
PHYSICAL REVIEW A 81, 013417 (2010)

Dependence of interatomic decay widths on the symmetry of the decaying state:
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In this article, we investigate the dependence of interatomic Coulombic decay widths on the symmetry of
the decaying state. In this type of decay, excited, ionized, and doubly ionized states of an atom or molecule
can efficiently relax by ionizing their environment. We concentrate on an atom A and a neighboring atom B

and consider such excited, ionized, or doubly ionized states of A that decay by emitting a single photon if A

were an isolated atom. Analytical expressions for the various widths are derived for large interatomic distances
R. A pronounced dependence of the widths on the symmetry properties of the decaying state is found. This
dependence at large R is related to the dependence of the interaction energy of two classical dipoles on their
mutual orientation. Comparison with precise ab initio calculations shows that the analytical results hold well at
large R, while they deviate from the ab initio values at smaller R due to the effect of orbital overlap.
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I. INTRODUCTION

Interatomic Coulombic decay (ICD) is an extremely effi-
cient relaxation process taking place in weakly bound systems,
whereby an electronic excitation localized on one unit decays
on a femtosecond time scale by ionizing neighboring atoms or
molecules. Originally ICD was predicted [1] and investigated
both theoretically and experimentally [2–7] in singly ionized
clusters, where one of the constituent monomers had a hole
in an inner-valence shell. Later investigations showed that it
exists also in excited neutral clusters [8–11] and in excited
doubly ionized clusters that are produced via an Auger decay
on one of the monomers [12–17]. Thus, there seems to be
no restrictions on the nature of the initially excited state and
interatomic decay takes place as long as the corresponding
channel is energetically accessible.

Among several characteristics of interatomic decay, its
decay width � is of central importance. Since ICD, in
principle, can be accompanied by other decay processes,
photon emission or autoionization to name a few, knowledge
of � allows one to decide how important interatomic decay is
for a given excited state in the cluster of interest. Extensive
ab initio calculations of interatomic decay widths have been
performed for a number of systems, e.g., Nen [2], MgNe [9],
and NeAr [17]. These calculations not only produced values
of � for the equilibrium nuclear configurations of clusters
under study but also demonstrated the behavior of � as a
function of interatomic distances in clusters and the number of
monomers surrounding the excited moiety. However, for some
excited states the decay width might depend on an additional
parameter, as we illustrate below on the example of ICD in the
CaHe cluster.

Let us assume that the initial excitation is produced by
removing an electron from the 3p shell of Ca atom. The
resulting Ca+(3p−1)He cluster might decay by the ICD
mechanism, whereby an electron from the 4s shell of Ca fills
the initial vacancy, while in a concerted step an electron is
removed from the 1s shell of the He atom into the continuum.
The initial state of the system is derived from the 2P o

term of the Ca atom and the 1S ground state of the He
atom. The 2P o term has three components corresponding to
different projections of the orbital angular momentum which
are energetically degenerate in an isolated atom. In the Ca+He
cluster the degeneracy of this term is partially lifted, giving
rise to a nondegenerate 2�+ and a doubly degenerate 2� state.
By choosing light polarized either along or perpendicular to
the interatomic axis, one can selectively prepare a state of
either 2�+ or 2� symmetry which is the initial state of the
ICD process. Ab initio calculations produced the surprising
result [18] that the decay width of the state of 2�+ symmetry
can be as much as four times larger than the decay width of
the state of 2� symmetry. Moreover, this ratio persists even if
the two atoms are infinitely far apart and the states 2�+ and
2� become degenerate. A dependence of � on the symmetry
of the initially excited state was also found in the results of
ab initio calculations with neutral or doubly ionized initial
states. Since this phenomenon has never been satisfactorily
explained in the framework of ICD, we attempt to do it in the
present article.

We investigate the effect of the initial state’s symmetry in
weakly bound heteronuclear clusters AB on the interatomic
decay width for different types of initial excitations which
include excited cations and dications as well as excited states
of the neutrals. We analyze the nature of this dependence by
deriving analytical expressions for the decay widths at large
interatomic separations R. In those cases where the initial state
can decay in the isolated atom by single-photon emission ac-
cording to dipole selection rules the decay at large interatomic
distances proceeds through energy (virtual photon) transfer.
The corresponding decay widths exhibit a 1/R6 behavior
with a prefactor which is a product of quantities pertaining
to the isolated atoms A and B. We show that the width’s
dependence on the symmetry of the initial state appears in the
prefactor and can be traced back to a classical phenomenon: the
dependence of the interaction energy of two dipoles on their
mutual orientation. The validity of asymptotic expressions,
first derived in the context of interatomic Auger decay in
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Ref. [19], was investigated by Averbukh et al. [4] who showed
that at distances considerably larger than the equilibrium
distance the 1/R6 dependence holds well, while at distances
about equilibrium it can break down due to the effect of orbital
overlap. Averbukh et al. [4] did not investigate the dependence
of ICD decay widths on the symmetry of the initial state, since
the considered initial states which can decay by dipole tran-
sitions in the isolated atom were of � symmetry. In addition
to these, they also studied cases where the initial state’s decay
in the isolated atom is dipole forbidden and discussed the
respective 1/R8 and 1/R10 asymptotic behavior of the ICD
widths. In the present work we generalize and complement
their study by showing that the prefactor multiplying the 1/R6

term depends on the initial state’s symmetry. We then compare
asymptotic decay widths to �’s computed using precise ab
initio methods in order to see whether the dependence on
symmetry at large R is indeed as predicted by asymptotic
formulas and to determine the effect of orbital overlap on this
dependence in the vicinity of the equilibrium distance.

The plan of this article is as follows. In the next section
we sketch the derivation of the asymptotic expressions of
the interatomic Coulombic decay widths for various types of
initial states, while a more detailed derivation can be found
in the Appendix. Comparison with ab initio calculations
in several systems will be given in Sec. III together with a
discussion of the results obtained. Conclusions are presented
in Sec. IV. We use atomic units everywhere in this article
unless indicated otherwise.

II. DERIVATION OF ASYMPTOTIC FORMULAE

We start by deriving asymptotic formulas for the inter-
atomic decay of an inner-valence vacancy on atom A of the
cluster AB. The derivations in the case of doubly ionized
and neutral clusters are similar and will be outlined next. We
assume first that the one-particle spin orbitals were obtained
previously, e.g., by solving Hartree-Fock equations. In a
heteroatomic system bound orbitals tend to be localized on
either A or B as the interatomic distance grows and they
asymptotically approach the bound orbitals of the isolated
atoms A and B. This reasoning apparently fails in the case of
continuum orbitals which remain delocalized no matter how
large the interatomic distance. However, as we will see later,
it is not these orbitals by themselves which are important
but matrix elements of some operators evaluated between
continuum orbitals and orbitals localized on a given atom.
The part of the continuum orbital contributing most to such
matrix elements is indistinguishable asymptotically from the
corresponding part of the continuum orbital obtained for the
isolated atom. Therefore, we designate all orbitals by |γ lmµ〉,
where l, m, µ, and γ stand for the orbital angular momentum,
its projection on the intermolecular axis, projection of the
electron spin, and the rest of quantum numbers, respectively. In
what follows we assume the intermolecular axis to be aligned
along the z axis. The bound and continuum orbitals satisfy the
following normalization conditions

〈γ ′l′m′µ′|γ lmµ〉 = δγ γ ′δll′δmm′δµµ′
(1)

〈γ ′l′m′µ′|γ lmµ〉 = δ(εγ ′l′ − εγ l)δll′δmm′δµµ′

where εγ l stands for the energy of a continuum state. We
next assume for simplicity of presentation that the single
determinant ground state |�0〉 of the system was constructed
and that it is closed shell, i.e., a 1� term. In addition, we assume
that the ground states of the atoms A and B are also closed
shell and consequently are 1S terms. We make this assumption
since the majority of systems of current experimental interest,
e.g., noble gas or rare earth-noble gas clusters, belong to this
class. The generalization of the following results to systems
with ground states of different symmetry is straightforward.
Moreover, as long as the system is closed shell in its ground
state, one can easily extend the theory to the fully correlated
ground state |�0〉.

A. Singly ionized atom A

In the case of the singly ionized atom A the initial vacancy
resides in the inner-valence shell iv. After ICD one obtains
doubly ionized cluster AB with one hole in the outer-valence
shell ovA localized on the atom A, another in the outer-valence
shell ovB located on the atom B, and an electron ejected from
the atom B into the continuum. A schematic representation of
this process is given in Fig. 1(a).
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FIG. 1. (Color online) Schematic descriptions of the interatomic
decay processes discussed in the text for a dimer A· · ·B with
an initially excited or ionized atom A. (a) ICD, (b) pRICD/ETI,
(c) sRICD, (d) ICD after Auger decay. The symbol “ov” stands for
outer valence, “iv,” inner valence; “nv,” either outer or inner valence;
and “ip” for a particle (virtual) orbital.
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The initial state of the system is obtained by removing an
electron from the inner-valence orbital |αivlivmivµiv〉 localized
on atom A. The corresponding single determinant many-
electron function is given by

|ELAMASMS〉 = ĉαiv |�0〉, (2)

where ĉαiv is the annihilation operator for the electron in
the respective inner-valence orbital. In specifying the initial
state of AB, |EinLAMASMS〉, we use the following quantum
numbers: the energy of the initial state E, and the orbital
angular momentum LA = liv and its projection on the z axis
MA = −miv which the atom A would have were it isolated.
Since the system possesses only axial symmetry, only Miv is
an exact quantum number. We assume, however, that at large
interatomic separations Liv remains a good quantum number
too. By removing one electron from a closed-shell ground state
of AB we obtain the total spin S = 1/2, while MS stands for
its projection on the z axis.

The final state of the interatomic Coulombic decay of
an inner-valence vacancy is obtained by removing elec-
trons from the outer-valence orbitals |αovA

lovA
movA

µovA
〉 and

|βovB
lovB

movB
µovB

〉 localized on A and B, respectively, and
creating an electron in the continuum orbital |βεlεmεµε〉. The
resulting one-determinant state is expressed mathematically
by ∣∣βεαovA

βovB

〉 = ĉ
†
βε

ĉαovA
ĉβovB

|�0〉. (3)

Next, we bring the final state given in Eq. (3) into the same
form as the initial state given in Eq. (2). First, unlike the initial
state it is not an eigenstate of the total spin operator. A spin
doublet state can be constructed from an one-particle–two-hole
(1p2h) state in Eq. (3) in two different ways. One can add the
spins of the two holes to form a singlet and then add the spin of
the particle in continuum to form a doublet. Alternatively one
adds the spins of the holes to form a triplet to which adding the
spin of the particle gives S = 1/2. The spin states constructed
in this way allow for a simple interpretation: once the ejected
electron is removed from the system the remaining doubly
ionized cluster is either in the spin singlet or spin triplet state.
The spin eigenfunctions are given by∣∣βεαovA

βovB
; S ′

NM ′
S

〉 =
∑

µεµovA
µovB

C
S ′

NM ′
S

µεµovA
µovB

∣∣βεαovA
βovB

〉
,

(4)
where C

S ′
N M ′

S
µεµovA

µovB
are spin coupling coefficients and the

superscript N enumerates the different ways to construct spin
doublet states. One obtains the spin coupling coefficients either
as a product of Clebsch-Gordan coefficients, if using the
standard angular-momentum addition formulas in constructing
the spin eigenstates [20], or in some other form, if using
specialized construction schemes [21].

Second, we apply an additional unitary transformation to
the states in Eq. (4) to obtain |E′L′

AM ′
AL′

BM ′
BS ′

NM ′
S〉, where,

analogously to the case of the initial state, E′ is the energy of
the final state, and L′

A, M ′
A, and L′

B , M ′
B are the orbital angular

momenta and their projections on the z axis which the atoms
A and B would have, if isolated. Again, MA, MB are exactly
conserved quantities, while L′

A, L′
B will be good quantum

numbers asymptotically. We see that in our case L′
A = lovA

and M ′
A = −movA

. To obtain L′
B and M ′

B we have to add

the momenta lε and lovB
. According to the rules of angular-

momentum addition allowed values of LB are those satisfying
|lε − lovB

| � L′
B � lε + lovB

and M ′
B = mε − movB

. Thus we
obtain for the states of interest

|E′L′
AM ′

AL′
BM ′

BS ′
NM ′

S〉 =
∑

mεmovB

C
L′

BM ′
B

mεmovB

∣∣βεαovA
βovB

; S ′
NM ′

S

〉
,

(5)
where C

L′
BM ′

B
mεmovB

are vector coupling coefficients expressed
through the standard Clebsch-Gordan coefficients of the
rotation group [20] [see Eq. (A4)].

The initial and final states are coupled by electron-electron
interaction

V̂e = 1

2

∑
i �=j

1

|ri − rj| , (6)

where ri denotes the coordinates of the ith electron. The decay
width is given by the golden rule, see, e.g., Ref. [22],

� = 2π
∑

|〈E′L′
AM ′

AL′
BM ′

BS ′
N |V̂e|ELAMAS〉|2δ(E′ − E),

(7)
where the sum runs over all final states and the delta function
ensures conservation of energy in the decay process. We also
average over different spin projections in the initial state and
omit them in the expressions to follow.

At large interatomic distances a state of AB can
be represented as the product of states of the isolated
A and B. Thus, the ground state |�0〉 → |�(A)

0 〉|�(B)
0 〉,

|ELAMAS〉 → |EALAMAS〉|�(B)
0 〉, and |E′L′

AM ′
AL′

BM ′
BS ′

N 〉
→ |E′

AL′
AM ′

AS ′
A〉|E′

BL′
BM ′

BS ′
B〉, where E = EA + EB and

E′ = E′
A + E′

B . The states of the isolated atoms A and B are
constructed completely analogously to the states in Eq. (5),
with the only difference that in doing so one should use the
single determinant ground states of isolated atoms A and B,
|�(A)

0 〉 and |�(B)
0 〉, instead of |�0〉. These atomic ground states

can, in their turn, be constructed from spin-orbitals |γ lmµ〉
localized either on the atom A or on the atom B. As we show
in detail in the Appendix, under these conditions the decay
amplitude in Eq. (7) can be represented as the sum of products
of amplitudes of the processes occurring on separated atoms
which are the deexcitation of atom A and the ionization of
atom B

〈E′L′
AM ′

AL′
BM ′

BS ′
N |V̂e|ELAMAS〉

= CN√
2

∞∑
l=0

l∑
m=−l

〈
E′

AL′
AM ′

AS ′
A

∣∣D̂(A)
lm

∣∣EALAMAS
〉

× 〈
�

(B)
0

∣∣D̂(B)
lm

∣∣E′
BL′

BM ′
BS ′

B

〉∗
, (8)

where C1 = 1/
√

2 and C2 = √
3/2 and the operators D̂lm are

given by

D̂
(A)
lm =

√
4π

2l + 1

∑
i∈A

Ylm(�i)r
l
i (9a)

D̂
(B)
lm =

√
4π

2l + 1

∑
j∈B

Ylm(�j )/rl+1
j (9b)
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where the sums run over all electrons localized either on A or
on B, respectively. The spin of A is S ′

A = 1/2 and the spin of
B is S ′

B = 0.
If the transition between the states |EALAMAS〉 and

|E′
AL′

AM ′
AS ′

A〉 of the atom A is dipole allowed then the leading
term in Eq. (8) is the one with l = 1

〈E′L′
AM ′

AL′
BM ′

BS ′
N |V̂e|ELAMAS〉

= CN√
2R3

1∑
m=−1

Bm〈E′
AL′

AM ′
AS ′

A|D̂(A)
m |EALAMAS〉

× 〈
�

(B)
0

∣∣D̂(B)
m |E′

BL′
BM ′

BS ′
B

〉∗
, (10)

where we introduce the notations for the dipole operators
D̂(A,B)

m = ∑
i∈(A,B) r

(i)
m . The dipole-dipole product terms in the

sum in Eq. (10) are multiplied by constants B0 = −2 and
B±1 = 1. We see that the transition driven by the projection
of the dipole operator parallel to the intermolecular axis
contributes to the decay amplitude twice as much as the one
driven by the projection of D̂ perpendicular to z axis. Precisely
this phenomenon leads to different decay widths of the cluster
states polarized along or perpendicular to the z axis.

This phenomenon is surprising at first sight because it holds
even at very large interatomic separations. We are going to
show below that it has a classical explanation. Indeed, the
interaction energy between two classical dipoles with dipole
moments p1 and p2 located at coordinates x1 and x2 is given
by [23]

W = p1 · p2 − 3(n · p1)(n · p2)

|x1 − x2|3 , (11)

where n is an unit vector parallel to x1 − x2, i.e., parallel to the
line connecting the two dipoles. As we see from Eq. (11), if
both p1 and p2 are aligned parallel to n the interaction energy
is twice the interaction energy of the dipoles parallel to each
other but perpendicular to n. Moreover, this ratio remains the
same for all separations between the dipoles. We see that apart
from a constant factor Eq. (10) can be obtained from Eq. (11)
by replacing classical dipole moments through the transition
dipole amplitudes of the two atoms.

Substituting the term in Eq. (10) into Eq. (7) we obtain
for �

� = 2π

R6

∑
B2

M ′
A−MA

δ(E′ − E)

× ∣∣〈E′
AL′

AM ′
A|D̂(A)

M ′
A−MA

|EALAMA〉
× 〈

�
(B)
0

∣∣D̂(B)
M ′

A−MA
|E′

BL′
BMA − M ′

A〉∣∣2
, (12)

where we suppressed the spin variables. To derive Eq. (12)
we also used the following considerations. First, since we
assumed that the ground state of B is 1S the sum in Eq. (10)
contains only a single nonvanishing term with m = −M ′

B and
the only allowed value of L′

B is unity. Second, the system is
axially symmetric and M ′

A + M ′
B = MA. We would also like

to note here that the energy conservation expressed by the
delta function will be satisfied for all energies of the initial
state, once ICD channel opens. This is due to the fact that
the energy eigenvalues of the emitted ICD electron taking the
excess energy in the decay is not quantized. The expression
in Eq. (12) can be recast in terms of measurable parameters

of the isolated atoms. Asymptotically we can write E′ − E =
ωA − ωB , where ωA = EA − E′

A the energy released in the
transition on the atom A, while ωB = E′

B − EB is the energy
absorbed in the photoionization of the atom B. If the decay
can proceed to different shells ovA or to the states in the same
shell but having different angular momenta L′

A, then these
channels will be characterized through the excitation energies
ω

(i)
A = ωi and partial decay widths �i . Since asymptotically ωi

is independent of MA the expression for �i can be given in a
factorized form

�i = 2π

R6

∑
M ′

A

B2
M ′

A−MA

∣∣〈E′
AL′

AM ′
A|D̂(A)

M ′
A−MA

|EALAMA〉∣∣2

× 1

3

∑
ωB

∣∣(�(B)
0 ||D̂(B)||E′

BL′
B)

∣∣2
δ(ωi − ωB). (13)

The second sum in Eq. (13) extends over all states of B

participating in the decay, and, therefore, this sum is just
3σ (B)(ωi)c/4π2ωi [24], where σ (B)(ωi) is the photoionization
cross-section of the atom B at energy ωi . In addition, using
Wigner-Eckart theorem [20] in the first sum we obtain

�i = c

2πωiR6
PMA

S
(A)
i (E′

AL′
A; EALA)σ (B)(ωi), (14)

where the quantity PMA
is given by

PMA
=

∑
M ′

A

B2
M ′

A−MA

∣∣∣∣∣
(

L′
A 1 LA

−M ′
A M ′

A − MA MA

)∣∣∣∣∣
2

(15)

and is clearly a function of MA; that is, it depends on the
symmetry of the initial state. The quantity S(γL; γ ′L′) =
|(γL||D||γ ′L′)|2 is called the line strength for the transition
from the multiplet |γL〉 to the multiplet |γ ′L′〉. It is connected
to the corresponding transition probability W through [25]

W = 4ω3

3c3

1

2L + 1
S(γL; γ ′L′). (16)

To obtain the total decay width one should sum over all partial
widths

� =
∑

i

�i . (17)

The ICD process as given in Eq. (14) can be visualized
using the concept of the “virtual” photon transfer [4]. Thus,
the decay of the initial excitation on A and the photoionization
of B are connected by the transfer of a “virtual” photon of
energy ωi whose polarization enters PMA

. The effectiveness
of this transfer falls off with the interatomic distance as 1/R6,
due to the diminishing interaction between the atomic dipoles.

B. Doubly ionized atom A

The asymptotic decay widths for initial excited states of
the neutral and doubly ionized atoms are given by expressions
similar to those in Eq. (14). Therefore, we discuss here only
the construction of the initial and final states and give the final
expression for the decay width, while necessary details are
found in the Appendix. We start with the case of doubly ionized
states [12]. Such states can be produced in the Auger decay of
a core vacancy in the atom A. Here, we consider the initial ex-
citation to consist of two holes: one in an inner-valence shell iv
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and another in an outer-valence shell ovA [see Fig. 1(d)]. In the
Auger decay both singlet and triplet spin states of the dication
can be populated [26,27]. Moreover, as we demonstrate in the
Appendix, both can decay by the energy transfer mechanism
and, thus, have asymptotic widths falling off as 1/R6. To obtain
the wave function of the initial excitation |ELAMASA〉 we add
the spins and the orbital angular momenta of the holes in iv and
ovA shells separately for the triplet SA = 0 and SA = 1 states.

In the decay an electron from the orbital in the shell ov′
A,

which may or may not coincide with ovA, fills the vacancy in
iv, while the atom B becomes ionized. Thus, in the final state
there are three holes in orbitals in the shells ovA, ov′

A, and ovB

and an electron in the continuum orbital ε [see Fig. 1(d)]. First,
we add the spins of the three holes and the particle to obtain the
total spin S ′

N , where N numbers different spin genealogies, two
for S ′

N = 0 and three for SN = 1. Second, we add the orbital
angular momenta of the holes on A to obtain L′

A and M ′
A,

and of the particle and the hole on B to obtain L′
B and M ′

B .
We denote the resulting final state as |E′L′

AM ′
AL′

BM ′
BS ′

N 〉.
The decay width is given as before by Eq. (7). Retaining the
leading term as R → ∞ we again obtain the decay amplitude
as the product of amplitudes of processes occurring in the
individual atoms: dipole allowed deexcitation of the dication
A and ionization of B. The resulting expression for the partial
width �i takes on the form given in Eq. (14). In this case
the line strength S

(A)
i (E′

AL′
A; EALA) should be interpreted as

pertaining to the relevant transition in the dication with ωi

being corresponding excitation energy. The total width is again
obtained by summing all partial widths.

C. Excited neutral atom A

Below we discuss the asymptotic decay widths for excited
states in the neutral cluster AB (see Fig. 1). The initial
state |ELAMASA〉 is usually produced through single-photon
absorption. We assume that it is singly excited, and at large
interatomic distances this excitation is localized on atom A.
We consider an electron from the shell nv to be excited onto
the shell ip. The shell nv can be either outer valence or inner
valence, while ip refers to a bound virtual orbital of A. It can
be constructed analogously to the cases described above, such
that LA = 1 and SA = 0. There are several types of final states
coupled to this initial state in the lowest order of perturbation
theory which correspond to different decay pathways. One
is for atom A to revert to its ground state simultaneously
ionizing the atom B. The final state given by the wave
function |E′L′

BM ′
BS ′〉 has a hole in ovB shell of the atom B

with an electron in the electronic continuum. For excitations
from the outer valence shell we call this process excitation
transfer ionization (ETI) [8], while for excitations from inner-
valence orbitals it is named participator resonant interatomic
Coulombic decay (pRICD) [9]. Another possibility may arise
only if an inner-valence electron is excited in the initial state.
Then, an electron from the outer-valence shell ovA of A might
fill the inner-valence vacancy, thereby ionizing the neighboring
atom B. The final state |E′L′

AM ′
AL′

BM ′
BS ′

N 〉 will comprise a
hole in the shell ovA and an electron in the shell ip of the atom
A, a hole in the shell ovB of the atom B, and an electron in
the continuum. This process is called spectator resonant ICD
or sRICD [9].

The decay width is given again by Eqs. (14) and (16). The
line strength S

(A)
i (E′

AL′
A; EALA) and transition energies ωi

correspond to the deexcitation of the initial state in the case
of ETI or pRICD or to the transition between the outer- and
inner-valence shells in the case of sRICD.

III. APPLICATION TO SPECIFIC SYSTEMS
AND DISCUSSION

A. ICD in CaHe following 3 p ionization of Ca

We apply now the asymptotic formulas obtained in the
preceding sections to concrete systems and compare the
results with ab initio calculations. An interesting aspect of
this comparison is the range of validity of the asymptotic
expansion. We start with the ICD in the system addressed in
the Introduction: Ca+(3p−1)He. The initial states are of 2�+
and 2� symmetry which arise from a 2P o term of Ca+ and 1S

term of He and, therefore, LA = 1. The final state is given by
Ca+(4s−1)He+ + e. There is only one accessible interatomic
decay channel with ovA = 4s and, hence, L′

A = 0. Thus, using
Eq. (14) we obtain for the coefficients PMA

of the states
polarized along (MA = 0) and perpendicular (Miv = ±1) to
the z axis the following values: P0 = 4/3, P±1 = 1/3. The ratio
of the decay widths of these states is consequently

�0

�±1
= 4. (18)

In this case one can illustrate the decay by a simple one-
electron picture (see Fig. 2). The initial state polarized along
the z axis has a hole in the 3pz orbital of Ca. The only decay
pathway operative at large interatomic distances is for an
electron from the 4s orbital to fill this vacancy. The transition
dipole should be oriented parallel to z axis and, according
to Eq. (10), the induced dipole on He atom will be also
parallel to it. If, on the other hand, the initial state is polarized
perpendicular to the z axis, the hole is on the 3p±1 orbital

4s

3p
1s

0d 0d

3p

4s

1s

d d⊥ ⊥

(b) He HeCa
+ +

Ca
+

(a) He HeCa
+ ++

Ca Σ

Π

FIG. 2. (Color online) Schematic representation of the inter-
atomic decay in Ca+(3p−1)He. (a) Decay of 2� state and (b) decay
of 2� state. The symbols d0 and d⊥ stand for the components of
the one-particle dipole operator parallel and perpendicular to the
interatomic axis, respectively.
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FIG. 3. (Color online) Double logarithmic graph of the ab initio
ICD widths of Ca+(3p−1)He as a function of interatomic distance R.
The solid line is the decay width of the 2� state; the broken line is the
decay width of the 2� state. The inset shows the ratio �2�/�2� as
a function of interatomic distance. The asymptotic formulas predict
a ratio equal to 4. The minimum of the potential energy curve in the
electronic ground state of CaHe is at 6 Å.

and both the transition dipole on Ca+ and the induced dipole
on He are also perpendicular to the z axis. Since, according
to Eq. (11) the dipoles parallel to the z axis interact twice
as strongly as those perpendicular to it the ratio of the decay
widths will indeed be 4. This value is the greatest one can
obtain for the ratio of the decay widths at large interatomic
distances. It is possible only if the decay of the state of one
polarization is driven exclusively by the z component of the
dipole moment, while the decay of the state of the other
polarization is correspondingly driven by the x component.

We compare this asymptotic result with calculations done
by the Fano-ADC-Stieltjes method, where many-body Green’s
function technique is used to solve the many-body Schrödiger
equation, Fano formalism is applied to obtain decay widths,
and Stieltjes imaging is used to renormalize the discretized
continuum (see Ref. [28] for details). The particulars of
the computation can be found in Ref. [18]. The results are
summarized in Fig. 3. We see that the numerical ratio of the
decay widths stays about 3.75 at large R’s. Surprisingly, it
remains close to 4 even about the equilibrium interatomic
distance. The explanation seems to be that the equilibrium
distance of Ca+(3p−1)He at 4 Å is clearly larger than 2.1 Å
which is the sum of atomic radii of Ca and He atoms. Thus, the
orbital overlap, which is the primary cause for the deviation
from the asymptotic behavior [4] still does not play any
significant role at the equilibrium distance.

So far there have been no direct measurements of ICD
widths for dimers. However, we argue that the difference in the
decay width due to the different symmetry of the decaying state
will give rise to observable effects in the experiments used cur-
rently to study ICD. One of the techniques employed is called
COLTRIMS (cold target recoil ion momentum spectroscopy)
method [29]. It relies on the fact that the final dicationic
state of ICD is unstable and undergoes Coulomb explosion.
Thus, following the emission of the primary photoelectron,

the secondary ICD electron is observed in coincidence with
the arrival of two positively charged ions, e.g., Ca+ and He+
to use the example above. The measured quantities are the
kinetic energy of the ICD electron (ICD spectrum) and the
kinetic energy of the ions (kinetic energy release or KER),
whose sum should remain constant due to energy conservation.
The ICD electron can be observed over the full solid angle for
a selected alignment of the interatomic axis. Knowing this
alignment the polarization of the radiation used to prepare the
decaying state can be chosen to produce the state of either �

or � symmetry. For how to compute the ICD spectrum taking
into account the motion of the nuclei along the interatomic
axis see Ref. [30] and references therein. It follows from it that
increasing � n-fold will lead to the n-fold increase in the ICD
spectrum’s intensity, provided one can neglect the difference
between � and � electronic potential energy surfaces and that
ICD does not perturb vibrational wave functions considerably.
Therefore, in the example above the ICD spectrum of the �

state should have the same structure but four times the intensity
of the one of the � state. Similar experiment will be possible
in the case of the ICD after Auger decay, where Coulomb
explosion likewise takes place. However, the COLTRIMS
method is not directly applicable to the case of ICD in neutral
excited clusters where no Coulomb explosion follows the
electronic decay.

B. ICD after Auger in the NeMg cluster following
Auger decay in Ne

We next consider the application of the asymptotic formulas
to the ICD after Auger decay in the NeMg cluster. The initial
state is characterized by the vacancies in 2s and 2p shells of the
Ne atom. Both 1P o and 3P o terms were observed after Auger
decay in isolated Ne [26], and they in turn give rise to 1,3�+ and
1,3� states of Ne2+Mg. In the interatomic Coulombic decay
of Ne2+(2s−12p−1)Mg one of the 2p electrons of Ne fills
the 2s vacancy to give the following electronic configuration
in the final state: Ne2+(2p−2)Mg+(3s−1) + e. There are two
equivalent holes in the 2p shell of Ne corresponding to 1S,
3P , and 1D atomic terms [25] which in turn give rise to two
1�+, 1�, 1�, 3�−, and 3� molecular terms [31]. We consider
first the decay of the singlet excited state of Ne2+. The orbital
angular-momentum values in the final state are L′

A = 0 and
L′

A = 2, thus, there are two open ICD channels. The transition
energies corresponding to these multiplets are ω1S = 29.0 eV
and ω1D = 32.7 eV. Since the photoionization cross section
of Mg varies slowly in this energy interval [32], we can
replace in Eq. (14) these transition energies by the average
value 〈ω〉. Thus, using Eqs. (14) and (17), we obtain for the
decay widths

�1� = c

2π〈ω〉R6
σ (Mg)(〈ω〉)

×
(

4

3
S(Ne2+)(1; 0) + 11

15
S(Ne2+)(1; 2)

)
(19a)

�1� = c

2π〈ω〉R6
σ (Mg)(〈ω〉)

×
(

1

3
S(Ne2+)(1; 0) + 19

30
S(Ne2+)(1; 2)

)
(19b)
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of the initial states polarized parallel and perpendicular to the
z axis, respectively. The line strengths S(Ne2+)(LA; L′

A) corre-
spond to the transitions between multiplets discussed above.

One can also show that in the case of one-determinant
approximation used to construct the wave functions the
ratio of the line strengths S(Ne2+)(0 ← 1) and S(Ne2+)(2 ← 1)
corresponding to the transitions to different final states is
exactly 1:5. Therefore, we find for the decay widths’s ratio

�1�

�1�

= 10

7
≈ 1.43. (20)

We analyze the decay of the 3P initial state of Ne2+ in a
similar way. The only available final state is the 3P term of
Ne2+(2p−2), thus L′

A = 1. The ratio �3�/�3� is found to be

�3�

�3�

= 2

5
. (21)

We immediately notice that in the triplet case 3� state decays
faster than 3�+ state which is the opposite to what is happening
in the case of the singlet.

Surprisingly, one can obtain the same ratios employing
simple considerations and using only addition and division
of integers. To this end one should consider the deexcitation of
A in terms not of the atomic but of the corresponding molecular
states. We designate by d the one particle dipole operator with
the components d0 and d±1 ≡ d⊥. In the singlet spin case the
dipole transitions from the initial 1�+ state are allowed to
two 1�+ and one 1� final states. It is easy to check that the
transitions to 1�+ states are driven by d0 and to 1� by d⊥. In
the case of 1� initial state the allowed transitions are to two
1�+, one 1�, and one 1� states, where only the transition to
1� is driven by d0, the rest are by d⊥. In the transition from � to
� state two final states with projections � = ±1 are accessible
in dipole approximation. Similar considerations show that in
the other cases there is only one final state accessible in the
dipole approximation. Estimating the contribution to � of each
transition driven by d0 as four times that driven by d⊥ we arrive
at �1�/�1� = 10/7 which is the result obtained above. In the
case of triplet spin the initial 3�+ state can only decay to 3�

final state, the transition to 3�− being forbidden [31]. The
decay of the 3� state can proceed both to the 3�− and 3�

states. Summing up contributions of different transitions to
the corresponding decay widths we obtain the ratio of 2 to 5 in
agreement with the procedure above. This simple method of
finding ratios of the decay widths will produce good results as
long as the final states are all derived from the same electronic
configuration and electron correlation can be neglected.

We again compare the asymptotic results with
Fano-ADC-Stieltjes calculations of interatomic decay in
Ne2+(2s−12p−1)Mg reported in Ref. [17]. In Fig. 4 we see the
decay widths in the case of the spin singlet initial state. These
decay widths exhibit 1/R6 behavior at interatomic distances
larger than 9 Å, effects of orbital overlap becoming operative
at smaller values of R. The inset shows the ratio of �1� to
�1�. At R > 9 Å it oscillates about the theoretical value
of 1.43 and increases for smaller R’s. This growth can be
explained by the effect of orbital overlap which should be
more pronounced in the case of the state oriented along z axis,
i.e., 1� state. In the case of the triplet states’s decay in Fig. 5
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FIG. 4. (Color online) Double logarithmic graph of the ab initio
ICD widths of the singlet excited states in ICD after Auger decay
in Ne2+(2s−12p−1)Mg as a function of interatomic distance R. The
solid line is the decay width of the 1� state; the broken line is the
decay width of the 1� state. The inset shows the ratio �1�/�1� as a
function of interatomic distance. The horizontal line at 1.428 is the
theoretical result predicted by the asymptotic formulas (see text). The
minimum of the potential energy curve in the electronic ground state
is at 4.4 Å.

we see again that at large interatomic distances the ratio of the
decay widths agrees to an excellent degree with the asymptotic
value of 0.4. As R decreases and the orbital overlap becomes
significant this ratio grows due to orbital overlap, until at about
5 Å the corresponding widths become equal. Thus, the orbital
overlap cancels the effect of the dipole-dipole interaction on
the �3�/�3� ratio. Since both the Auger and ICD processes
are usually faster than the nuclear motion the interatomic decay
happens at about equilibrium interatomic distance of neutral
NeMg of 4.4 Å. Therefore, in the experiment one should not
expect to observe pronounced difference between �3� and
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FIG. 5. (Color online) Double logarithmic graph of the ab initio
ICD widths of the triplet excited state in ICD after Auger decay
in Ne2+(2s−12p−1)Mg as a function of interatomic distance R. The
solid line is the decay width of the 3� state; the broken line is the
decay width of the 3� state. The inset shows the ratio �3�/�3� as
a function of interatomic distance. The horizontal line at 0.4 is the
theoretical result predicted by the asymptotic formulas (see text).

013417-7



K. GOKHBERG et al. PHYSICAL REVIEW A 81, 013417 (2010)

�3� unlike in the case of spin singlet, where the effects of
dipole-dipole interaction and the orbital overlap do not cancel
each other.

In the case considered above the final state comprises two
holes on Ne in the same 2p shell. These holes represent the
so-called equivalent particles. In constructing atomic terms
from two equivalent particles, for example, in the spin singlet
case, the Pauli exclusion principle forbids the term 1P. If the
two holes were in two different shells np and n′p 1P term
would be allowed, and the widths’s ratio would be equal to
unity. Mathematically the case of two nonequivalent holes
in ICD after Auger decay is identical with that of sRICD
considered below.

C. ICD in NeMg cluster following the excitation of
a 2s electron of Ne

As the last example we consider the decay of the inner-
valence excited state in neutral NeMg cluster investigated
in Ref. [9]. The initial state is obtained by promoting a 2s

electron of Ne into a vacant 3p orbital. The resulting atomic
1P o (LA = 1) term splits into 1�+ and 1� molecular terms
in NeMg cluster. In the decay of Ne(2s−13p)Mg according
to sRICD pathway a 2p electron of Ne fills the 2s vacancy,
and a 3s electron of Mg is simultaneously ionized. The final
state is given by Ne(2p−13p)Mg(3s−1) + e. We see that in
the final state the Ne atom remains in the excited state with
a hole in a 2p and and electron in a 3p orbital. There are
three atomic terms which correspond to this configuration and
are accessible from the initial state: 1S, 1P , 1D (L′

A = 0,1,2),
which in their turn give rise to the following molecular terms
of the complete system: two 1�+, two 1�, 1�−, 1�. Their
energies lie within an interval of 0.3 eV about 18.55 eV, where
σ (Mg)(ω) remains almost constant, therefore, we may again use
the average value 〈ω〉 in Eq. (14) to obtain

�1� = c

2π〈ω〉R6
σ (Mg)(〈ω〉)

×
(

4

3
S(Ne)(1; 0) + 2

6
S(Ne)(1; 1) + 11

15
S(Ne)(1; 2)

)
(22a)

�1� = c

2π〈ω〉R6
σ (Mg)(〈ω〉)

×
(

1

3
S(Ne)(1; 0) + 5

6
S(Ne)(1; 1) + 19

30
S(Ne)(1; 2)

)
.

(22b)

Again we can show that in the one determinant approximation
the ratio of the line strengths pertaining to the transitions to
different multiplets S(Ne)(1; 0) : S(Ne)(1; 1) : S(Ne)(1; 2) is 1:3:5
giving the widths ratio

�1�

�1�

= 1. (23)

If Ne(2s−13p)Mg decays by pRICD pathway the 3p

electron fills the initial 2s vacancy simultaneously ionizing
a 3s electron of Mg. The final state of Ne is its ground state
which is assumed to be of 1S symmetry giving rise to the 1�+
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FIG. 6. (Color online) Ratio of the ab initio ICD widths of 1�

and 1� states in sRICD and pRICD in Ne(2s−13p)Mg. The solid line
is the ratio of sRICD widths; the broken line is the ratio of pRICD
widths. The respective asymptotic values are 1 and 4, respectively.

and 1� molecular terms. Applying Eq. (14) we obtain

�1�

�1�

= 4. (24)

We compare the asymptotic results with the ab initio
calculations which were reported in Ref. [9]. In them, unlike
in the Fano-ADC calculations for the cases of the singly and
doubly ionized clusters considered above, we used single
determinant initial and final states. Therefore, the results
obtained are expected to be less precise than those obtained
by the Fano-ADC method. The respective ratios of the decay
widths are plotted in Fig. 6. We see that the ratio of sRICD
width oscillates slightly about the predicted asymptotic value
of 1 down to the interatomic distances comparable with the
equilibrium distance of about 3.5 Å. In this respect sRICD
is similar to the ICD in the corresponding singly ionized
cluster. Indeed, since the 3p electron does not participate
in the decay, sRICD is just an ICD in the presence of an
“observer.” The orbital overlap which could alter the ratio of
the decay widths is in the case of ICD the overlap between
occupied orbitals localized close to the respective nuclei and
does not become pronounced until distances comparable with
the sum of the atomic radii of constituent species. In the case
of pRICD the ab initio calculations produce the ratio of �’s
which oscillates about the value 3 instead of predicted 4. A
possible explanation could be the poorer quality of numerical
results in the pRICD case, where the 3p electron participates
in the decay, compared with the sRICD case. This is ultimately
related to the inadequate description of virtual orbitals in
a single determinant approximation. At smaller interatomic
distances we see the already familiar enhancement of the
decay of 1�+ state compared with the decay of 1� one.
However, this enhancement is much more pronounced than
the one we observed in the ICD after Auger decay. This is
in turn related to the more pronounced orbital overlap effects,
where a delocalized virtual orbital participating in the decay
is involved, compared to the localized hole orbitals in the ICD
after Auger decay.
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IV. CONCLUSIONS

In this article, we investigated the dependence of the
widths of interatomic Coulombic decay in a heteronuclear
diatomic AB on the symmetry of the decaying state. We
concentrated here on decaying states which in the free atom
A can decay radiatively by emitting a single photon. We were
particularly interested in the states of P symmetry which is
split in AB into two molecular terms of symmetries � and
�. We derived analytical expressions for the decay widths
of these molecular states in the limit of large interatomic
distances. In this limit the amplitude of the ICD process is
given as the product of the dipole amplitudes of the processes
occurring on the isolated atoms A and B; these are the
deexcitation of A and the ionization of B connected through
the transfer of the “virtual” photon. The partial decay width
for an open ICD channel, thus, falls off as 1/R6 with the
interatomic distance and is proportional to the product of
the line strength of the corresponding transition on A and the
photoinization cross section of B at the virtual photon’s energy.
Moreover, this width is multiplied by a prefactor depending
on the symmetry of the decaying state. As we showed this
dependence is related to the dependence of the interaction
energy of two classical dipoles on their mutual orientation.
The asymptotic widths do not depend on the way the system
undergoing ICD was produced. The same expressions were
obtained for excited singly ionized, doubly ionized, and neutral
clusters.

We applied the asymptotic expressions to ICD in selected
excited singly ionized, doubly ionized, and neutral clusters.
Calculated ratios of ��/�� depend on the number of available
ICD channels, and the symmetry and spin of the final states.
Thus, in ICD of singly ionized CaHe cluster, the only available
final state is of 2�+ symmetry. The obtained ratio is equal to
4, the highest value possible in the framework of the virtual
photon model. In the case of ICD after Auger decay in the
NeMg cluster, the singlet decaying state is coupled to several
final states and the resulting ratio is about 1.43, while for the
triplet state it becomes 0.4. The surprising aspect of these
widths’s ratios is that they are independent of the interatomic
distance, while the ratios of electronic energies E�/E� goes
to 1 as R increases. This is related to the fact that, as noted
above, the ratio of the interaction energies of two classical
dipoles depends on the mutual orientation of the latter but is
independent of the distance between them.

The asymptotic results were compared to ab initio cal-
culations for the systems of investigated. We found a good
agreement between the asymptotic and numerical results
for large interatomic distances where orbital overlap can be
neglected. At smaller R effects of orbital overlap can be
observed which lead to enhancement of �� over ��. It may
lead to the significant increase of the corresponding ratio
at equilibrium interatomic distances, as for example in the
pRICD case in NeMg. It can also cancel any difference
between the decay widths as in the case of decay of the
triplet states in ICD after Auger decay in NeMg. We also
discussed the ways the difference in the decay width due to
the different symmetry of the initial state can be measured
using the COLTRIMS technique common in studying the ICD
process. This technique seems to be directly applicable to

measurements in singly and doubly ionized clusters but not to
neutral excited ones.

In this work we considered an important class of systems. It
would be interesting to investigate the dependence of the decay
width on the symmetry also in homonuclear dimers such as
Ne2. Another important class of systems worth considering are
those with dipole forbidden decaying states, where the leading
term in the asymptotic expansion corresponds to a quadrupole
transition.
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APPENDIX: DERIVATION OF THE ASYMPTOTIC
FORMULAE

1. Singly ionized clusters

In this Appendix we present the derivation of the asymptotic
formulas for the interatomic decay widths. We do it in detail
only for the case of ICD in a singly ionized cluster, while for
the rest of the processes we only indicate where the derivation
deviates from it. Definitions and assumptions made in Sec. II
remain valid here. The initial spin doublet 1h state of ICD is

|ELAMASMS〉 = ĉαiv
|�0〉. (A1)

The final 1p2h states are constructed in two steps. First, one
constructs spin eigenfunctions of the total spin operator∣∣βεαovA

βovB
; S ′

NM ′
S

〉 =
∑

µεµovA
µovB

C
S ′

N M ′
S

µεµovA
µovB

ĉ
†
βε

ĉαovA
ĉβovB

|�0〉,

(A2)
where S ′

N = 1/2. Spin coupling coefficients C
S ′

N M ′
S

µεµovA
µovB

cor-
respond to the following coupling schemes: for N = 1 adding
holes’s spins to form a singlet, then adding electron spin to
form a doublet, for N = 2 adding holes’s spins to form a
triplet, then adding electron spin to form a doublet. Second,
one sums orbital angular momenta of the particles localized
on A or B, respectively, to obtain

|E′L′
AM ′

AL′
BM ′

BS ′
NM ′

S〉=
∑

mεmovB

C
L′

BM ′
B

mεmovB

∣∣βεαovA
βovB

; S ′
NM ′

S

〉
,

(A3)
where C

L′
BM ′

B
mεmovB

are expressed through the standard Clebsch-
Gordan coefficients of the rotation group as

C
L′

BM ′
B

mεmovB
= (−1)movB

(
lεmεlovB

− movB

∣∣lε lovB
L′

BM ′
B

)
.

(A4)
The decay width is given by

� = 2π
∑∣∣〈E′L′

AM ′
AL′

BM ′
BS ′

N |V̂e|ELAMAS〉∣∣2
δ(E′ − E),

(A5)
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where the sum runs over all final states available for ICD and
averaging over different spin projections in the initial state is
implied. The operator V̂e is an electron-electron interaction
given by

V̂e = 1

2

∑
i �=j

1

|ri − rj| , (A6)

where ri are the coordinates of the i-th electron. Introducing
Eq. (A4) into Eq. (A5) we obtain � as a linear combination of
spin-reduced matrix elements 〈βεαovA

βovB
; S ′

N |V̂e|ELAMAS〉
which can be evaluated using Eqs. (A1) and (A2) and the
Condon-Slater rules [33]. For our choice of spin coupling
schemes we obtain〈

βεαovA
αovB

S ′
I

∣∣V̂e|ELAMAS〉

= 1√
2

(
VαivβεαovA

βovB
+ VαivβεαovB

βovA

)
(A7a)

〈
βεαovA

αovB
S ′

II

∣∣V̂e|ELAMAS〉

=
√

3

2

(
VαivβεαovA

βovB
− VαivβεαovB

βovA

)
, (A7b)

where

Vijkl =
∫

dr1dr2φ
∗
i (r1)φ∗

j (r2)
1

|r1 − r2|φk(r1)φl(r2)

(A8)
and φn is a spatial part of the spin-orbital |γnlnmnµn〉. Matrix
element VαivβεαovB

βovA
falls off exponentially with interatomic

distance, since orbitals |αivlivmivµiv〉 and |βovB
lovB

movB
µovB

〉
are localized on different atoms. We neglect it in the asymptotic
expansion to obtain〈

βεαovA
αovB

; SN

∣∣V̂e|αivLivMiv; S〉 = CNVαivβεαovA
βovB

,

(A9)
where CI = 1/

√
2 and CII = √

3/2. For the matrix element
in Eq. (A9) not to be exponentially small at large interatomic
distances one electron should be localized on A and the other
on B. We denote corresponding electron coordinates as rA and
rB instead of r1 and r2 to emphasize this (see Fig. 7). Choosing
the coordinate origin at the position of atom A we see that
asymptotically |rA| < |rB|, and we might use the following
expansion of 1/|rA − rB| in terms of spherical harmonics [23]

1

|rA − rB| = 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

rl
A

rl+1
B

Y ∗
lm(�B)Ylm(�A).

(A10)

rB
rA

z

x
y

R
A B

r

FIG. 7. Two atoms A and B lie on the z axis at a distance R

from each other. The vector rA denotes the coordinate of an electron
localized on the atom A, while rB and r stand for the coordinate of
an electron localized on the atom B.

Inserting it into Eq. (A9) we obtain〈
βεαovA

αovB
; S ′

N

∣∣V̂e|ELAMAS〉

= 4πCN

∞∑
l=0

l∑
m=−l

1

2l + 1
〈φiv|Ylm(�A)rl

A

∣∣φovA

〉

〈φε |Y
∗
lm(�B)

rl+1
B

∣∣φovB

〉
. (A11)

We see that at large interatomic distances matrix elements of
the two-particle operator V̂e can be represented as a product of
matrix elements of two one-particle operators

D̂
(A)
lm =

√
4π

2l + 1

∑
i∈A

Ylm(�i)r
l
i (A12a)

D̂
(B)
lm =

√
4π

2l + 1

∑
j∈B

Ylm(�j )/rl+1
j (A12b)

acting on the electron coordinates of either atom A or atom B.
Introducing Eq. (A11) into Eq. (A9) and using Eq. (A2) we
can express the amplitude of a given interatomic decay at large
interatomic separation as the sum of products of amplitudes
describing processes occurring on different atoms. Indeed, one
obtains

〈E′L′
AM ′

AL′
BM ′

BS ′
N |V̂e|ELAMAS〉

= CN√
2

∞∑
l=0

l∑
m=−l

〈
E′

AL′
AM ′

AS ′
A

∣∣D̂(A)
lm

∣∣EALAMASA

〉

× 〈
�

(B)
0

∣∣D̂(B)
lm |E′

BL′
BM ′

BS ′
B〉∗, (A13)

where |E′
AL′

AM ′
AS ′

A〉, |EALAMASA〉, and |E′
BL′

BM ′
BS ′

B〉 are
the states of isolated atoms A and B constructed similarly to
Eq. (A2), and S ′

A = 1/2 and S ′
B = 0. In Eq. (A13) the term

with l = 0 is zero due to the orthogonality of the atomic
wave functions. For l = 1, employing Y10 = √

3/4π cos θ

and Y1±1 = ∓√
3/8π sin θ exp ±iφ [20], we see that D̂

(A)
1m

becomes just a transition dipole operator

D̂
(A)
1m =

∑
i∈A

r (i)
m , (A14)

where

r0 = z, r±1 = ∓ 1√
2

(x ± iy). (A15)

If the dipole transition between the states of A |E′
AL′

AM ′
AS ′

A〉
and |EALAMASA〉 is allowed, the term with l = 1 is the
leading one and will be the only term retained in the following
calculations. Expanding 1/rB in D̂

(B)
1m we obtain

D̂
(B)
1±1 = r±1

R3
+ O

(
1

R4

)
(A16a)

D̂
(B)
10 = 1

R2
− 2r0

R3
+ O

(
1

R4

)
. (A16b)

Introducing these equations into Eq. (A13) we see that the
term 1/R2 has zero contribution due to the orthogonality of
|�(B)

0 〉 and |E′
BL′

BM ′
BS ′

B〉. Therefore, D̂(B)
1m becomes in its turn
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proportional to a dipole transition operator D̂B
m = ∑

i∈B r (i)
m

giving for the leading term the expression in Eq. (10).
Derivations in the case of other decay processes differ only
in the definitions of the initial and final states, as well as the
spin-reduced matrix elements. We list below both the states
involved and the necessary matrix elements for the ICD after
Auger decay, sRICD, and pRICD processes.

2. Doubly ionized clusters

In ICD after Auger decay the initial 2 h state is given by∣∣αivαovA
; SMS

〉 =
∑

µivµovA

CSMS

µivµovA
ĉαiv ĉαovA

|�0〉 (A17a)

|ELAMASMS〉 =
∑

mivmovB

CLAMA

mivmovA

∣∣αivαovA
; SMS

〉
. (A17b)

The spin coupling coefficients are obtained by coupling
two spins 1/2 to form singlet or triplet spin state, while the
coupling coefficients CLAMA

mivmovA
are given via Clebsch-Gordan

coefficients of the rotation group as

CLAMA

mivmovA
= (−1)movA

+miv
(
liv − mivlovA

− movA
|livlovA

LAMA

)
.

(A18)
The final 1p3h states are given by∣∣αovA

αov′
A
βεβovB

; S ′
NM ′

S

〉
=

∑
µovA

µov′
A

µεµovB

C
S ′

N M ′
S

µovA
µov′

A
µεµovB

ĉ
†
βε

ĉβovB
ĉαovA

ĉαov′
A

|�0〉

(A19a)

|E′L′
AM ′

AL′
BM ′

BS ′
NM ′

S〉
=

∑
movA

mov′
A

mεmovB

C
L′

AM ′
A

movA
mov′

A

C
L′

BM ′
B

mεmovB

∣∣αovA
αov′

A
βεβovB

; S ′
NM ′

S

〉
,

(A19b)

where C
L′

AM ′
A

movA
mov′

A

is given by Eq. (A18), while C
L′

BM ′
B

mεmovB
is given

by Eq. (A4). The spin coupling coefficients correspond to the
construction schemes in which first the spins of the three holes
and then the spin of the particle are added together to obtain
the total spin either of value 0 or 1. It is easy to check there
are two possible construction schemes for S = 0 and three for
S = 1. Corresponding spin-reduced matrix elements for S = 0
are 〈

αovA
αov′

A
βεβovB

; S ′
I

∣∣V̂e

∣∣αivαovA
; S

〉
= − 1√

2

(
2VβεαivβovB

αov′
A

− Vβεαivαov′
A
βovB

)
〈
αovA

αov′
A
βεβovB

; S ′
II

∣∣V̂e

∣∣αivαovA
; S

〉
= −

√
3

2
Vβεαivαov′

A
βovB

, (A20)

where all terms apart from the first one in the first equation
decay exponentially with R. For the spin-reduced matrix

elements of the spin triplet states we obtain〈
αovA

αov′
A
βεβovB

; S ′
I

∣∣V̂e

∣∣αivαovA
; S

〉
= − 1√

6

(
2VβεαivβovB

αov′
A

+ Vβεαivαov′
A
βovB

)
〈
αovA

αov′
A
βεβovB

; S ′
II

∣∣V̂e

∣∣αivαovA
; S

〉
= 1√

2
Vβεαivαov′

A
βovB〈

αovA
αov′

A
βεβovB

; S ′
III

∣∣V̂e

∣∣αivαovA
; S

〉
= 2√

3

(
VβεαivβovB

αov′
A

− Vβεαivαov′
A
βovB

)
, (A21)

where again the matrix elements Vβεαivαov′
A
βovB

are exponentially
small at large R and should be discarded.

3. Excited neutral clusters

For sRICD and pRICD processes the initial 1p1h state is
given by

|αipαnv; SMS〉 =
∑

µipµnv

CSMS

µipµnv
ĉ†αip

ĉαnv
|�0〉 (A22a)

|ELAMASMS〉 =
∑

mipmnv

CLAMA

mipmnv
|αipαnv; SMS〉, (A22b)

where S = 0 and CLAMA
mipmnv

is given by Eq. (A4). The final 1p1h
states of pRICD are given analogously by∣∣βεβovB

; S ′M ′
S

〉 =
∑

µεµovB

C
S ′M ′

S
µεµovB

ĉ
†
βε

ĉβovB
|�0〉 (A23a)

|E′L′
BM ′

BS ′M ′
S〉 =

∑
mεmovB

C
L′

BM ′
B

mεmovB

∣∣βεβovB
; S ′M ′

S

〉
. (A23b)

Spin-reduced matrix elements in the case of pRICD/ETI
process are

〈βεβovB
; S ′|V̂e|αipαnv; S〉 = 2VβεαnvβovB

αip
− VβεαnvαipβovB

,

(A24)

where again the last term decays exponentially at large R’s.
The final 2p2h states of sRICD are given by∣∣αipαovA

βεβovB
; S ′

NM ′
S

〉
=

∑
µipµovA

µεµovB

C
S ′

N M ′
S

µipµovA
µεµovB

ĉ
†
βε

ĉ†αip
ĉβovB

ĉαovA
|�0〉 (A25a)

|E′L′
AM ′

AL′
BM ′

BS ′
NM ′

S〉
=

∑
mipmovA

mεmovB

C
L′

AM ′
A

mipmovA
C

L′
BM ′

B
mεmovB

∣∣αipαovA
βεβovB

; S ′
NM ′

S

〉
.

(A25b)

The coupling coefficients in Eq. (A25b) are given by Eq. (A4).
The spin coupling coefficients are obtained first by coupling
spins of two particles and two holes separately and by adding
resulting spins to obtain singlet spin state of the four spin-
1/2 particles. N = 1 corresponds to coupling the spins of the
particles and holes producing singlets; N = 2 corresponds to
coupling the spins of the particles and holes producing triplets.
Corresponding spin reduced matrix elements are the same as
in the ICD case and given in Eqs. (A7a) and (A7b).
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