
PHYSICAL REVIEW A 81, 013414 (2010)

Lorentz force on an electron in a strong plane-wave laser field and the
low-frequency limit for ionization

Jarosław H. Bauer*
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A motion of a classical free charge in an electromagnetic plane wave can be found exactly in a fully relativistic
case. I have found an approximate non-parametric form of the suitable equations of motion. In a linearly
polarized wave, in the simplest frame of reference, the charge moves along the well-known figure-eight path. I
have numerically calculated the Lorentz force acting on the charge as a function of time. By virtue of this, for
the low-frequency ionization (or detachment) rate, I discuss a manifestation of nondipole and relativistic effects.
When intensity of the plane wave increases, these effects can first appear in angular distributions, then in spectra
of outgoing electrons, but have quite little effect on total ionization rates. I try to give an explanation of the latter
fact.
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I. INTRODUCTION

Let us consider a classical point charge interacting with an
arbitrary intense electromagnetic plane-wave field. The charge
can move with a relativistic velocity. As I shall demonstrate
in this article, studying such motion is important from the
point of view of theories describing ionization (or detachment)
in strong laser fields. In Ref. [1] (Sec. 48, p. 134) there
are exact solutions to suitable equations of motion in the
simplest frame of reference (i.e., in which the charge is at
rest on the average). The solutions for a linear polarization
and for a circular polarization of the plane wave [1] have
been generalized recently [2]. My result for an electron in the
laser field of any elliptical polarization is the following (in
the present work I use atomic units: h̄ = e = me = 1, and I
substitute explicitly −1 for the electronic charge):

x = a2

8c ωε2
cos δ sin 2(ωt − kx) ≡ x0 sin 2(ωt − kx), (1a)

y = ∓ a

ωε
sin(δ/2) cos(ωt − kx) ≡ y0 cos(ωt − kx), (1b)

z = a

ωε
cos(δ/2) sin(ωt − kx) ≡ z0 sin(ωt − kx). (1c)

In Eqs. (1) I have assumed that the laser field propagates
along the x axis, and its wave vector is k = ω/c (where ω

is the laser frequency and c is the velocity of light). Also, a

is the amplitude of the vector potential describing the field,
δ is the ellipticity parameter (δ ∈ [0, π/2]; for the linear
polarization, δ = 0, and for the circular polarization, δ = π/2),
ε =

√
c2 + a2/2c2, and the signs ∓ correspond to two different

helicities. The electric field vector ( �E = −c−1∂ �A/∂t) has
the amplitude E0 = (aω/c) cos(δ/2). (See Ref. [2] for more
detail.) In Eqs. (1) I have also defined x0, y0, and z0—the
amplitudes of motion along the respective axes.

My work is organized as follows. In Sec. II I solve Eqs. (1)
analytically in an approximate way, and I compute also a
velocity and an acceleration of the electron for any ellipticity
parameter of the laser field. In Sec. III I discuss a general form
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of “tunnelinglike” formula, and I numerically calculate the
Lorentz force acting on the electron in the linearly polarized
plane-wave laser field. Nonrelativistic dipole and nonrela-
tivistic nondipole approximations to this force are compared
with the fully relativistic result. In Sec. IV I derive simple
nonrelativistic nondipole formulas (approximately valid for
low-frequency fields) describing total ionization rates, for
both linear and circular polarizations. Final remarks and
conclusions are given in Sec. V.

II. SOLUTIONS TO CLASSICAL EQUATIONS OF MOTION

Equations (1) are nonlinear and in general require a
numerical treatment to find x, y, and z as functions of t .
However, when the condition

kx0 � 1 (2)

is satisfied, one can expand the right-hand sides of Eqs. (1)
in a Taylor series. Later in this work I assume that Eq. (2) is
valid. For any finite ω, E0, one can easily show that kx0 < 1/4
always [3]. The latter value is for ω = const, E0 → ∞ or
E0 = const, ω → 0. Neglecting terms of the order of (kx0)2

and higher, one finds the following approximate solutions to
Eqs. (1):

x(t) = x0 sin 2ωt(1 − 2kx0 cos 2ωt), (3a)

y(t) = y0 cos ωt(1 + kx0 − kx0 cos 2ωt), (3b)

z(t) = z0 sin ωt(1 − kx0 − kx0 cos 2ωt). (3c)

Then one can easily find components of the velocity vector
of the electron,

ẋ(t) = 2ωx0(cos 2ωt − 2kx0 cos 4ωt), (4a)

ẏ(t) = −ωy0 sin ωt(1 − kx0 − 3kx0 cos 2ωt), (4b)

ż(t) = ωz0 cos ωt(1 + kx0 − 3kx0 cos 2ωt), (4c)

and components of its acceleration vector,

ẍ(t) = −4ω2x0 sin 2ωt(1 − 8kx0 cos 2ωt), (5a)

ÿ(t) = −ω2y0 cos ωt(1 + 5kx0 − 9kx0 cos 2ωt), (5b)

z̈(t) = −ω2z0 sin ωt(1 − 5kx0 − 9kx0 cos 2ωt). (5c)
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Equations (5) determine the Lorentz force (coming from both
the electric �E and the magnetic �B components of the laser
field) acting on the electron as a function of time. There is
an extensive discussion of a classical relativistic dynamics
in a strong plane-wave field in the old article by Sarachik
and Schappert [4]. Equations (3)–(5) are one of two main
(analytical) results of this article. Let us denote a position of the
electron (in the simplest frame of reference) as �r(t) = x(t)x̂ +
y(t)ŷ + z(t)ẑ (where x̂, ŷ, and ẑ are real unit vectors). Then
the Lorentz force (defined as a time derivative of a relativistic
momentum) is given by

�Frel(t) = 1√
1 − �̇r(t)2

c2

�̈r(t) + �̇r(t) · �̈r(t)

c2
[
1 − �̇r(t)2

c2

]3/2 �̇r(t). (6)

[There is a scalar product of �̇r(t) and �̈r(t) in a numerator of the
second term in Eq. (6).] If |�̇r(t)| � c, one obtains from Eq. (6)
the nonrelativistic approximation to the Lorentz force:

�Fnonrel(t) = �̈r(t). (7)

Equation (7) contains Eqs. (5) and takes into account nondipole
effects. If one also puts x0 = 0 in Eqs. (3)–(5), one obtains
from Eq. (7) the nonrelativistic Lorentz force in the dipole (or
long-wavelength) approximation. One usually assumes that
the dipole approximation is valid when k = ω/c � 1 a.u.
However, according to Reiss [5], nondipole effects should
appear for the H(1s) atom, if

x0 �∼ 1 a.u. (8)

(x0 here is denoted as β0 in Ref. [5]). I agree that nondipole
effects can appear in angular distributions of photoelectrons
from strong-field ionization, if criterion (8) is obeyed. Never-
theless, if one looks at a total ionization (or detachment) rate,
Eq. (8) may be too restrictive, particularly in the low-frequency
limit of strong-field ionization, as I shall demonstrate later in
this article.

III. LORENTZ FORCE AND TUNNELINGLIKE FORMULA

Let us consider now the linear polarization (δ = 0), which
is of most experimental interest. From Eqs. (1) one obtains
y(t) = 0, and the electron moves in the x-z plane. The motion
takes place along the figure-eight path ABCDAEFGA

(shown schematically in Fig. 1), which is covered every
laser cycle. It follows from Eqs. (1) that the ratio x0/z0

grows monotonically with increasing a laser field intensity
I (for the linear polarization I = E2

0) from 0 (for I = 0) to√
2/8 ≈ 0.177 (for I → ∞). For strong laser fields, almost

for all t , the distance
√

x(t)2 + y(t)2 + z(t)2 (calculated from
Eqs. (3) for any elliptical polarization) is much larger than a
radius of an atom (or ion). Therefore, total forces acting on
the ionized (or detached) electron during its motion in strong
laser fields are nearly equal to those of a free motion, because
binding forces (Coulomb or short-range) are much weaker.
Moreover, according to the quasistatic limit of the ionization
theory by Keldysh [6], the electron escapes when both the �E
and the �B fields are close to their maximum values during
the laser cycle. If the laser frequency ω is much lower than
a characteristic atomic frequency, the Keldysh adiabaticity

FIG. 1. Motion of the charge along the figure-eight path (shown
schematically) in a linearly polarized plane-wave laser field (in the
simplest frame of reference, in the fully relativistic case; see the text
for more detail).

parameter γ [6] obeys the condition

γ = ω
√

2EB

E0
� 1. (9)

EB denotes here a binding energy of the atom or ion. Later in
this work I assume that the inequality (9) is satisfied. In the
limit ω → 0 (then also γ → 0, if E0 = const) the ionization
rate � is approximately given by an expression of the type

� ≈ f (E0) exp

(−C

E0

)
, (10)

where C > 0 is a constant (or nearly a constant), f (E0) is a
relatively slowly varying function of E0, and exp(−C/E0)
grows rapidly with E0. [Both f (E0) and C depend also
on EB and the initial-state wave function.] In Keldysh’s
theory (see Eq. (20) of Ref. [6]) the pre-exponential factor
f (E0) is not the same as in the static-field theories [7–9]
when the ionization rate is averaged over the cycle of the
electric field [E(t) = E0 sin ωt]. However, the exponential
factor exp(−C/E0) remains the same. One should stress that
the well-known dependence (10) is typical not only for the
early tunneling theories [6–15], where one usually assumes
that E0 � EBSI (BSI denotes barrier-suppression ionization).
Dörr et al. [16] investigated the static-field limit in multiphoton
ionization with the help of the Floquet method. For the linear
polarization they found that Eq. (10) describes the ionization
rate, but does not account for intermediate resonances (which
occur for some specific values of ω and E0). Ilkov et al. [17]
confirmed experimentally, that Eq. (10) is approximately valid
for γ < 0.5 and E0 < EBSI. Buerke and Meyerhofer [18]
confirmed experimentally a high accuracy of the semiclassical
approach [10–15] in the tunneling regime. Scrinzi et al. [19]
calculated exactly the static-field ionization rate �stat up to
E0 = 1 a.u. for the H(1s) atom. When this �stat is averaged
over the cycle of the electric field [E(t) = E0 sin ωt], one
numerically obtains the ionization rate �av

stat, which is really of
the type of Eq. (10). For 0.03 a.u. � E0 � 1 a.u., �av

stat is equal
to the averaged ionization rate of Landau [8] times a factor of
the order of 0.1–1, as shown in Fig. 2 of Ref. [20]. At the same
time, for 0.03 a.u. � E0 � 1 a.u., �av

stat changes over about
ten orders of magnitude. An approximate empirical formula
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FIG. 2. (Color online) The Lorentz force acting on the electron
as a function of time during the first half of the laser cycle, for
ω = 0.0043 a.u. Three values of the Keldysh parameter are fixed here
[γ = 0.1, 0.033, and 0.01 in panels (a), (b), and (c), respectively].
The laser intensity increases from panel (a) to panel (c). 2.7e − 3
denotes 2.7 × 10−3 (see text for more detail).

(the so-called tunneling or above barrier ionization (TBI)
formula) for the static-field ionization rates for atoms and
molecules and fields up to E0 �∼EBSI was found by Tong and
Lin [21]. The TBI formula can also be treated as of the type of
Eq. (10), with a slowly varying function f (E0). In Refs. [6–21]
the nonrelativistic and dipole approximation was applied to a
description of the ionization, but in other works [22–26] the
magnetic-field component or relativistic effects of the laser
field were taken into account. In the limit ω → 0, in all the
cases [6–26] Eq. (10) is approximately valid.

In Eq. (10), the ionization rate � depends strongly on E0,
which is the laser field parameter. The Coulomb (or short-
range) force acting on the electron is present in Eq. (10) only
through constants included in f (E0) and C. Therefore, for a
given initial state of the atom (or ion), the ionization rate �

is determined by the amplitude of the electric field vector E0.
In the nonrelativistic and dipole approximations, E0 is equal
(in atomic units) to the maximal Lorentz force exerted on the
electron during its motion along the figure-eight path (which
simply becomes a line segment in this case). The force (in the
simplest frame of reference) can be calculated from Eqs. (5)
and (7). In the intermediate range of the laser field parameters
one can keep the nonrelativistic theory, but one has to take into
account the magnetic-field component of the laser [27]. Then
both the electric field �E and the magnetic field �B depend only
on time, and �B = n̂ × �E (n̂ is a unit vector in the propagation
direction). In the fully relativistic case, one should replace
Eq. (7) with Eq. (6) to calculate the Lorentz force acting on
the electron.

Taking into account my discussion related to Eq. (10), one
can suppose that in the limit ω → 0, during the motion shown
in Fig. 1, the electron is most probably emitted near the points
C and F (i.e., when both the �E and the �B fields are close
to their maxima). The tunneling picture of ionization in static
electric fields [7–9] suggests that the electron is emitted mostly
in the direction of the electric field vector. Figure 1 indicates
that the electron may be emitted not only in the polarization
direction (in the simplest frame of reference), but also at some
little angle in relation to this direction. This happens when
the electron is not emitted exactly from points C or F (note
that for the circular polarization the electron always escapes
in the polarization plane in the simplest frame of reference).
Condition (8) is important, if one looks at angular distributions
of photoelectrons. Indeed, such effects were theoretically
predicted (usually within an exponential accuracy) for different
polarizations in relativistic (or at least nondipole) strong-
field photoionization (see, for example, Refs. [28–32]). As
is generally known, the classical free point charge in the
monochromatic plane-wave electromagnetic field moves with
the so-called drift velocity, which is constant and parallel
to the wave vector �k = kn̂ [33,34]. As a result, the ionized
electron has a greater momentum in the forward n̂ direction
than it would have in the dipole approximation, in which the
drift velocity is zero. In the nonrelativistic approximation,
the average drift per cycle in the propagation direction is of
the order of E2

0/cω
3. According to Joachain et al. [33],

nondipole effects could appear if the aforementioned drift
would be at least equal to 1 a.u. [for the H(1s) atom]. The
latter condition is equivalent to Eq. (8) (up to a constant factor
of the order of unity). However, binding forces (Coulomb or
short-range) make the electronic trajectory more complicated
[35], and the magnetically induced drift may be overcome by
the attraction of the nucleus [36].

In my opinion, Eq. (10) suggests that nondipole or rel-
ativistic effects could appear in the ionization rate if they
would appear in the Lorentz force, that is, when Eq. (6)
would differ significantly from Eq. (7). In Figs. 2 and 3 I have
investigated the Lorentz force as a function of time during the
motion along the first half of the figure-eight path. The solid
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FIG. 3. (Color online) The same as for Fig. 2, but for ω =
0.057 a.u.

lines show fully relativistic results, based on Eqs. (4)–(6).
The dashed lines show the nonrelativistic and nondipole
results, based on Eqs. (4), (5), and (7), and the dotted lines
show the nonrelativistic results in the dipole approximation
[Eqs. (4), (5), and (7) with x0 = 0]. Each figure contains
numerical values of some essential parameters, namely γ [with
EB = 0.5 a.u., for the H(1s) atom], zf = 2UP /c2 (where UP

is the ponderomotive potential; see also Refs. [2–5]), x0, and
kx0 [the latter value is shown to confirm validity of Eq. (2)
in each case]. In Figs. 2(a)–2(c) ω = 0.0043 a.u., which
corresponds to CO2 laser radiation (λ = 10.6 µm), and in
Figs. 3(a)–3(c) ω = 0.057 a.u., which corresponds to
Ti:sapphire laser radiation (λ = 800 nm). The Keldysh

parameter γ = 0.1, 0.033, and 0.01, respectively, in panels
(a), (b), and (c) in Figs. 2 and 3. In Figs. 2(a) and 3(a) the three
aforementioned Lorentz forces are nearly indistinguishable
from each other, in spite of quite large values of x0. In panels
(b) and (c) of Figs. 2 and 3, the amplitude of the electronic
motion in the propagation direction (x0) grows significantly.
In Figs. 2(b) and 3(b) I show that the nonrelativistic dipole
approximation becomes insufficient for x0 = 190 a.u. (if
ω = 0.0043 a.u.) and for x0 = 14 a.u. (if ω = 0.057 a.u.).
As one should expect, for extremely intense fields, the
relativistic description is necessary [see Figs. 2(c) and 3(c)].
However, it follows from Figs. 2(b) and 2(c) and 3(b) and
3(c) that the nonrelativistic nondipole approximation for the
Lorentz force works much better than the nonrelativistic dipole
approximation. Furthermore, the former one becomes the most
accurate for t = 0.25 (in laser cycles), when the ionization is
the fastest. There is a simple explanation of this fact, namely,
near t = 0.25 (and t = 0.75), the velocity of the electron v

achieves a local minimum during its figure-eight motion. (This
corresponds to points C and F in Fig. 1). For example, in
Figs. 2 and 3, for t = 0.25, one has v/c = 0.0013, 0.012, and
0.12 for panels (a), (b), and (c), respectively. It appears that
even for extremely strong fields, the electron mostly moves
with the nonrelativistic (v � c) velocity when it is ionized.

IV. NONDIPOLE TUNNELINGLIKE FORMULA

In this section, within the nonrelativistic approach, I derive
a simple correction to tunnelinglike formula (10). The well-
known Landau’s result [8] (exact in the limit E0 → 0) for the
static-field ionization of the H(1s) atom is

�stat = N

E0
exp

(−C

E0

)
, (11)

where N = 4 and C = 2/3. To derive Eq. (11), one assumes
that the electric field E0 is constant in time and space, and the
ionized electron is treated within the nonrelativistic quantum
mechanics [7–9]. When the field changes harmonically only
in time [E(t) = E0 sin ωt], slowly enough, and C/E0 � 1,
averaging Eq. (11) over a cycle of the field, one obtains (see,
for example, Sec. II of Ref. [37])

�av
stat ≈ N

√
3

πE0
exp

(−C

E0

)
. (12)

If ω � EB , Eqs. (11) and (12) approximately describe
ionization rates for the circular and the linear polarization,
respectively [16,37,38]. For the linear polarization of the plane
wave, its Lorentz force exerted on the ionized electron is given
by

�F dip
nonrel(t) = �̈r(t) = − �E(t) = −E0ẑ sin ωt, (13)

and Eqs. (11)–(13) are in the dipole approximation. To
generalize Eq. (12) for nondipole effects, I replace Eq. (13)
with

�F nondip
nonrel (t) = �̈r(t) = ẍ(t)x̂ + z̈(t)ẑ, (14)

where ẍ(t) and z̈(t) are given by Eqs. (5) and δ = 0 [hence
y(t) = 0]. Of course, Eq. (14) reduces to Eq. (13) for not-
too-strong fields (when one can put x0 = 0 and z0 = E0/ω

2).
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Replacing |E0 sin ωt | with g(t) ≡
√

ẍ(t)2 + z̈(t)2 during the
averaging of Eq. (11) over a cycle of the field (T = 2π/ω), I
obtain the following generalization of Eq. (12):

�
av, nondip
stat = 1

T/2

T/2∫
0

N

g(t)
exp

[−C

g(t)

]
dt, (15a)

with

g(t) = ω2
[
16x2

0 sin2 2ωt(1 − 16kx0 cos 2ωt)

+ z2
0 sin2 ωt(1 − 10kx0 − 18kx0 cos 2ωt)

]1/2
,

(15b)

where I have dropped terms of the order of (kx0)2 and higher.
If C/g(t) � 1 for all t , the integral in Eq. (15a) may be
calculated analytically in an approximate way [similarly one
obtains Eq. (12) from Eq. (11)]. I put ωt = x + π/2 (x is a new
integration variable) in Eqs. (15), and I expand the function g

in a Taylor series around x = 0 (for which the integrand has
a local, strongly peaked maximum), keeping only terms with
up to x2 in the exponent. In the pre-exponential factor, it is
sufficient to keep only the first term with x0. Then I extend the
limits of integration upon x to ±∞, obtaining a well-known
Gaussian integral. Finally, I get the following expression:

�
av, nondip
stat ≈ NA1/4

ω

√
2

πBC
exp

( −C

ω2
√

A

)
, (16)

with A = z2
0(1 + 8kx0) > 0 and B = z2

0(1 + 44kx0) −
x2

0 (64 + 1024kx0) > 0. [In the dipole approximation, when
x0 = 0 and z0 = E0/ω

2, Eq. (16) reduces to Eq. (12), as it
should.] I have numerically verified that making the step from
Eqs. (15) to Eq. (16), one introduces some error, which is
very small, if ω is low enough. For example, for the laser field
parameters from Figs. 2(a) and 2(b) the error is roughly equal
to 0.7%, and for Figs. 3(a) and 3(b) it is roughly equal to 8%
and 12%, respectively.

However, let us note that Eq. (16) cannot be applied strictly
in the limit: E0 = const, ω → 0 [then expression (16) goes
to zero]. In this limit one enters the fully relativistic region
of the laser field parameters, so Eq. (7) should be replaced
by Eq. (6), and Eq. (11) by its relativistic counterpart. This
is beyond the scope of the present work. It follows from the
approximations used here, that one can use Eqs. (15) or (16)
for such field parameters that kx0 < 0.1 and zf < 0.1. From
Eqs. (5) in Ref. [2] it follows that for δ = 0 one has

kx0 = ω

c

z

2c(1 + zf )
<

zω

2c2
= UP

2c2
= 1

4
zf . (17)

Therefore, to guarantee validity of my result (15,16), it is
sufficient to obey the condition zf < 0.1. Since the latter
condition is much milder than the condition x0 �∼1 a.u.,
there is indeed quite large range of the laser field parameters,
where nonrelativistic nondipole effects in the total ionization
rate for the linear polarization might appear. To explore this
range, I have numerically compared ionization rates given
by Eqs. (12) and (15). The difference between dipole and
nondipole ionization rates grows with increasing intensity if
ω = const. Nondipole rates are usually smaller than dipole
ones, unless they are very close each other (within 1%). The

largest differences, which occur for zf = 0.1, are 14% (for
ω = 0.0043 a.u.) and 30% (for ω = 0.057 a.u.). For the laser
fields given in Figs. 2(a), 2(b), 3(a), and 3(b), these differences
are, respectively, 0.4%, 2.8%, 8.6%, and 20%.

Equations (15) and (16) may be generalized for any el-
liptical polarization (0 < δ < π/2) and other pre-exponential
factors, which can appear in equations analogous to Eq. (11),
describing ionization rates for other initial states of an atom
or ion.

When the laser field is circularly polarized (δ = π/2), it
follows from Eqs. (1), (5), and (7) that x0 = 0, y0 = z0, and
one should replace E0 with E0/

√
1 + zf in Eq. (11), to take

into account nonrelativistic nondipole effects. Therefore, the
ionization rate formula, including these effects, is given by

�
nondip
stat = N

√
1 + zf

E0
exp

(
−C

√
1 + zf

E0

)
, (18)

where zf = E2
0/(ωc)2, in this case. For ω = 0.0043 a.u. and

zf = 0.1, one obtains a 13.5% greater result from Eq. (11)
than from Eq. (18), and when E0 decreases, both formulas
become identical in the limit E0 → 0. For ω = 0.057 a.u. and
zf = 0.1, one obtains 3.4% smaller result from Eq. (11) than
from Eq. (18), and (of course) the same behavior in the limit
E0 → 0. (For ω = 0.057 a.u., the ratio of these two rates is
slightly nonmonotonic when E0 is close to zero, but then the
rates differ by less than 1%.)

V. REMARKS AND CONCLUSIONS

In my opinion, the present results throw some light on
a recent experiment by Chowdhury et al. [39] with argon
and pulsed-laser 800-nm radiation of the linear polarization
at intensities of up to 1019 W/cm2. According to the authors
of Ref. [39], total ionization rates, evoked by “relativistic” laser
fields in the L-shell states of argon, can be quite well described
by “nonrelativistic” strong-field theories. In Ref. [39] validity
of “a widely used Ammosov-Delone-Krainov/WKB tunneling
ionization model” [10–15] (which is the dipole approximation
theory) was confirmed for the average Keldysh parameter
γ ≈ 0.03. One can also find similar conclusions in a later
experimental work of Yamakawa et al. [40] with xenon,
krypton, and argon. According to Chowdhury et al., the
results of their experiment may be interpreted within a two-
step model, where the initial tunneling ionization process is
dominated by nonrelativistic effects, while the photoelectron
continuum dynamics are strongly relativistic. Although the
authors of Ref. [39] discuss this phenomenon in Sec. IV of
their work, they do not give any explanation of an absence of
relativistic effects during the first step of the process in their
experiment.

The Keldysh parameter γ , which is the most important one
among the laser field parameters, depends on EB , ω, and E0

[see Eq. (9)]. For a few different initial ionic states of argon,
used in the experiment [39], “ionization potentials extend from
422 V to 918 V,” so their binding energies EB extend from
15.5 to 33.7 a.u. Although the binding energies of the L-shell
states of argon are much higher than EB = 0.5 a.u. used in my
present work, my Keldysh parameter from Figs. 2(b) and 3(b)
(γ = 0.033) is close to the values from Ref. [39]. Therefore,
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from the point of view of an adiabaticity of the ionization
process [crucial for my simple theory given by Eqs. (15),
(16), and (18)], my laser field conditions for the H (1s) atom
resemble those from Ref. [39] for positively charged argon
ions. In Sec. IV I have shown that for the linear polarization and
nonrelativistic conditions (zf � 0.1), the highest difference
between dipole and nondipole ionization rates does not
exceed 30%, but typically (for γ ≈ 0.03) the difference is less
than 20%.

In conclusion, I have derived a non-parametric form of
the classical relativistic equations of motion for the electron
in the monochromatic plane-wave laser field (of an arbitrary
intensity and ellipticity). My approximate solution (in the
simplest frame of reference) is based on Eq. (2), which is valid
even for superstrong laser fields. I have numerically calculated
the Lorentz force acting on the ionized electron during its
figure-eight motion (as a function of time) in the linearly
polarized field for two frequencies of an experimental interest.

In the low-frequency limit, a manifestation of nonrelativistic
and relativistic effects in the Lorentz force may be a quite
good indication of such effects in the ionization rate. I have
derived simple nonrelativistic expressions for ω � EB , and I
have evaluated nondipole effects in total ionization rates. For
higher frequencies, the simple tunnelinglike formula (10) is
not valid. However, it is quite likely that my argument, based
on the aforementioned effects in the Lorentz force, is of some
importance.
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