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Laser control of a multilevel quantum system as static parameter optimization
with the help of effective decomposition
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A quantum control scheme for multilevel systems utilizing effective decomposition is proposed. In this method,
a subsystem chosen for control target is effectively isolated by irradiating intense continuous-wave laser fields
onto the complimentary space. By choosing the control target space consisting of small number of eigenstates,
effective dressed states for the isolated space are analytically given, which makes it possible to express the
performance index defined in the target space as an explicit function of laser parameters. Then, designing the
control field can be treated as a static parameter optimization. The present scheme makes it possible not only to
optimize the laser parameters but also to investigate the parameter search space, which clarifies the physics of
the control process.
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I. INTRODUCTION

Coherent control of chemical reactions using external laser
fields has been an active research area for a number of years
[1–7]. Among various coherent control theories proposed so
far, the most general purpose oriented methods for designing
the control field are optimal control theory (OCT) [2,4,8]
and local control theory (LCT) [3,5–7], which are based on
the control theories. These methods require time-consuming
numerical integration to obtain the system dynamics at every
evaluation of the performance or cost index. Moreover,
OCT requires such numerical integration during the iterative
procedure. Thus, the application of these powerful general
approaches becomes difficult as the system becomes realistic
with numbers of eigenstates, because the time evolution of the
whole system under the control field should be numerically
calculated in both approaches.

On the other hand, we have shown that arbitrary multilevel
systems can be effectively decomposed into isolated subspaces
by irradiating intense continuous-wave (CW) lasers [9,10]. In
these studies, a multilevel quantum system is decomposed into
two subspaces, called P and Q spaces. Here, P space consists
of eigenstates for control target, whereas Q space is defined
as its compliment space. Irradiating intense CW lasers tuned
to the transitions in the Q space makes it possible to exclude
the Q space from the system dynamics or isolate the P space
effectively. In the former studies, we succeeded in applying
well-established control schemes such as π pulse [11] and
STIRAP [12–15] to the P subspace.

In this study, we especially focus on the fact that one
can obtain the P space dressed eigenstates analytically by
choosing very small P space, i.e., consisting of a few levels.
Using those dressed states, one can obtain the performance
or cost index as an explicit function of laser parameters,
that is defined for evaluating the current quantum state.
Once we obtain such a performance or cost index, we can
apply general optimization methods with respect to the laser
parameters avoiding time-consuming numerical integration
of the Schrödinger equation. This should be a significant
advantage over the direct application of the OCT/LCT to the

whole system because numerical integrations. We apply the
above control scheme to a model system with double-well
potential and show its usefulness.

II. THEORETICAL

We briefly summarize the effective decomposition scheme
developed in the previous work [9,10]. Consider a general mul-
tilevel system as shown in Fig. 1. Now, we formally split the
system into two subspaces, which we call P and Q consisting
of N and M states, respectively, i.e., {|P1〉, |P2〉, . . . , |PN 〉}
and {|Q1〉, |Q2〉, . . . , |QM〉}. We define the P space so that
there exist no direct optical transitions within the space,
while the Q-space states are strongly coupled through the
intense system-field interactions {�ij }. The interspace optical
interactions are denoted by {Vk}. We restrict consideration to
linkage patterns in which all carrier frequencies are detuned
by the same amount, �, from their respective resonance
frequencies.

We start from a Green function form of the Schrödinger
equation given as

(z − Ĥ ) · Ĝ(z) = 1̂, (1)

where Ĥ is the total Hamiltonian. Here, we set h̄ = 1 for
simplicity. The Green function of the total system, Ĝ(z), is
related to the time-evolution operator Û (t) as

Ĝ(z) = −i

∫ ∞

0
Û (t)e−izt dt. (2)

Applying the projection operator method onto Eq. (1) gives
the P -space Green function ĜP (z) ≡ P̂ Ĝ(z)P̂ as

ĜP (z) = 1

z − ĤP (z)
, (3)

where

ĤP (z) ≡ �ÎP − P̂ Ĥ Q̂(z − Q̂Ĥ Q̂)−1Q̂Ĥ P̂ . (4)

Here, P̂ and Q̂ are the projection operators with respect to the
P and Q spaces, respectively. Note that P̂H P̂ can be replaced
with �ÎP , where ÎP is the identity operator for the P space.
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FIG. 1. Schematic diagram of P -Q space separation for a general
multilevel quantum system.

Under the special condition, Vk � �ij for arbitrary i, j, k,
Eq. (4) can be approximated as ĤP (�) [9,10,16]. This
implies that P space is effectively isolated and one can
regard ĤP (�) as an effective Hamiltonian that governs the
P -space dynamics. In such a case, P -space dynamics can be
systematically investigated by the eigenvalue-state analysis,
i.e., by solving the time-independent Schrödinger equation

ĤP (�)|φm〉 = Em|φm〉. (5)

For a dissipative system, eigenvalue Em can be a complex
value as Em = εm − i�m, while εm and �m are both real.

Here, we expand the initial state |�(0)〉 and the target state
|�T 〉 in the eigenstates {|φm〉} as

|�(0)〉 =
∑
m

cm|φm〉, (6)

|�T 〉 =
∑
m

dm|φm〉. (7)

For applying the OCT, we define two types of performance
indices, I (t) and J (T ) as follows. The first one, I (t), is defined
locally in time as

I (t) = |〈�T |�(t)〉|2 = |〈�T |e−iĤP t |�(0)〉|2

=
∣∣∣∣∣
∑
m

d∗
mcme−iεmt−�mt

∣∣∣∣∣
2

, (8)

which denotes how much the current state |�(t)〉 overlaps
with the target state |�T 〉. Another performance index, J (T ),
is defined as a time-averaged I (t) over a given time-duration
T as

J (T ) = 1

T

∫ T

0
I (t)dt

=
∑
�m=0

|dm|2 |cm|2 + 1

2�mT

∑
�m �=0

|dm|2 |cm|2 (1 − e−2�m )

− i

T

∑
m�=n

d∗
mdncmc∗

n

(
1 − e−iεmnT −�mnT

εmn − i�mn

)
, (9)

where εmn ≡ εm − εn and �mn = �m + �n. Note that I (t) and
J (t) correspond to the performance or cost indices defined in
LCT and OCT, respectively.

If we choose the P system so that it consists of very small
number of eigenstates, such as two or three, we can obtain
the eigenstates {|φm〉} and eigenvalues Em analytically. Using
these analytical expressions, the performance indices I (t) and
J (T ) can be readily given as a explicit function of laser
parameters. Then, the laser optimization turns out to be the
static nonlinear parameter optimization problem with respect
to I (t) or J (T ).

III. APPLICATION

We consider a one-dimensional model system with a
double-well potential as shown in Fig. 2. Such a potential
curve is used to describe chemical reaction, for example,
ring puckering isomerization [5]. The eigenstates localized
in the right and left well, |P1〉 and |P2〉, correspond to different
isomers, respectively. In the case that the initial state is taken
to be |P1〉, the coherent control of the isomerization is realized
by promoting the optical transition from |P1〉 to |P2〉. In the
present case, one can hardly make the direct optical transition
|P1〉 ↔ |P2〉 occur since there is very little transition dipole
moment due to small overlap between those eigenfunctions.
Thus, one needs to utilize the delocalized intermediate state,
for example |Q1〉, which can be optically accessible from both
the initial and the target states. However, excited intermediates
states often possesses dissipative nature due to the couplings
to other vibrational modes or environment. Here, we take
into account the dissipative nature of |Q1〉 by introducing the
imaginary part of the eigenvalue, �1.

To see how the system suffers from the dissipation of |Q1〉,
we set up the model system with three states, |P1〉, |Q1〉,
and |P2〉. We apply two resonant CW lasers corresponding to
|P1〉 ↔ |Q1〉 and |Q1〉 ↔ |P2〉 transitions with the interaction
amplitude V1 and V2, respectively. The total Hamiltonian under
the rotating wave approximation is given as

H =

⎛
⎜⎝

0 0 V1

0 � V2

V1 V2 −i�1

⎞
⎟⎠ . (10)
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FIG. 2. Example of one-dimensional double-well model potential
system. Square of several eigenfunctions are drawn together with
the potential curve. Horizontal axis Q denotes the abstract reaction
coordinate and the lines on which eigenfucntions are drawn represents
the eigenenergies, respectively.
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FIG. 3. Population dynamics of the three-level system consisting
of |P1〉, |Q1〉, and |P2〉. Parameters are taken to be δ = 0, λ1 = λ2 =
1, γ1 = 0.01. Solid, gray, and broken lines denote the population
dynamics of |P1〉, |Q1〉, and |P2〉, respectively. The area with light
gray denotes the population lost due to the dissipation of |Q1〉.

For simplicity, we redefine the total Hamiltonian in a nondi-
mensional form as

H =

⎛
⎜⎝

0 0 λ1

0 δ λ2

λ1 λ2 −iγ1

⎞
⎟⎠ . (11)

by measuring the energy in a unit of � where δ ≡ �/�,
γi ≡ �i/�, λi ≡ Vi/�. Note also that corresponding unit time
is �−1 throughout this study.

Shown in Fig. 3 is the population dynamics with the
laser parameters λ1 = 1, λ2 = 1, δ = 0, and γ1 = 0.01. For
example, in the case of Ref. [5], these parameters correspond to
the actual laser amplitude 1.28 × 1010 V/m. Here, vibrational
dissipation is estimated as � ∼ 10−5 atomic units (a.u.) and
the dipole moments of relevant transitions are taken to be
0.4 a.u. As shown in Fig. 3, the population transfers from |P1〉
to the target state |P2〉 at t = 22 via the intermediate state
|Q1〉. However, 10% of the total population is lost during the
optical process (see the gray-filled area in Fig. 3). This implies
that the naive introduction of the dissipative intermediate state
|Q1〉 leads to considerable decreasing of the final yield.

Now, we consider utilizing a helper state to avoid population
loss due to the dissipative dynamics. We choose the state |Q2〉
localized in the left well (see Fig. 2) as a helper state. Note that
we suppose |Q2〉 has no dissipative nature with real eigenvalue.
Then, we can construct four-level system, consisting of |P1〉,
|P2〉, |Q1〉, |Q2〉, whose total Hamiltonian matrix is given as

H =

⎛
⎜⎜⎜⎝

δ 0 λ1 0

0 δ λ2 0

λ1 λ2 −iγ1 1

0 0 1 0

⎞
⎟⎟⎟⎠ . (12)

From Eq. (4), we obtain the matrix representation of ĤP (z) as

ĤP (z) =
(

δ 0

0 δ

)
− z

DQ(z)

(
λ2

1 λ1λ2

λ1λ2 λ2
2

)
, (13)

where DQ(z) = 1 − z(z − iγ1). The effective Hamiltonian
matrix defined in the limit of small λ, is given as

Heff = H̃P (δ) =
(

δ 0

0 δ

)
− δ

DQ(δ)

(
λ2

1 λ1λ2

λ1λ2 λ2
2

)
. (14)

Diagonalizing the effective Hamiltonian, one obtains the
eigenvalues, ε1 and ε2

ε1 = δ − δ
(
λ2

1 + λ2
2

)
DQ(δ)

, (15)

ε2 = δ, (16)

and corresponding eigenvectors

|φ1〉 :
1√

λ2
1 + λ2

2

(
λ1

λ2

)
, (17)

|φ2〉 :
1√

λ2
1 + λ2

2

(−λ2

λ1

)
. (18)

Substituting Eqs. (15), (16), (17), and (18) into Eqs. (8) and (9)
gives a fully analytical expression of the performance indices,
I (t) and J (T ).

Now, we investigate the laser parameter dependence of I (t).
Shown in Fig. 4(a) is the (λ1, λ2) dependence of I (t) while
other parameters are fixed to be δ = 0.1, γ1 = 0.01, and t =
5000. There are regularly repeated ridges along the arc lines
with a certain radius. Such a property of the search space can
be understood by considering the system dynamics as follows.
Since the P space is isolated as a two-level system under the
CW-laser field, its dynamics is basically characterized by Rabi
oscillations [11]. From the eigenvalues, Eqs. (15) and (16) and
DQ(δ) ≈ 1, the period of Rabi oscillation TR is approximately
given as

TR = 2π

δ
(
λ2

1 + λ2
2

) . (19)

Since the total population oscillates between |P1〉 and |P2〉
with the period TR , the target state population takes maximum
values at t = (n + 1/2)TR with n = 0, 1, 2, . . .. Thus, for the
fixed t , I (t) takes maximum values when the specific condition
(n + 1/2)TR = t , or(

n + 1

2

)
2π

δ
(
λ2

1 + λ2
2

) ≈ t (20)

is satisfied, which creates the ripples in Fig. 4(a). Every ridge
line satisfies the condition λ2

1 + λ2
2 = const. On each ridge,

I (t) takes maximum value when λ1 = λ2. This is because of
the structure of the effective Hamiltonian, Eq. (14), that is, λ2

1
and λ2

2 are at diagonal elements. The difference between λ1

and λ2 corresponds to “effective” detuning in the isolated P

space. Thus, as the difference between λ1 and λ2 increases,
the amplitude of the Rabi frequency becomes small because
of the detuning effect, which leads to low I (t) value compared
to the case, λ1 = λ2.

Shown in Fig. 4(b) is the (λ1, λ2) dependence of J (T ) while
other parameters are taken to be the same as Fig. 4(a), i.e.,
δ = 0.01, γ1 = 0.01. Note that J (T ) is obtained through the
integration during t = 0 ∼ 5000. The steepness of I (t) surface
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FIG. 4. (Color online) (λ1, λ2) dependence of I (t) and J (T ) for the P space isolated from the 4-level system consisting of |P1〉, |P2〉, |Q1〉,
and |Q1〉. (a) (λ1, λ2) dependence of I (5000). Other parameters are fixed to be δ = 0, 1, γ1 = 0.01. (b) (λ1, λ2) dependence of J (5000). Other
parameters are fixed to be δ = 0, 1, γ1 = 0.01.

shown in Fig. 4(a) is smoothed through the time-averaging
integration. Note that the damping of the oscillation along the
λ1 = λ2 line is also due to the averaging process and is not
from the population loss due to �1.

We have performed a numerical search for the optimal
parameter set at around the first peak corresponding to the
smallest Rabi frequency in Fig. 4(a) and obtained the optimal
values, λ1 = λ2 = 0.056, which corresponds to the actual laser
amplitude setting 1 × 109 V/m for the interaction � and
1 × 107 V/m for the interaction Vk (k = 1, 2), respectively,
in the case of Ref. [5]. However, the parameter search turns
out to be difficult as the Rabi frequency becomes large because
of the complicated feature of the search space with numerous
local minima as shown in Fig. 4(a). Comparing Figs. 4(a)
and 4(b), one can tell that J (T ) surface is more suitable for
numerical optimization in the OCT because its behavior is

more moderate than I (t) and it is likely not to fall in the local
minima during the global optimization process.

Shown in Fig. 5 are the population dynamics in the P space
changing the ratio, λ1/λ2(=V2/V1). The quantity λ2

1 + λ2
2 that

determines the effective Rabi frequency is fixed to be π/500.
These conditions correspond to the points shown as 5(a), 5(b),
5(c), and 5(d) on the contour plot of I (t) in Fig. 4(a). The
population is completely transferred when λ1 = λ2 = 0.056
[see Fig. 5(d)], which corresponds to the effective resonant
condition. On the other hand, as shown in Figs. 5(a)–5(c) the
maximum population of the target state does not reach to unity
due to the effective detuning condition, λ1 �= λ2.

Shown in Fig. 6 is (λ, δ) dependence of I (t), while
λ ≡ λ1 = λ2. Other parameters are taken to be t = 5000 and
γ1 = 0.01. There are repeated ridge lines and the first one, that
is specified with white thick white broken line corresponds
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FIG. 5. Population dynamics of |P1〉 and |P2〉 in P space, changing λ1/λ2, whereas λ2
1 + λ2

2 is fixed to be π/250. Other parameters are taken
to be δ = 0.1, γ1 = 0.01. Solid and broken lines denote the population dynamics of |P1〉, and |P2〉, respectively. λ1, λ2 are taken as follows:
(a) λ1 = 0.018, λ2 = 0.077; (b) λ1 = 0.035, λ2 = 0.071; (c) λ1 = 0.047, λ2 = 0.064; (d) λ1 = 0.056, λ2 = 0.056.

to the condition in which the final time t = 5000 corresponds
to half a cycle of the Rabi oscillation, i.e., π -pulse situation.
Note that all the parameter sets on this ridge line correspond to
the dynamics which realizes almost 100% population transfer
to the target state. In such a case, direct OCT application to
the original four-level system together with gradient based
numerical optimization faces serious difficulties in finding
optimal values because of very small gradient along those
ridge lines shown in Fig. 6.

Here, we discus applicability of the present method to pulse
shaping problems. Although the formulation of the present
scheme is based on the system Hamiltonian under the CW-laser
conditions, it can be used for designing the pulse envelope
under limited conditions as follows. For simplicity, we con-
sider two-level system dynamics under resonant pulse laser
with envelope function f (t) and interaction amplitude �0.
Assuming that RWA approximation is valid, the Schröringer
equation is given as

d

dt

(
c1(t)

c2(t)

)
= − i

2

(
0 �0f (t)

�0f (t) 0

) (
c1(t)

c2(t)

)
. (21)

Here, we define the new variable τ , which is a function of t as

τ (t) =
∫ t

0
dt ′f (t ′). (22)
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FIG. 6. (Color online) (δ, λ) dependence of I (t) for the P space,
which is isolated from the original four-level system consisting of
|P1〉, |P2〉, |Q1〉, and |Q1〉. λ ≡ λ1 = λ2 and other parameters are
fixed to be γ1 = 0.01, t = 5000.
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Considering ci(t) as a function τ , c̃i(τ ), we rewrite Eq. (21)

dτ

dt

d

dτ

(
c̃1(τ )
c̃2(τ )

)
= f (t)

d

dτ

(
c̃1(τ )
c̃2(τ )

)

= − if (t)

2

(
0 �0

�0 0

)(
c̃1(τ )
c̃2(τ )

)
, (23)

which leads to

d

dτ

(
c̃1(τ )
c̃2(τ )

)
= − i

2

(
0 �0

�0 0

)(
c̃1(τ )
c̃2(τ )

)
. (24)

This is formally identical to the original equation of motion,
Eq. (21). Thus, the static optimization scheme in the present
method can be used to design the laser pulse for controlling
c̃i(τ ). Since one can define the pulse area constant as τ (∞) for
an arbitrary laser pulse, pulse shaping problems can be dealt as
a static optimization problem with respect to c̃i(τ (∞)). Note
that the c̃i(τ ) does not depend on the pulse envelope f (t) but
on τ , which implies that the system finally reach to the state
[c̃1(τ (∞)), c̃2(τ (∞))]T irrelevant to actual shape of f (t). One
can extend the above formulation to multilevel systems as far
as we take the same f (t) for all laser pulses introduced and
RWA stands. However, one should note that it is difficult to
apply the present method to more flexible pulse designing, in
which each pulse has different pulse envelope.

Lastly, we should mention the potential applicability to
more realistic molecular system, in which there are numerous
background states. If those background states are placed in
the Q space and only single doorway state is coupled to those
background states, the dissipative dynamics or population flow
to the Q space can be suppressed by the present scheme.
The application of the present scheme to the suppression of
intramolecular vibrational energy redistribution (IVR) is now
under study and will be reported elsewhere.

It is also interesting to consider how the suppression effect
of dissipation works on the molecular dynamics induced by
intense laser fields, such as multiphoton dissociation of H +

2
[17]. In the H +

2 case, the photodissociation originates from the
optical coupling between two electronic states which possess
bound and dissociative potential curves, respectively. In order
to use the present scheme, it is necessary to introduce the helper
electronic state with bound potential curve and apply another

intense CW laser which optically connects the dissociative
and the helper state more closely than that between original
two states responsible for photodissociation. Note also that,
for quantitative analysis on suppression effect, one needs to
carry out numerical calculations with the help of grid basis
and complex coordinate method in order to take into account
the Floquet-Siegert resonance rigorously, which might make
the laser optimization difficult, consequently.

Finally, we should mention that one needs to pay attention
to actual line width of dissipative state and possible laser
power to estimate the suppression effect. For example, for
suppressing IVR (� ∼ 10−6 a.u.) of typical molecule with
transition moment of 1 D, the CW laser with the amplitude
∼108 V/m is needed, while for more wider dissipation such
as shape resonances (� ∼ 10−3 a.u.), one needs to prepare
1011 V/m.

IV. SUMMARY

We have proposed a quantum control scheme for multilevel
systems, in which the laser optimization is converted into
static parameter search problem. In the present method,
instead of carrying out the numerical integration for obtaining
the time evolution of full original system, we utilize the
effective decomposition brought by intense CW lasers. By
using this scheme, we, first, isolate the subspace consisting
of control target states. Second, we solve the Schrödinger
equation for the isolated subspace to obtain the analytical
solution of eigenvalues/states in order to to express the
performance index as an explicit function of laser parameters.
Thus, we have succeeded to convert a general time-dependent
control problem into a static nonlinear optimization problem.
Moreover, it allows us to investigate detailed features of
the search space, which is difficult in the case of direct
application of OCT/LCT, in which the system dynamics is
numerically solved.
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