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The electron-nucleus interaction in a super-intense few-cycle x-ray pulse is investigated. The super-intense
few-cycle x-ray pulse-induced internal conversion (IC) process is discussed in detail. The x-ray laser-pulse
induced IC coefficient is calculated, and in particular, it is derived in the case of a pulse of Gaussian shape and
for a bound-free electron transition. The IC coefficient of the IC process induced by a super-intense few-cycle
soft-x-ray laser pulse in the case of the 99mTc isomer is determined numerically. The results obtained for the IC
coefficient show significant carrier angular frequency, carrier-envelope phase, and pulse-length dependencies.
The infinite pulse-length limit and experimental aspects are also discussed.
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I. INTRODUCTION

It was long ago recognized [1] that the direct interaction
between a nucleus and a laser beam was strongly hindered
by the shielding effect of the electron cloud. It was also
shown in the case of low-energy nuclear transitions [2]
that the rate of an internal conversion process was low-
ered if an outer electron was removed with the aid of
laser radiation. Later it was concluded [3] that the direct
laser-nucleus interaction cannot cause measurable change in
γ -decay rates. These results focused the interest on the laser
beam modified internal conversion (IC) [4] and electronic-
bridge processes [5]. Afterward, in a number of works it was
stated that laser fields of high enough intensity may cause
significant modification in the rate of electron-nucleus-laser
combined processes [6]. Finally it was found that all these pro-
cesses can be traced back to laser-field induced modification
of the electromagnetic interaction between the electron and
nucleons [7].

The progress made in laser technology aimed at reaching
extremely high laser intensities has led to pulses of length of
few cycles and of photon energy in the hard UV and soft-x-ray
range [8,9] that seem to be appropriate to measurably modify
electron-nucleus combined processes. The subfemtosecond
x-ray pulses are currently produced by high-harmonic genera-
tion combined with spectral filtering and phase matching and
their peak intensity is about two to three orders of magnitude
higher than that of synchrotron sources, but their duration is
six to eight orders of magnitude shorter and thus their use does
not seem to increase the feasibility of experimental verification
of the laser-induced IC coefficient. However, recently about a
four orders of magnitude increase with a decreasing pulse
length of the two photonic ionization process was stated [10]
in the x-ray regime that indicates a similar phenomenon in the
case of laser-assisted electron-nucleus combined processes.
The calculations in Ref. [7] were carried out in the plane-wave
(infinitely long pulse) limit for the transition probability
per unit time of laser-induced IC processes and for IC

coefficients of energetically forbidden IC processes. There-
fore, we reformulate the problem discussed in Ref. [7] to be
valid in the few-cycle case as well.

One aim of this article is to give the transition probability
of electron-nucleus-laser combined processes valid also in the
case of super-intense few-cycle x-ray pulses. The super-intense
few-cycle x-ray pulse-induced IC process is discussed in
more detail. Numerically the super-intense few-cycle soft-x-
ray laser-induced IC process in the case of 99mTc is investigated
and the few-cycle x-ray pulse-induced IC coefficient of the
energetically forbidden IC process that starts from the 2p3/2

electron shell is given. The infinitely long pulse limit is
determined for comparison. Some experimental aspects are
also discussed.

II. ELECTRON-NUCLEUS INTERACTION IN A
FEW-CYCLE LASER FIELD

It was shown in Ref. [7] that the effect of the laser radiation
on electron-nucleus interaction can be equivalently replaced
by transforming the electron space coordinates −→x to −→xB as

−→xB = −→x + ee

κ

−→
Z , (1)

(Henneberger transformation [11,12]) where κ is the rest mass
of the electron, ee = −e is the electronic charge (e is the
elementary charge),

−→
Z (t) = −1

c

∫ −→
A cl(t)dt, (2)

where c is the velocity of light, and
−→
A cl(t) is the vector

potential that describes the classical radiation (laser) field.
Similarly to Eq. (1), any function F (−→x ) must be transformed
as F (−→x + ee

κ

−→
Z ).

In Ref. [7]
−→
A cl(t) = −→ε A0 cos(ω0t) was used to correspond

to an infinitely long pulse of carrier angular frequency ω0. In
the case of a pulse of length τ , the electric field strength of a
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few-cycle pulse can be well described [13] with

−→
E (k0x0) = E0

−→ε h(k0x0/T ) cos(α), (3)

where −→ε is the unit vector of polarization, h(k0x0/T ) stands
for the pulse envelope function, T = ω0τ is the parameter
describing the pulse length, and α(φ) = k0x0 + φ with φ as
the carrier-envelope phase. (We introduce new variables k0 =
ω0/c, x0 = ct.) We found that pulses of the form similar to
Eq. (3) can be obtained by deriving the vector potential−→
A cl(x0/c) and the electric field strength

−→
E (k0x0) from

−→
Z (k0x0) = Z0

−→ε f (k0x0, T ) cos(k0x0 + φ), (4)

with Z0 = E0/ω
2
0 and f (k0x0, T ) describing the pulse form.

As the radii of both the atomic and nuclear states are much
smaller than the carrier wavelength of the radiation, the dipole
approximation is justified. As a consequence of Eq. (1) and
what was said earlier the calculation in Ref. [7] must be
repeated with the substitution

−→xB = −→x + ξ−→ε , (5)

where

ξ (k0x0, φ) = ξ0f (k0x0, T ) cos(k0x0 + φ), (6)

with

ξ0 = ee

κ
Z0. (7)

As a result, in DF , that is the causal (Feynman)
Green-function [14] used in the electromagnetic four-
vector potential [7], an exp[iξ (k0x0, φ)−→ε × −→q ] multiplier
appears

DF (x ′ − yN ) = −1

4π3

∫
e

i[ξ (k0x0 ,φ)]
−→ε ·−→q e−iq(x−yN )

q2 + iε
d4q. (8)

Here the four-vector qµ = {q0,
−→q }, xµ′ represents the

Henneberger-transformed electron four-coordinate, (xµ′ =
{x0,

−→x B}), and y
µ

N = {y0,
−→y N } as the four-coordinate of one

of the nucleons. Let J 21
µ (x) denote the four-transition current

density of the electron in the transition 1 → 2 and j
µ
βα(yN )

the four-transition current density of a nucleon in the α → β

transition that are

J 21
µ (x) = J 21

µ (−→x )eik21x0 , (9)

with J 21
µ (−→x ) = eeψ̄2(−→x )γµψ1(−→x ) and

j
µ
βα(yN ) = eikβαy0j

µ
βα(−→yN ). (10)

Here γ µ denotes the γ matrices, ψ2 and ψ1 stand for
the electron bispinors of energy eigenvalues E2 and E1

corresponding to the final and initial electron states of the
process, respectively, k21 = (E2 − E1)/(h̄c), and kβα = (Eβ −
Eα)/(h̄c), where Eβ and Eα stand for the energy eigenvalues of
the final and initial nuclear states, respectively. The transition
amplitude of the process [14] is

cf i(x02, x01) = − i

h̄c

∑
N

∫ x02

x01

dx0

∫
d3x

∫
d4yN

× J 21
µ (x)DF (x ′ − yN )jµ

βα(yN ). (11)

Integrating over y0 and q0 and using the expan-
sion of exp(iqξ cos ϑq) = ∑∞

n=0 in(2n + 1)Pn(cos ϑq)jn(qξ ),
we obtain ∫

dq0

∫
dy0e

ikβαy0DF (x ′ − yN )

=
∑

n

eikβαx0Vn(−→x ,−→yN ; ξ (x0)), (12)

where

Vn(−→x ,−→y N ; ξ (x0)) = −in(2n + 1)

2π2

∫
d3qPn(cos ϑ)

× jn(ξq)ei−→q ·(−→x −−→yN )

k2
βα − −→q 2 + iε

, (13)

and jn stands for the spherical Bessel function. Carrying out
the integration over x0

cf i(x02, x01) =
∫ x02

x01

Kf i(ξ (x0))ei(kβα+k21)x0dx0, (14)

with

Kf i(ξ (x0)) =
∑

n

K
(n)
f i (ξ (x0)), (15)

and

K
(n)
f i (ξ (x0)) = − i

h̄c

∑
N

∫
d3xd3yNJ 21

µ (−→x )jµ
βα(−→yN )

×Vn(−→x ,−→yN ; ξ (x0)). (16)

The transition probability

Pαβ,12 =
∑
f

〈|cf i(−∞,∞)|2〉i , (17)

where
∑

f denotes the sum over all the possible final states
and 〈〉i denotes the average over all the possible initial states.
As a consequence of the large bandwidth of the short pulse
the terms that correspond to n-photonic processes cannot be
traced out with the aid of an energy-Dirac-delta and so they
are mixed in Eq. (15) and consequently in Eq. (14).

III. X-RAY PULSE-INDUCED IC PROCESS

We deal with energetically forbidden IC processes (|β〉 �=
|α〉, kβα < 0) that are induced by the coherent, super-intense
UV soft or hard x-ray radiation. It was found [7] that it can
switch on the IC processes more effectively if its carrier
angular frequency ω0 ∼ |
E|/h̄, where 
E = Eαβ − |E1|
is the energy defect of the system with Eαβ = Eα − Eβ .
Therefore in the following, the energetically forbidden IC
process is investigated near the threshold.

Expanding the exponent in Eq. (13) and following the train
of thought of Ref. [7] we obtain

Vn =
∑

l,L,M

(−8)il(−i)LYlM (x̂)Y ∗
LM (ŷN )

×
∫ 1

−1
ϕn

l,L,M (u)du

∫ ∞

0
In(q)dq, (18)
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where YlM and YLM denote the spherical harmonics, x̂ and ŷN

represent the unit vectors pointing in the directions −→x and−→y N , respectively, and we introduce

ϕn
l,L,M (u) = Nin(2n + 1)Pn(u)P M

l (u)P M
L (u), (19)

with

N =
√

(2l + 1)(l − M)!

2(l + M)!

√
(2L + 1)(L − M)!

2(L + M)!
. (20)

Pn is the Legendre polinomial and P M
l and P M

L are the
associated Legendre-polinomials of the first kind

In(q) = jn(ξq)jl(qx)jL(qyN )q2

k2
αβ − −→q 2 + iε

, (21)

where jn, jl , and jL are spherical Bessel functions of order n,
l, and L, respectively. The frame of reference was chosen as−→qz ‖ −→ε (the laser is polarized in the z direction).

Expanding the expression Pn(u)P M
l (u)P M

L (u) into the
power series of u [15], it can be shown that it is an even function
of u if n + l + L is even. In this case the integration over u can
be written as

∫ 1
−1 du = 2

∫ 1
0 du. On the other hand, if n + l + L

is odd the integration results in
∫ 1
−1 PnP

M
l P M

L du = 0, which
gives Pαβ,12 = 0. Therefore we have to evaluate the transition
probability of the process for l + L + n = even cases only.
However, for l + L + n = even, one can change the integra-
tion as

∫ ∞
0 dq = 1/2

∫ ∞
−∞ dq. Supposing that ξ + yN 
 x,

one can carry out the integration over q with the aid of contour
integration techniques [7]. It results∫ ∞

0
In(q)dq = π

2
ikαβjn(−ξkαβ)jL(kαβyN )h(1)

l (kαβx), (22)

where h
(1)
l (kαβx) is the spherical Hankel function of the first

kind of order l and kαβ = −kβα . Collecting everything we
obtain

Vn = π

2
ikαβ

∑
l,L,M

(−8)il(−i)LYlM (x̂)Y ∗
LM (ŷN )

× jL(kαβyN )h(1)
l (kαβx)Qn

l,L,M jn(−ξkαβ), (23)

where

Qn
l,L,M =

∫ 1

−1
ϕn

l,L,M (u)du. (24)

In the following we investigate the x-ray pulse-ignited
IC process of a certain metastable state of the nucleus that
decays mainly by an electric multipole decay mode of order L

(denoted as EL) and for this reason the current-current inter-
action between the nucleus and the electron can be neglected.
We approximate jL(kαβyN ) � (kαβyN )L/(2L + 1)!! [16] in
Eq. (23), which makes it possible to use the multipole transition
operator of the nucleus that is defined as M(EL,M) =∑

N eNyL
NYLM (ŷN ), where eN is the charge of the N th nucleon.

Its transition matrix element can be written as

〈Ii,Mi |M(EL,M)|If ,Mf 〉 = (−1)Ii−Mi 〈Ii‖M(EL)‖If 〉

×
(

Ii L If

−Mi M Mf

)
, (25)

where 〈Ii‖M(EL)‖If 〉 is the reduced matrix element of
M(EL,M), Ii and If are the angular momentum quantum
numbers, Mi and Mf denote the magnetic quantum numbers
of the initial and final nuclear states, respectively, and the usual
notation of 3j symbols is applied.

After summing up all the magnetic quantum numbers
of the final states (mf ,Mf ), averaging all the initial ones
(mi,Mi)—where mi and mf are the magnetic quantum num-
bers of the initial and final electronic states, respectively,—and
introducing the reduced transition probability B(EL, Ii →
If ) = |〈Ii‖M(EL)‖If 〉|2/(2Ii + 1) [17], we obtain for the
probability [Pαβ,12]

l,L
of the transition in the lth partial wave

and of multipolarity L

[Pαβ,12]
l,L

= 4παf

h̄c
B(EL, Ii → If )k2L+2

αβ Dl,L

×
∫ ∑

M

|Gl,L,M (ε2)|2∣∣Rf i

l

∣∣2 K2
2 dK2

(2π )3
. (26)

Here K2 is the magnitude of
−→
K2 (i.e., the wave vector of the

outgoing electron) and we define the quantities

Dl,L = (2lf + 1)

(2L + 1)[(2L + 1)!!]2

(
li l lf

0 0 0

)2

, (27)

Gl,L,M (ε2)

=
∑

n

Qn
l,L,M

∫ ∞

−∞
jn(kαβξ (x0))ei(ε2−
)x0dx0, (28)

where 
 = 
E/(h̄c) with 
E = Eα − Eβ + E1, ε2 =
E2/(h̄c), and

R
f i

l =
∫ ∞

0
Rf (r)h(1)

l (kαβr)Ri(r)r2dr. (29)

Here Rf and Ri denote the radial parts of the nonrela-
tivistic wave functions in the final and initial electronic
states, respectively, and li and lf are the angular momentum
quantum numbers of the electron in the initial and final states,
respectively.

We introduce the averaged IC coefficient (ICC) α
l,L

induced
by an ultrashort, super-intense x-ray pulse

αl,L = (P
αβ,12 )l,L
τirWγ

, (30)

where τir is the irradiation time and

Wγ = 8π (L + 1)k2L+1
αβ

L[(2L + 1)!!]2h̄
B(EL, Ii → If ), (31)

is the rate of direct γ decay [17]. (We may take τir = τ as
a first estimation.) Thus in the case of bound-free electronic
transitions

αl,L = αf kαβ

2cτir
Cl,L

×
∫ ∑

M

|Gl,L,M (ε2)|2∣∣Rf i

l

∣∣2 K2
2 dK2

(2π )3
, (32)
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with αf as the fine structure constant and

Cl,L = (2lf + 1)L

(2L + 1)(L + 1)

(
li l lf

0 0 0

)2

, (33)

and kαβ = (Eα − Eβ)/h̄c.

IV. GAUSSIAN X-RAY PULSE AND FREE FINAL
ELECTRONIC STATE

The transition probability contains the Gl,L,M (ε2) function
that depends on the parameters of the external x-ray field. Us-
ing the condition ξkαβ 
 1, which is easy to meet, we approx-
imate the spherical Bessel-function in the integral (28) with its
low argument approximation jn(kαβξ ) ≈ (kαβ)nξn/(2n + 1)!!
[16]. (If the pulse peak intensity I 
 1022 W/cm2 then
ξkαβ 
 1 is fulfilled in the case of the 99mTc isomer to be
investigated later numerically.)

In the function ξ [defined by Eq. (6)] we take a Gauss
function for the envelope function

ξ (k0x0, φ) = ξ0e
−( k0x0

T
)2

cos(k0x0 + φ). (34)

Now we can calculate the Gl,L,M (ε2) functions. If n = 0, then
in Gl,L,M (ε2) the Q0

l,L,M

∫
ei(ε2−
)x0dx0 = Q0

l,L,M2πδ(ε2 −

) = 0. This is the x-ray pulse-free case and it expresses
that the process is energetically forbidden if the laser is not
on. Because of the ξkαβ 
 1 condition, the contribution of
the terms n � 2 in the sum over n in Eq. (28) is negligible.
The only term that yields a contribution corresponds to n = 1.
Thus

Gl,L,M = 1

3
kαβξ0Q

1
l,L,M

T

k0
G(ε2, T , φ,
, k0), (35)

with

G(ε2, T , φ,
, k0) = k0

T

∫ +∞

−∞
e−( k0x0

T
)2

cos(k0x0 + φ)

× ei(ε2−
)x0dx0. (36)

Carrying out the integration, it reads

G(β, T , φ, δ)

= π1/2

2

[
e−iφe−( (β+δ−1)T

2 )2 + eiφe−( (β+δ+1)T
2 )2

]
, (37)

where β = ε2/k0 and δ = |
|/k0. As a result of the factorized
form of Gl,L,M [see Eq. (35)] the angular momentum conser-
vation in αl,L [see Eq. (32)] is partly expressed through the
quantity

S1
l,L =

∑
M

∣∣Q1
l,L,M

∣∣2
. (38)

The only nonvanishing S1
l,L values are S1

2,3 = 9 and S1
4,3 =

12. (The n + l + L = even condition results the l + L = odd
restriction for n = 1.)

In Eq. (32) the quantity R
f i

l [defined by Eq. (29)] contains
radial parts of the initial (bound) and final (free) electronic
states that are represented by radial parts of both hydrogen-like
(Ri) and free Coulomb [RK2lf (r)] wave functions, respec-
tively [18]. If the kinetic energy approaches zero (E2 → 0)
(i.e., near the threshold) we may use the low argument
approximation of the radial part of the Coulomb function as

RK2lf (r) =
√

4πK2
r

J2lf +1(
√

8Zr
a0

), where a0 is the Bohr radius,

J2lf +1(
√

8Zr
a0

) is the Bessel function of the first kind, and Z is

the charge number. To separate the K2 dependence in Eq. (29)
we use the identity∣∣Rf i

l (K2)
∣∣2 = 32π4a2

0

K2

∣∣R̃f i

l

∣∣2
, (39)

where

R̃
f i

l =
∫

R̃ni li (x)J2lf +1(
√

8x)e− x
ni x3/2hl

(
kαβa0x

Z

)
dx,

(40)

is a K2 independent quantity. Here R̃ni li (x) = a
3/2
0 Ri(x) with

x = Zr/a0 and hl(kαβa0x/Z) denotes the spherical Hankel
function.

Using the replacement ξ0 = [4παf h̄/(κ2c4k4
0)]1/2I 1/2 in

Eq. (35), where I denotes the peak intensity of the super-
intense x-ray pulse, we obtain the x-ray pulse-induced ICC of
a bound-free electronic transition

αl,L = α
pulse
l,L,0δ

4 τ

τir
ψ(φ, T , δ)I, (41)

valid in the case of a Gaussian laser pulse, where

α
pulse
l,L,0 = ACl,LS1

l,L

∣∣R̃f i

l

∣∣2
, (42)

with

A = 2πα2
f a2

0k
3
αβ

9κc3|
|4 , (43)

and

ψ(φ, T , δ) = T

∫ ∞

0
|G(β, T , φ, δ)|2dβ. (44)

V. SUPER-INTENSE SUBFEMTOSECOND SOFT-X-RAY
LASER PULSE-INDUCED IC PROCESS

OF 99mTC ISOMER

The x-ray pulse-induced IC decay of 99mTc [7,19] is
numerically investigated. The 99mTc isomeric state decays by
an E3 transition of transition energy Eαβ = 2.1726 keV. The
half-life of the isomeric state is τα = 6.01 h and the total
laser-free IC coefficient is αtot � 1.6 × 107 [20]. Eαβ is lower
than the binding energy of the K and L shell electrons,
therefore the IC channel for these shells is energetically
forbidden. However, if the x-ray pulse is switched on then
the IC process from these shells may start.

It was found in Ref. [7] that the laser-induced IC process
from the 2p3/2 shell is the most probable, therefore this case is
investigated further. The binding energy E1 = −2676.9 eV of
the 2p3/2 shell, therefore the energy that is required to ignite
the IC process is |
E| = 504.3 eV. For the angular frequency
of the carrier wave ∼|
E|/h̄ is chosen. The shielding effect
of the other electrons is taken into account by introducing the
effective charge number, thus Zeff = n

√|E1|/Ry = 28.054 is
substituted for Z in Eq. (40), where Ry is the Rydberg energy
and the principal quantum number of the shell is n = 2.

The results of the αl,L calculation show that α4,3 is domi-
nant: α

pulse
4,3,0 = 1.21 × 10−11 W−1 cm2 and α

pulse
2,3,0 is more than
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ψ

φ

T

FIG. 1. The carrier-envelope phase (φ) (−2π � φ � 0) and pulse
length (T ) dependence of ψ(φ, T ) in the n = 1 process at δ = 1.
T = ω0τ , ω0 = ck0 is the carrier angular frequency and τ is the pulse
length, δ = |
|/k0. h̄c|
| is the magnitude of the energy defect.

seven orders of magnitude smaller. The φ and T dependence
of α4,3 is illustrated by the plot of ψ(φ, T , δ = 1) (k0 = |
|)
in Fig. 1. It can be seen that α4,3 has significant φ dependence
at T = 1, but the φ dependence practically disappears at
T � 2. However, the drastic increase of α4,3 with decreasing
pulse length obtained in the case of multiphoton ionization of
phase-controlled ultrashort x-ray pulses [10] does not appear.

The plane-wave laser-induced IC coefficient has a threshold
property, that is, in the weak field limit the laser-induced IC
process may start with the absorption of one photon of k0 �
|
|, but for photons of k0 < |
| the plane-wave induced IC
process is forbidden. However, in the case of few-cycle x-ray
pulses the bandwidth of the pulse is comparable with the carrier
angular frequency; thus even for k0 < |
| the energetically
forbidden IC process may be started. This situation is shown
in Fig. 2 where the δ(k0 = |
|/δ) and the T dependence of
δ4ψ is plotted at φ = nπ .

Figure 3 shows the |G(β, φ)|2 function that gives the ε2 =
βk0 and the φ dependence of the (differential) IC coefficient
at T = 1, (a) at δ = 0.8, and (b) at δ = 2.4. It can be seen
that |G(β, φ)|2 has maxima at β = 0 and with φ = nπ (n =
0, 1, 2, . . . , ).

The α4,3 in the plane-wave limit with the k0 � |
| condition

α
pw
4,3 = π

2
α

pulse
l,L,0δ

4I. (45)

At the threshold (k0 = |
|) it gives α
pw
4,3 = 1.91 × 10−11I [21].

Comparing the limT →∞ α4,3 (41) and the α
pw
4,3 (45) expressions

yields

τ

τir
lim

T →∞
ψ(φ, T , δ = 1) = π

2
, (46)

that gives τir = 0.627τ in our case.
From the experimental point of view, the number Nv of

super-intense subfemtosecond soft-x-ray laser pulse-induced
events (the number of x-ray pulse-induced 2p3/2 vacancies)
may be interesting. Their observation may be effectively done
with the aid of light-controlled secondary electron emission
spectroscopy [22] and ion-charge-state chronoscopy [23] of
Auger decay. For a sample containing Nα(t) number of 99mTc

δ

T

δ4 ψ

FIG. 2. The (δ = |
|/k0) and T dependence of δ4ψ at φ = nπ .
T = ω0τ , ω0 = ck0 is the carrier angular frequency and τ is the pulse
length, h̄c|
| is the magnitude of the energy defect.

isomer nuclei, Nv may be calculated as

Nv �
Np∑
k=1

Nα(tk)
α4,3

αtot

τir

τα

, (47)

where Np is the number of pulses in the experiment. The
decay of the 99mTc isomer is followed by an M1 + E2γ

transition of energy 140 keV, of half-life τβ = 0.19 ns, and
of mixing ratio +0.134 [19]. The number Nback of those
2p3/2 vacancies that are created in the 140 keV transition
can mainly be considered as background. For δ > 1 the
laser-induced bound-free transition from the 2p3/2 shell needs
more than six photons; consequently the creation of a vacancy
in that manner is negligible. Using the secular balance
condition

Nback =
Np∑
k=1

Nα(tk)α140
τm

τα

, (48)

where τm is the time of measurement of determining the
existence of a vacancy. The estimated internal conversion
coefficient α140 from the 2p3/2 (L2) shell of the 140 keV
transition is less than 10−2 (α140 � 10−2). It is reasonable to
suppose that τm 
 τβ and the time between ultrashort x-ray
pulses is tp � τβ . Thus the estimated signal-to-background
ratio (η = Nv/Nback) can be written as

η = α4,3τir

αtotα140τm

. (49)
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φ
β

|G
|2

(b)

φ
β

|G
|2

(a)

FIG. 3. The |G(β, φ)|2 function, the β = ε2/k0 and the φ dependence of the (differential) IC coefficient at T = 1. ε2 = E2/h̄c where E2

is the energy of the outgoing electron. T = ω0τ , ω0 = ck0 is the carrier angular frequency and τ is the pulse length δ = |
|/k0. h̄c|
| is the
magnitude of the energy defect. (a) δ = 0.8 and (b) δ = 2.4.

Substituting the expression (41) of α4,3 and the numerical
values of α

pulse
l,L,0, αtot, and α140 we have

η = η0τIδ4ψ(φ, T , δ)/τm, (50)

with η0 = α
pulse
4,3,0/(αtotα140) � 7.6 × 1017 W−1 cm2. From an

experimental point of view, the ρ = Nv/
√

Nback ratio is also
informative, where

√
Nback = σback stands for the standard

deviation of the background. Considering that τa is long
enough to approximate

∑Np

k=1 Nα(tk) = AqαταNp, where Aqα

is the initial activity of the sample and if the x-ray pulse
has repetition rate r and the total time of the measurement
is Tm then Np = rTm and

ρ =
√

AqαrTm

α140τm

α4,3τir

αtot
. (51)

Furthermore, if we measure Aqα in mCi = 3.7 × 107

s−1 units and take Tm = µτa (τα = 6.01 h), then ρ =
ρ0δ

4ψτI
√

Aqαrµ/τm with ρ0 = 6.7 × 10−12 W−1 cm2 s1/2.
Considering the rapid progress in the field of the generation of
few-cycle soft-x-ray pulses and in subfemtosecond metrology
[9] it is expected that the required ρ > 3 may be achieved in
the future.

Finally, for the sake of illustration the δ(k0 = |
|/δ)
dependence of N , the number of 2p3/2 vacancies created by
a hypothetical short x-ray laser pulse of laser peak intensity
I = 1021 W cm−2, repetition rate 10 s−1, and T = 1, is shown
in Fig. 4. The total time of measurement Tm = 21, 600 s
(6 h) and the activity of the sample is 100 Ci. An advantage
of the application of an extra short pulse can be seen from
Fig. 4. The curve has a maximum at δm = 2.5, consequently
it is advantageous if the carrier angular frequency ω0 �
|
E|/(δmh̄), that is, 0.4 times smaller than the one we need in
the plane-wave limit (e.g., in the case of shyncrotron radiation).
On the other hand, at this angular frequency the efficiency of
soft-x-ray pulse generation is about 20 times higher [9,24] than
in the case of ω0 � |
E|/h̄.

VI. SUMMARY

The results of intense laser-field modified electron-nucleus
interaction obtained in the plane-wave case [7] are adapted for
the case of a few-cycle x-ray laser field. The few-cycle x-ray

pulse-induced IC process is investigated in more detail and the
x-ray pulse-induced IC coefficient is deduced. Specifically,
the IC coefficient induced by a Gaussian x-ray pulse is derived
for bound free electron transitions. The x-ray pulse-induced
IC process from the 2p3/2 shell of the 99mTc isomer that is
energetically forbidden in the laser-free case is investigated
numerically. The process has a moderate x-ray pulse length
dependence in our case, compared to the one obtained in the
case of multiphoton ionization by phase-controlled ultrashort
x-ray pulses [10], and it shows significant carrier angular
frequency and carrier-envelope phase dependence near the
τ = ω−1

0 pulse length case. The result of the obtained infinite
pulse length limit agrees with the plane-wave results. The
super-intense peak intensity required to reach the experi-
mentally observable laser-induced α4,3 value is hoped to be
available in the future [9] and it is also expected that the
existence of a Tc ion having a vacant 2p3/2 electron state may
be traced by the method of light-controlled secondary electron
emission spectroscopy [22] and ion-charge-state chronoscopy
[23] of Auger decay.

FIG. 4. The δ (δ = |
|/k0) dependence of N , the number of 2p3/2

vacancies created by a hypothetic short x-ray laser pulse, with T = 1
and Tm = 21, 600 s (6 h). The activity of the sample is 100 Ci, the
repetition rate is 10 s−1, and the laser peak intensity I = 1021 W cm−2.
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[4] P. Kálmán and J. Bergou, Phys. Rev. C 34, 1024 (1986);
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