the ideal gas regime, where interfilament
interactions are neglected. Although this approximation is of
limited quantitative validity (and would demand mesoscopic
samples in specific 1D arrangements as discussed in the
following), it contains already many of the qualitatively new
features that may be expected for more general scenarios of
polar Fermi molecules in deep 1D and two-dimensional (2D)
optical lattices. In particular, the competition between trimer
or dimer binding and trimer Fermi energy results in a nontrivial
dependence of the character of the DCL as a function of the
number of molecules per site N . If N is smaller than a critical
Nc, the DCL is a Fermi-degenerate gas of trimers. However,
for N > Nc, the trimers coexist with a Bose mixture formed
by pseudo-spin-1/2 dimers and spinless dimers, leading to a
peculiar Bose-Fermi mixture. We show that these Bose-Fermi
DCLs may be probed by monitoring the spatial distribution of
the molecules.

The structure of the article is as follows. In Sec. II,
we discuss the physics of individual filaments. Section III
is devoted to the statistical properties of the chain gas. In
Sec. IV, we discuss how the spatial distribution of molecules
may provide important information concerning the nature
of the filament gas. The finite-temperature physics is also
significantly affected by the competition between bosonic and
fermionic filaments, as shown in Sec. V. Finally, in Sec. VI,
we comment on the validity of the ideal gas approximation
and summarize our conclusions.

II. SINGLE FILAMENTS OF FERMIONIC POLAR
MOLECULES

We consider fermionic polar molecules with mass m

and electric dipole d in a deep three-well potential along
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FIG. 1. (Color online) Polar fermionic molecules in a three-well
potential may remain unpaired and form fermionic trimers or bosonic
dimers between nearest neighbors or next-nearest neighbors.

the z direction, with intersite spacing �. This arrangement
may be created by, for example, selectively emptying all
sites of a strong 1D optical lattice except three neighboring
ones. The potential barriers are large enough to prevent any
intersite hopping. Due to reasons discussed in the following,
the analysis of the problem simplifies notably if the gas is
considered as strongly confined along the y direction (e.g., in
a single node of a lattice as that in the z direction). Along
the remaining x direction, we consider a shallow harmonic
confinement with frequency ω. The molecules interact via
the DDI Vd (r) = d2(1 − 3 cos2 θ )/r3, where θ is the angle
formed by r with the dipole orientation. We assume that
the dipoles form an angle α with the z direction, such that
sin2 α = 1/3. Although this particular orientation and the 1D
character of the sites are not needed for the formation of the
DCL gas, which may occur also in stacks of 2D sites [13], this
particular scenario allows both for a strong attraction between
dipoles placed on top of each other and for a vanishing DDI
between molecules at the same site. This largely reduces the
interfilament interaction, allowing for a simplified ideal gas
scenario, as discussed in the following.

The attraction between polar molecules placed on top of
each other may be strong enough to bind two or more polar
molecules into self-assembled chains (Fig. 1). Whereas for
bosonic molecules these chains are in any case bosons [13],
for fermionic molecules, the fermionic or bosonic character of
the filaments depends on the odd or even number of molecules
in a given chain. In particular, the three-well configuration
allows for fermionic trimers (and of course monomers), and
two different kinds of bosonic dimers, namely those between
two molecules at nearest neighbors (type I dimers), and
those between two molecules at the highest and lowest site
(type II dimers) (Fig. 1). Note that dimers I are actually
pseudo-spin-1/2 bosons since dimers in sites 1 and 2 are not
equivalent to dimers in sites 2 and 3.

The ground state of a single filament of M molecules
is calculated as for bosonic molecules [13], and hence, we
just sketch for completeness the basic ideas. Let rj (p̂j ) be
the position (momentum) operator of a molecule at site j .
Introducing P̂ = ∑M

j=1 p̂j /M , R = ∑M
j=1 rj /M , qj = pj −

P, and sj = rj − R = {xj , yj , zj }, the Hamiltonian splits into
Ĥ = ĤCM + Ĥrel, where ĤCM = P̂2/2Mm + Mmω2R2

x/2
describes the filament center-of-mass and

Ĥrel =
M∑

j=1

{
q̂2

j

2m
+ m

2

[
ω2

⊥
(
y2 + z2

j

) + ω2x2
]}

+
∑
i,j>i

Vd [si − sj ] (1)
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FIG. 2. (Color online) Binding energy (in units of E0 = h̄2/m�2)
of the different composites of Fig. 1 as a function of U0 = md2/h̄2�.

the relative motion. The on-site yz confinement is
approximated by a strong isotropic harmonic oscillator
of frequency ω⊥. The wave function of the j -th molecule is
chosen as ψj (xj − xj0)ϕj (yj )ϕj (zj − zj0), where ϕj (η) =
exp(−η2/2l2

⊥)/
√

l⊥
√

π and ψj (η) = exp(−η2/2R2
0)/√√

πR0, with l⊥ = √
h̄/mω⊥ and R0 is the variational width

of the x wave packets. For deep lattices, one may approximate
l⊥ → 0 (energy corrections are <∼1% for depths >14 recoil
energies h̄2π2/2m�2).

Minimizing the energy of straight filaments (xj0 = 0) with
respect to R0, we obtain the filament binding energy.1 We
denote as −ET , −ED,I , and −ED,II the binding energies for,
respectively, trimers, dimers I, and dimers II. These energies
grow with the dipole strength U0 = md2/h̄2�. There exists a
critical U ∗

0 such that for U0 < U ∗
0 the composites unbind (R0 >∼

lHO = √
h̄/mω). Note that U ∗

0 (T ) < U ∗
0 (D, I ) � U ∗

0 (D, II )
(Fig. 2) due to the different strengths of the DDI in each
composite. In the following, we consider the regime U0 >

U ∗
0 (D, II ), where R0 � lHO for all of the possible composites

of Fig. 1.
Transverse filament excitations contribute to the gas en-

tropy, which is relevant at finite temperature T . In addition,
and in contrast to the case of bosonic molecules [13], transverse
modes are important for fermionic molecules also at very
low T since they may significantly reduce the trimer Fermi
energy. For a chain of M molecules, we obtain the low-lying
modes ξν=1,...,M after expanding the chain energy E around
its minimum and diagonalizing ∂2E/∂xj∂xj ′ , where j, j ′ =
1, . . . ,M .

III. QUANTUM STATISTICS OF FILAMENTS

In the following, we consider the filament statistics,
assuming an ideal filament gas. This largely simplifies the
analysis of the problem, while allowing for the discussion
of key qualitative features of these systems, in particular the
competition between different Bose and Fermi composites.
This approximation is just quantitatively valid for mesoscopic
samples in the arrangement discussed earlier, as we discuss at
the end of this article.

1For simplicity, we neglect that the minimal-energy configuration
is slightly tilted from the vertical with an angle ∼π/10.
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The fermionic or bosonic character of the chains is reflected
by the average occupations for trimers, dimers I, dimers II, and
monomers:

NT (n, νT ) = {eβ[−ET +ξνT
+εn−(2µ1+µ2)] + 1}−1, (2)

ND,I (n, νD,I ) = {eβ[−ED,I +ξνD,I
+εn−(µ1+µ2)] − 1}−1, (3)

ND,II (n, νD,II ) = [eβ(−ED,II +ξνD,II
+εn−2µ1) − 1]−1, (4)

NS,j (n) = [eβ(εn−µj ) + 1]−1, (5)

where NS,j denotes the average occupation of individual
molecules at site j , ξνT ;D,I ;D,II

the transverse filaments modes
of the different composites, εn = h̄ω(n + 1/2) the harmonic
oscillator levels, and β = 1/kBT the inverse temperature.
In the previous expressions, we have assumed symmetric
configurations such that the number of dimers I in sites 1
and 2 is the same as the number of dimers I in sites 2
and 3 and is equal to ND,I (n, νD,I ). Note that µ1 = µ3 is the
chemical potential for molecules at the highest and lowest sites,
whereas µ2 denotes the chemical potential for molecules in the
middle site. These different chemical potentials are necessary
to fulfill the normalization conditions, in which we assume
N molecules per lattice site. By imposing symmetry between
the highest and the lowest sites, these conditions acquire the
form:

N = NT + ND,I + ND,II + NS,1, (6)

N = NT + 2ND,I + NS,2, (7)

where NT , ND,I , ND,II , NS,1, and NS,2 denote, respectively,
the total number of trios, dimers I in sites 1 and 2 (or 2 and
3), dimers II, monomers in site 1 (or 3), and monomers in site
2. From (6) and (7), we obtain µ1(N, T ) and µ2(N, T ), and
from (2)–(5), we obtain the occupation numbers.

Due to the attractive DDI between molecules in the filament,
the most bound chain is the trimer. The difference in binding
between dimers and trimers induces that for sufficiently small
N , and at low enough T , the DCL becomes a degenerate Fermi
gas of trimers. The trimers fill up oscillator levels (and also
transverse trimer modes) up to the corresponding Fermi energy
EF (N ), which equals Nh̄ω for rigid filaments, but it is actually
smaller due to the transverse trimer modes. However, if the
number of molecules per site is sufficiently large, the growth

in Fermi energy overcomes the binding energy difference. This
transition may be easily estimated by comparing the average
energy per molecule for the case of two trimers and that
for the case of two dimers I and one dimer II. This leads
to a condition for the critical number of molecules per site
Nc(U0, ω), EF (Nc) = 2ET − 3(ED,I + ED,II )/2 (which we
have confirmed numerically). Note that Nc grows with growing
U0 and decreasing ω. For N < Nc, the DCL is a degenerate
trimer gas, whereas for N > Nc, the trimer gas coexists with
a mixture of pseudo-spin-1/2 bosons (dimers I) and spinless
bosons (dimers II).

IV. SPATIAL DENSITY DISTRIBUTIONS

The peculiar properties of the DCL translate into the spatial
molecular distribution integrated over the three sites. For
N < Nc and N < ξ1T

/ω, only trimers in their internal ground
state are formed, and hence, the gas behaves as a spinless
Fermi gas of particles of mass 3m, presenting a Thomas-Fermi
density profile [1 − (x/R)2]1/2 with R/lHO = √

2N/3. For
ξ1T

/ω < N < Nc, the DCL is still a trimer gas, but transversal
modes may be populated. In that case, the density profile
departs from the Thomas-Fermi profile (Fig. 3, left), due to
the appearance of internally excited trimers in low harmonic
oscillator levels. For N > Nc, the density profile changes
dramatically. Note that since we consider 1D gases, dimer
BEC is, strictly speaking, precluded. However, due to the finite
size, the dimers quasicondense (at low enough T ) occupying
the few lowest levels of the harmonic oscillator. Hence, when
N surpasses Nc, a Bose cloud nucleates at the trap center.
As a result, the distribution of the polar molecules shows a
Gaussian-like peak at the trap center (Fig. 3, right).

For N � Nc and U0 > U ∗
0 (D, II ), the DCL is at low T

a basically pure Bose gas of dimers I and II (except for a
small trimer fraction). Since both dimers have mass 2m, the
difference between them cannot be discerned from the analysis
of the integrated density profile of the molecules. However,
the different binding energy and excited dimer modes for both
types of dimers may be studied spectroscopically to reveal the
dual nature of the mixture. If N � Nc but U ∗

0 (D, I ) � U0 <

U ∗
0 (D, II ), dimers II are precluded, and hence, the DCL will

become at low T a Bose-Fermi mixture of dimers I bosons
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FIG. 3. (Color online) Integrated density profiles of the molecules, for units of ξ1T
/ω < N < Nc (left) and N > Nc (right). We consider

U0 = 2, ω/2π = 1 Hz, and m = 100 amu, which lead to Nc = 230.
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FIG. 4. (Color online) Temperature dependence of the fraction of
molecules in trimers (solid), dimers I (dashed), dimers II (dotted),
and monomers (dashed-dotted). We consider the parameters of Fig. 3
with N < Nc.

and degenerate monomers at sites 1 and 3 (which act as
pseudo-spin-1/2 fermions). Again, this exotic mixture could
be revealed from the corresponding dual-density profile.

V. FINITE-TEMPERATURE ANALYSIS

The DCL presents as well an intriguing finite-temperature
physics due to the role of filament modes and the different
binding energy of dimers and trimers. This is particularly clear
from a finite T analysis of a DCL with N < Nc (Fig. 4).
Note that whereas at very low T the DCL is purely a
trimer Fermi gas, at finite T , it becomes more favorable to
populate dimers than to populate higher excited trimer states.
As a consequence, the system presents a striking thermal
enhancement of the bosonic modes. Interestingly, contrary to
the standard situation, this leads to a maximal central peak
density for a given finite T . For even larger T , the central
density decreases again due to the occupation of dimers at
higher oscillator modes and the breaking of the filaments into
individual molecules.

VI. CONCLUSIONS

The discussed ideal gas analysis allows for a relatively
easy understanding of key qualitative features characterizing
fermionic polar molecules in deep optical lattices under more
general conditions, as the competition between filament-
binding energy and Fermi energy of fermionic chains, the
relevant role of the filament modes at zero and finite T ,
or the formation of peculiar mixtures of different types of
composite bosons and fermions. However, the quantitative
validity of the ideal gas approximation is rather limited (also

for bosonic molecules [13]), even for the previously discussed
1D arrangement with the particular choice for the dipole ori-
entation. We may estimate the importance of the interfilament
interactions by comparing the intertrimer interactions with the
Fermi energy of rigid trimers (εF = Nh̄ω). For deeply bound
chains (R0 ∼ �/2) and at interfilament distances x > �,
we may approximate the interaction between molecules at
different chains as that between two point dipoles. By adding
up these interactions, we may estimate the mean intertrimer
DDI Vff (x̄), where x̄ is the mean intertrimer distance. For
the case of d = 0.8 Debye, m = 100 amu, � = 0.5 µm, and
ω/2π = 1 Hz, we obtain U0 	 2 and Nc 	 230. For this value,
x̄ 	 1.7� and Vff 	 0.33εF . The ideal gas approximation is
hence quantitatively valid only for dilute mesoscopic samples
(as those considered in our numerical calculations). Once
the dimer Bose gas nucleates at the trap center, the ideal
gas condition is quickly violated, due to the larger bosonic
densities, although the formation of the dual-density profile
(similar to that in Fig. 3) still holds. For stacks of 2D sites,
the ideal gas approximation fails even for extremely low 2D
densities. However, the formation of dimer mixtures beyond a
given critical density should also occur for 2D arrangements.
These mixtures may be considered weakly interacting for
2D densities n such that nr2

∗ < 1 with r∗ = md2/h̄2. For
the previous values, this demands n <∼ 1.1 × 108 cm−2. For
N � Nc [and U0 > U ∗

0 (D, II )], weakly interacting dimers
will form a BEC of three different bosons (dimers I in sites
1 and 2, I in sites 2 and 3, and II), whose properties (e.g.,
miscibility versus phase separation) will largely depend on the
precise determination of the different interdimer interactions,
which will be the subject of a future work.

In conclusion, fermionic polar molecules in three-well
potentials are expected to form a rather peculiar filament gas.
Depending on the filling per site and the interaction strength,
we expect that the character of the chain gas ranges from
a pure trimer gas at low fillings to a bosonic mixture of
pseudo-spin-1/2 and spinless dimers for large enough fillings
and dipole strengths. Note, finally, that molecules in an even
larger number of sites may form a quantum gas mixture
of increasing complexity. Dipolar chain liquids are, hence,
an exciting perspective for ongoing experiments with polar
fermionic molecules.
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