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Light scattering by ultracold atoms in an optical lattice
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3Theoretische Physik, Universität des Saarlandes, D-66041 Saarbrücken, Germany
(Received 6 April 2009; published 5 January 2010)

We investigate theoretically light scattering of photons by ultracold atoms in an optical lattice in the linear
regime. A full quantum theory for the atom-photon interactions is developed as a function of the atomic state
in the lattice along the Mott-insulator–superfluid phase transition, and the photonic-scattering cross section is
evaluated as a function of the energy and of the direction of emission. The predictions of this theory are compared
with the theoretical results of a recent work on Bragg scattering in time-of-flight measurements [A.M. Rey et al.,
Phys. Rev. A 72, 023407 (2005)]. We show that, when performing Bragg spectroscopy with light scattering, the
photon recoil gives rise to an additional atomic site-to-site hopping, which can interfere with ordinary tunneling
of matter waves and can significantly affect the photonic-scattering cross section.
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I. INTRODUCTION

Bragg scattering in condensed matter is a powerful method
for gaining information over the structural properties of crys-
talline solids. Usually, one employs thermal neutron beams,
whose thermal wavelength is of the order of the interparticle
distance inside the crystal. While elastic scattering allows
one to measure the reciprocal lattice primitive cell, inelastic
scattering gives information about the phonon spectrum and
anharmonicities [1]. In atomic systems, Bragg scattering has
been applied for demonstrating long-range order in structures
of cold ions in traps [2] and neutral atoms in optical lattices
[3–7]. Moreover, it has proven to be a precise tool for
the measurement of the elementary excitations of trapped
Bose-Einstein condensate [8,9] and strongly correlated atoms
in optical lattices [10]. The spectra of the scattered photons,
moreover, provide information on the details of atom-photon
interactions. Studies on optomechanical systems, for instance,
showed that the Stokes and anti-Stokes components of the
scattered light may exhibit entanglement, which emerges from
and is mediated by the interaction with the quantum vibrational
modes of the scattering system [11]. Such correlations are
endorsed by quantum interference in the processes leading
to photon scattering, which is mainly visible in the height of
the spectral peaks as a function of the emission angle [12]
and can be an important resource for quantum networks
[13,14].

In this article, we investigate the optomechanical properties
of strongly correlated atoms in optical lattices. These systems
present peculiar features, when compared with solid-state
crystals. In optical lattices, the bulk periodicity is determined
by the light potentials and is hence of the order of half
the laser wavelength. One remarkable property is that light
both couples to the atomic transition and is diffracted by the
crystalline structure which the atoms form [3–5]. This property
implies, for instance, that the system may exhibit peculiar
self-organization, with the atoms being a diffracting medium
for the light which traps them [4,15–17].

In the dispersive regime, when the optical lattice can be
considered a conservative potential, various states of ultracold
matter can be realized [18], thereby mimicking solid-state

models [19,20], a prominent example of which is the quantum
phase transition between a Mott insulator and a superfluid
state [21]. Bragg spectroscopy provides an important tool for
characterizing the quantum state of the atomic gas [8–10]. The
experimental procedure typically uses two laser beams, whose
wave-vector difference q gives, by means of the mechanical
effects induced by photon recoil, a momentum and energy
transfer h̄q and h̄ω [8]. The corresponding atomic response
is detected by a time-of-flight measurement, consisting of
releasing the trap and measuring the momentum distribution
by atom detection [8,9]. An alternative procedure makes
use of parametric amplification followed by time-of-flight
measurement, thereby revealing the energy transfer and the
spectrum [22,23]. These procedures may allow one to measure
the structure form factor [24–26] and characterize the state of
the gas.

Most recently, ultracold atoms were loaded inside of optical
resonators, and first measurements of the spectrum of trans-
mission of the light at the cavity output showed novel features,
which can be brought back to the collective and coherent
interaction of the atoms with the light [17,27–30]. Several
theoretical works pointed out that the observation of the photon
scattered by ultracold atoms may provide complementary
information on the quantum state of the atoms [31–35], which
could be nondestructive in some setups [34,36].

We also remark that theoretical studies on fermionic sys-
tems in an optical lattice showed that intensity fluctuations of
the scattered light may allow one to determine the temperature
of the atomic cloud [37]. Optical detection, and in particular
the intensity of the Bragg peaks, were proposed as a mean for
revealing fractional particle numbers of Fermi gases confined
by optical lattices [38]. In this article, we study light scattering
by ultracold bosonic atoms in an optical lattice, as in the setup
sketched in Fig. 1. We use a full quantum description of the
photonic and atomic fields for a range of optical lattice depths
which covers the superfluid-to-Mott-insulator transition. By
starting from the general Hamiltonian, we carry out the tight-
binding and single-band approximations, and we determine
the scattering cross section of photons in the linear response
regime. Extending previous works [32], we systematically
take into account the finite tunneling rate in evaluating the
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FIG. 1. (Color online) Light scattering by atoms trapped in a
one-dimensional optical lattice with lattice constant d0. The atoms
are probed by a laser beam, with wave vector kL and frequency ωL,
which couples to the atomic dipole transition at frequency ω0 with
ground state |g〉 and excited state |e〉 (see inset). The spectrum of
the scattered light is measured at a detector as a function of the
angle of emission. In experiments, one can also use a second laser
beam, into which the photon is emitted with high probability, hence,
implementing stimulated Bragg scattering [8].

scattering cross section for parameters sweeping along the
phase-transition Mott insulator to superfluid state. Our study
focuses on a small lattice of seven sites and solves numerically
the Bose-Hubbard model for this system. In order to get insight
into the numerical results, we also develop an analytical theory,
which extends the theory presented in [24] by including the
hopping induced by photon recoil. The interference between
the finite tunneling rate and the photon-induced hopping is
visible in the height of the Stokes peaks as a function of the
emission angle and can be revealed experimentally.

This article is organized as follows: In Sec. II, we present
the theoretical model. In Sec. III, the scattering cross section
is evaluated both analytically and by means of numerical
simulations. The conclusions are discussed in Sec. IV.

II. THE MODEL

The scattering system we consider is composed by N

identical bosonic atoms of mass m in a periodic potential,
as shown in Fig. 1. The relevant internal degrees of freedom
of the atoms are the electronic ground state |g〉 and an excited
state |e〉 that form a dipolar transition with dipole moment
D at the optical frequency ω0, which couples to a weak
laser probe. The Hamiltonian in second quantization reads
as H = Hat + Hemf + Hint with [39]

Hat = h̄ω0

∫
drψ†

e (r)ψe(r) +
∑
j=e,g

Hj + Heg, (1)

Hemf =
∑

λ

h̄ωλa
†
λaλ, (2)

where by ψj (r) and ψ
†
j (r) we denoted the annihilation and

creation operators of an atom in the internal state j = g, e

at position r, and by aλ and a
†
λ the annihilation and creation

operators of a photon in the mode at frequency ωλ, wave
vector kλ, and polarization ελ ⊥ kλ. The atomic field operators
obey the bosonic commutation relations [ψj (r), ψj ′ (r′)] =
[ψ†

j (r), ψ†
j ′ (r′)] = 0 and [ψj (r), ψ†

j ′ (r′)] = δjj ′δ(r − r′). The
Hamiltonian term Hg , (He) describes the motion of the atoms
in the internal state |g〉 (|e〉), and Heg gives the collisional
interaction between the atoms in states |g〉 and |e〉. We will
assume that the atoms interact with radiation far-off resonance
from the dipolar transition; hence, the occupation of the excited
state is small and will be neglected. Therefore, we just need to
provide the detailed form of the ground-state term

Hg =
∫

drψ†
g(r)

(
−h̄2∇2

2m
+ V (r)

)
ψg(r)

+ ugg

2

∫
drψ†

g(r)ψ†
g(r)ψg(r)ψg(r), (3)

where ugg is the strength of the contact interaction. The
potential V (r) is assumed to be periodic along the x direction
and reads as

V (r) = V0 sin2

(
πx

d0

)
+ 1

2
mωr (y2 + z2), (4)

where V0 is the lattice depth, d0 is the lattice constant, and ωr

is the frequency of the harmonic trap which tightly confines
the transverse motion.

Finally, the interaction term between atoms and light reads
(in the length gauge) as

Hint =
∑

λ

h̄Cλ

∫
drψ†

e (r)ψg(r)aλe
ikλ·r + H.c., (5)

where

Cλ =
√

ωλ

2h̄ε0V
(D · ελ) (6)

is the coupling strength, with ε0 the vacuum electric permit-
tivity and V the quantization volume.

A. Linear response

At room temperature and equilibrium, the atoms are in
the electronic ground state and the state of the optical modes
of the electromagnetic field can be approximated with the
vacuum |0〉. We now assume that a laser, at frequency ωL

and wave vector kL , couples to the atomic dipole transition.
The laser field is described by a coherent state of the
corresponding electromagnetic field mode with amplitude αL,
such that the mean number of photons is given by |αL|2. In
the regime in which the atom-laser coupling is sufficiently
weak, corresponding to the condition |CLαL| � |ω0 − ωL|,
we eliminate the excited state from the equations of motion
of the ground state in second-order perturbation theory in
the small parameter |CLαL|/|ω0 − ωL|. The dynamics of the
atoms in the electronic ground state |g〉 is now described by
the effective Hamiltonian

Heff = Hg + Hemf + H ′
int, (7)
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where the interaction term takes the form

H ′
int = h̄

∑
λ,λ′

C∗
λCλ′

ωλ′ − ω0
a
†
λaλ′

∫
dreiq·rψ†

g(r)ψg(r)

= h̄
∑
λ,λ′

C∗
λCλ′

ωλ′ − ω0
a
†
λaλ′Nq (8)

and describes the absorption of a photon in the mode λ′ and
wave vector kλ′ and the emission into the mode λ and wave
vector kλ, weighted by the Fourier transform of the density
Nq = ∫

dreiq·rψ†
g(r)ψg(r), with

q = kλ′ − kλ. (9)

In the following, we will assume that the interaction between
photons and atoms is essentially Hamiltonian and, hence, fully
determined by the Schrödinger equation governed by Eq. (7).
This is valid in the regime which we consider in this article,
namely, when the detuning of the light |ω0 − ωL| � γ , with
γ the linewidth of the excited state.

In this work, we study Bragg scattering of laser photons
by atoms in the one-dimensional periodic array given by
potential (4). We will hence evaluate the differential scattering
cross section for coherent scattering. Assuming that |αL| � 1,
so that the atoms absorb at most one photon from the laser at
a time, the differential scattering cross section is found from
the rate of scattering one laser photon into the mode λ. In
particular, the scattering rate reads as

	λL→λ = 2π

h̄2

∑
f

|〈1λ, f |H ′
int|1λL

, i〉|2

× δ(T )(ωL − ωλ + (Ei − Ef )/h̄), (10)

where we denoted by |1λ〉 = a
†
λ|0〉 the state of the electromag-

netic field with one photon in mode λ and by |i〉 and |f 〉 the
states of the atoms before and after the scattering, respectively,
which are eigenstates of Hamiltonian Hg at energies Ei and
Ef . The function

δ(T )(ω) = sin(ωT/2)

πω
(11)

is the diffraction function, giving energy conservation for
infinite interaction times, limT →∞ δ(T )(ω) = δ(ω) [40].

Equation (10) shows clearly that the scattering rate depends
on the state of the atoms before and after the scattering
event. In the following, we derive the atom-light interaction
Hamiltonian in the tight-binding approximation and conclude
this section by introducing the many-body atomic states which
are relevant for the scattering process considered here.

B. Tight-binding regime

We assume that the atomic wave functions are well localized
at the lattice minima, such that the tight-binding approximation
can be applied. Furthermore, at ultralow temperature and not
too strong interactions, the atomic gas is in the lowest band
of the periodic potential and in the ground state of the radial
oscillator, so that the atomic-field operator can be decomposed
as

ψg(r) = φ0(ρ)
∑

l

wl(x)bl, (12)

where wl(x) = w(x − ld0) is the Wannier function centered
at position ld0, with the sum going over all lattice sites,
and φ0(ρ) = exp(−ρ2/2ξ 2

r )/(ξr

√
π) is the ground state of

the radial oscillator (ρ =
√

y2 + z2) with ξr = √
h̄/mωr . The

operators bl annihilate an atom at site l and fulfill the
standard bosonic commutation relations [bl, b

†
l′ ] = δl,l′ . Using

this decomposition in Eq. (3), allowing only nearest-neighbor
hopping and restricting to on-site atom-atom interactions, we
obtain the Bose-Hubbard Hamiltonian [19]

H ′
g = −J

∑
l

b
†
l (bl−1 + bl+1) + U

2

∑
l

nl(nl − 1) − µ
∑

l

nl,

(13)

where nl = b
†
l bl is the atomic number operator at site l and

µ is the chemical potential. The coefficients for the hopping
term and the on-site interaction strength read as

J = −
∫

dxwl(x)

(
−h̄2∇2

2m
+ V (x)

)
wl+1(x), (14)

U = ugg

mωr

4πh̄

∫
dxwl(x)4, (15)

with the Wannier functions chosen to be real. Note that frozen
transverse dynamics, as assumed in Eq. (12), is here ensured by
taking J,U 〈n〉 � h̄ωr , where 〈n〉 is the mean site occupation.
Within this decomposition, the term describing atom-light
scattering takes the form

H ′
int =

∑
λ,λ′

h̄C∗
λCλ′

ωλ′ − ω0
a
†
λaλ′T (q). (16)

Here,

T (q) =
∑

l

eiqx ld0 [J0(q)nl + J1(q)(b†l bl+1 + b
†
l+1bl)] (17)

consists of a photon-dependent energy shift, weighted by the
coefficient

J0(q) = e− 1
4 (q2

y+q2
z )ξ 2

r

∫
dxeiqxxw0(x)2, (18)

and a hopping term with coefficient

J1(q) = e− 1
4 (q2

y+q2
z )ξ 2

r

∫
dxw0(x)eiqxxw0(x − d0), (19)

which describes light-assisted tunneling due to the mechanical
effects of photon scattering. This latter term has been neglected
in previous theoretical treatments [24,32,33]. Its effect has
been investigated in Ref. [31,41] for light scattering by
ultracold atoms in a double-well potential, showing that
the mechanical effect of light can interfere with ordinary
tunneling between the wells, generating observable effects in
the first-order coherence properties of the scattered light. We
hence expect that it will give rise to observable effects in the
Bragg signal by ultracold atoms in optical lattices.

In the following, we introduce the many-body states,
eigenstates of H ′

g , which are relevant for the scattering process
when the system is in the Mott insulator and in the superfluid
regime. In this treatment, we use the same notations as
in Ref. [42] and refer the reader to this work for more
details, like, for example, the careful comparison between the
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Bogoliubov approximation and the exact solution for small
one-dimensional systems.

1. Mott-insulator state

For vanishing hopping, the ground state of Hamiltonian (13)
is the Mott-insulator state with all lattice sites equally occupied
with (integer) filling factor g = N/M ,

∣∣ψ (0)
0

〉 =
M∏
l=1

(b†l )g√
g!

|0〉at = |g, g, . . . , g, g〉, (20)

where |0〉at denotes the vacuum. The corresponding ground
state energy for J = 0 is easily found and reads as E0

0 =
MUg(g − 1)/2 − Mgµ. The lowest lying excitations take the
form

∣∣ψ (0)
n,m

〉 = b
†
nbm√

g(g + 1)

∣∣ψ (0)
0

〉
, (21)

where one particle and one hole are created at site n and
m, respectively, with energy E0

1 = E0
0 + U . These states

form a degenerate subspace of dimension M(M − 1). This
degeneracy is lifted for finite values of the hopping J .

The corrections due to a nonvanishing but small value
of tunneling are evaluated using perturbation theory. In-
cluding the first-order correction, the ground state now
reads as

∣∣ψ (1)
0

〉=
[
1 − J 2

U 2
Mg(g + 1)

] ∣∣ψ (0)
0

〉+ J

U

√
2Mg(g + 1)|S〉,

(22)

where |S〉 = 1√
2M

∑
n(|ψ (0)

n,n+1〉 + |ψ (0)
n,n−1〉) is the normalized

state of adjacent particle-hole excitations, while the term
at second order in J warrants normalization of state (22).
The corresponding energy is E0 = E0

0 + O(J 2). The lowest
lying excitations are determined using degenerate pertur-
bation theory within the subspace of single particle-hole
excitations,

∣∣ψ (0)
[i]

〉 =
∑
n,m

c[i]
n,m

∣∣ψ (0)
n,m

〉
, (23)

where the coefficients c[i]
n,m fulfill the normalization condition

and satisfy the equations

(g + 1)
(
c

[i]
n+1,m + c

[i]
n−1,m

) + g
(
c

[i]
n,m+1 + c

[i]
n,m−1

) = Aic
[i]
n,m,

(24)

with periodic boundary conditions

c
[i]
n+M,m = c

[i]
n,m+M = c[i]

n,m, (25)

c[i]
n,n = 0. (26)

Term Ai in Eq. (24) is the first-order correction to the
corresponding energy, Ei = E0 + U − JAi + O(J 2).

An analytic solution of Eq. (24) can be derived in the
limit of large filling g � 1 [24,42]. This limit introduces a
symmetry between particle and hole excitations that simplifies
the analytical treatment but imposes a selection rule, which is
strictly correct only when g → ∞. The coefficients, evaluated

in this limit, read as

c[r,s]
n,m =

√
2

M
×

{
sin[αr|n − m|]eiαs(n+m) for r + s odd,
sin[αr(n − m)]eiαs(n+m) for r + s even,

(27)

with α = π
M

, s = 0, 1, . . . , M − 1 and r = 1, 2, . . . ,M − 1.
Correspondingly, the lowest lying excitations and their energy
read (at first order in J and for g � 1) as
∣∣ψ (1)

[r,s]

〉

=

⎧⎪⎪⎨
⎪⎪⎩

1
Nr

[∑
n,m

(
c[r,0]
n,m

∣∣ψn,m

〉) − J
U

√
8g(g + 1) sin αr

∣∣ψ (0)
0

〉]
for s = 0 and r odd,∑

n,m c[r,s]
n,m |ψn,m〉 otherwise,

(28a)

Er,s = E0
0 + U − 2J (2g + 1) cos αr cos αs + O(J 2), (28b)

where Nr is a normalization factor. Note that states |ψ (1)
[r,s]〉

contain a correction proportional to the ground state |ψ (0)
0 〉.

This correction is found from nondegenerate perturbation
theory and warrants the orthonormality of the new basis
{|ψ (1)

0 〉, |ψ (1)
[r,s]〉}.

2. Superfluid state

In the weakly interacting superfluid regime, quantum
fluctuations in the number of atoms per site are described
by the decomposition

bl = zl + βl, (29)

where zl is a complex number describing the order parameter
and βl is the fluctuations operator obeying the bosonic com-
mutation rules. The order parameter zl is found by minimizing
Hamiltonian (13) at zeroth order in the expansion in βl and β

†
l .

It obeys the discrete nonlinear Schrödinger equation

µzl = −
∑
〈k,m〉

Jkzmδk,l + U |zl|2zl, (30)

where |zl|2 corresponds to the condensate fraction. For a
translationally invariant lattice and in the limit of weak
interactions, as considered here, it is given by |zl|2 = g, and
Eq. (30) reduces to

µ = −2J + Ug. (31)

Using Eqs. (29) and (30) in Hamiltonian (13), keeping only
terms up to second order in the operators βl , β

†
l , one finds

H ′
g = H0 + H2 with

H2 =
∑
l,m

Ll,mβ
†
l βm + Ml,mβ

†
l β

†
m + H.c., (32)

where the coefficients read as

Ll,m = −J
∑
〈n,k〉

δn,lδm,k/2 + δl,m(2Ug − µ)/2,

Ml,m = Ugδl,m/2.
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Term H2 describes the dynamics of the noncondensed fraction
at leading order. It can be written in the diagonal form

H2 =
∑
p �=0

h̄�p

(
α†

pαp + 1
2

) −
∑

l

Lll , (33)

where operators αp and α
†
p are, respectively, the bosonic anni-

hilation and creation operators of the Bogoliubov excitation
with quasimomentum p = n2π/Md0, with n = −M,M −
1, . . . ,M − 1, and the frequency �p is given by

h̄2�2
p = ε2

p + 2Ugεp, (34)

with

εp = 4J sin2

(
d0p

2

)
. (35)

Operators αp, α†
p satisfy the commutation relations [αp, α

†
p′ ] =

δp,p′ and are related to βl by the Bogoliubov transformation

βl = 1√
M

∑
p �=0

eipld0upαp − e−ipld0vpα†
p. (36)

The Bogoliubov amplitudes up, vp satisfy the equation |up|2 −
|vp|2 = 1, as a consequence of the commutation relations,
and depend only on the modulus of the quasimomentum,
up = u−p, vp = v−p. They are solutions of the Bogoliubov-de
Gennes equations, which in our case read as

(
Jεp + Ug −Ug

Ug −Jεp − Ug

) (
up

vp

)
= h̄�p

(
up

vp

)
. (37)

In particular,

u2
p = εp + Ug + h̄�p

2h̄�p

, (38a)

v2
p = εp + Ug − h̄�p

2h̄�p

, (38b)

upvp = Ug

2h̄�p

. (38c)

We note that εp is the energy of a noninteracting particle
in the lattice. By replacing it with the free-space energy εp →
p2/2m, we recover in Eq. (34) the dispersion relation for a
weakly interacting dilute Bose gas in free space [43]. Contrary
to the case of the uniform one-dimensional system, where
Bogoliubov theory is not applicable, for a finite system, it
provides a well-defined and small depletion for U/J � 1 and
large filling. The corresponding spectrum of the differential
scattering cross section will be compared here with the
numerical results obtained for a finite Bose-Hubbard model
composed of seven atoms.

In the following, we will denote by |0〉SF the superfluid state,
where all atoms are in the condensate, and by |p〉SF = α

†
p|0〉SF

the state with one Bogoliubov excitation at quasimomentum
p. In particular, we will consider scattering processes, such
that the state of the atoms will include at most one Bogoliubov
excitation. To this aim, it is convenient to rewrite operator
T (q) in Eq. (17) using the decomposition of operator bl in

Eq. (29),

TSF(q) = T (0)
SF (q) + T (1)

SF (q) + T (2)
SF (q), (39)

The first term on the right-hand side of the equation describes
radiation coupling with the condensate and reads as

T (0)
SF (q) = g (J0(q) + 2J1(q))

∑
l

eiqx ld0 , (40)

while the other terms give radiation coupling with the
Bogoliubov excitations and take the form

T (1)
SF (q) = √

g
∑

l

eiqx ld0 [J0(q)(βl + β
†
l )

+ J1(q)(β†
l + βl+1 + β

†
l+1 + βl)], (41)

T (2)
SF (q) =

∑
l

eiqx ld0 [J0(q)β†
l βl + J1(q)(β†

l βl+1 + β
†
l+1βl)],

(42)

where the superscript gives the order in the Bogoliubov
expansion.

III. LIGHT SCATTERING

Light scattering by a one-dimensional optical lattice of
ultracold atoms is studied in the setup sketched in Fig. 1. A
laser plane wave at wave vector kL, at frequency ωL = c|kL|,
and in a coherent state with amplitude αL drives the atoms.
We evaluate the scattered light as a function of the angle of
emission, determined by the wave vector k of the mode into
which the photon is emitted, and of the frequency of the emitted
photon.

The scattering process is evaluated assuming that the
laser very weakly excites the atom, so that the atom-photon
interaction is described at lowest order by Hamiltonian (8).
Furthermore, the condition |αL| � 1 means that the atomic
sample is driven by at most one photon. A scattering process
will then occur with probability |αL|2 and will consist of the
absorption of one incident photon in the mode of the laser,
represented by the state |1L〉, and the emission of a photon in
one of the modes of the electromagnetic field at wave vector
k and polarization εk ⊥ k, represented by the state |1k,ε〉.
The corresponding differential scattering cross section for the
photon scattered at frequency ω in direction n in the solid
angle � is proportional to the scattering rate (10) and takes the
form [40,44]

σ (�,ω) = V2ω2
L

(2π )2h̄2c4

∑
f

∑
εk⊥n

|〈f, 1k,ε |H ′
int|i, 1L〉|2

× δ(T )(ωL + ωi − ω − ωf ), (43)

where k = nk and |i〉, |f 〉 are the initial and final atomic states,
eigenstates of Hamiltonian (13) at the eigenfrequencies ωi and
ωf , respectively. Using Eq. (8) in Eq. (43), one can easily verify
that the differential scattering cross section is proportional to
the dynamic structure factor [24].

We evaluate the scattering cross section assuming that the
atoms are initially in the ground state either of the Mott
insulator or of the superfluid phase, and that the atoms are
scattered into a final state belonging to the lowest lying atomic
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excitations. Using the form of operator H ′
int in Eq. (16), Eq. (43)

can be written as

σ (�,ω) = σ (0)(�,ω) + σ (1)(�,ω), (44)

where

σ (0) = A(�)|〈i|T (q)|i〉|2δ(T )(ωL − ω) (45)

gives the elastic component of the scattered light, while

σ (1) = A(�)
∑
f

|〈f, 1k|T (q)|i, 1L〉|2δ(T )(ωL − ω − δωf )

(46)

describes the scattering events in which one mechanical
excitation at frequency δωf is absorbed from the photon by
the atomic lattice (Stokes component) and corresponds to the
one-phonon terms in neutron scattering [1]. The corresponding
phonon emission processes, giving the anti-Stokes component,
are here absent as initially the atoms are in the ground state.
Moreover, higher order terms, corresponding to higher order
phonon terms in neutron scattering, are here neglected as we
assume that at most one mechanical excitation is exchanged
between lattice and photons.

The operator T (q) in the above equations is given in
Eq. (17), while the coefficient A(�) depends on the angle
of emission and takes the form

A(�) = V2ω2
L

(2π )2ε2
0h̄

2c4

∑
εk⊥n

h̄2|CLCk|2
|ωL − ω0|2

= γ

c

�2
0

�2

[
3

8π

(
1 − |D · n|2

|D|2
)]

, (47)

where γ is the linewidth of the dipole transition, � = ωL − ω0

is the detuning of the laser from the atomic transition, and
�0 = √

ωL/2h̄ε0D · εL.

A. Scattering cross section as a function of the atomic state

We now give an analytic expression for the scattering cross
section in Eq. (44) for the initial and final states determined in
Secs. II B1 and II B2.

1. Mott insulator

For the Mott-insulator phase, the initial state is |i〉 = |ψ (1)
0 〉

given in Eq. (22). Using Eq. (16), we find

σ
(0)
MI (�,ω) = A(�)N2δ(ωL − ω)δ(M)

qx ,G

×
(
|J0(q)|2 + 4

√
g(g + 1)

J

U
Re{J ∗

0 (q)J1(q)}
)

,

(48)

where G are the vectors of the (one-dimensional) reciprocal
lattice and

δ
(M)
q,G ≡ 1

M2

sin2(Md0q/2)

sin2(d0q/2)
(49)

gives conservation of the Bloch momentum in a finite lattice
with M sites, such that δ

(M)
q,G → δq,G (Kronecker delta) as

M → ∞. In Eq. (48), we omitted terms at third and higher
order in J and J1(q). This approximation will be applied to

the rest of this section, assuming that these higher order terms
can be neglected.

The presence of δ
(M)
qx ,G

in Eq. (48) expresses the von-Laue
condition for Bragg scattering. At zero order in the hopping
term, Eq. (48) gives the response of a crystal of particles
oscillating around their equilibrium position. In fact, using
a Gaussian ansatz for the wave functions, one can estimate
|J0(q)|2 � e−2W , with W = [q2

x ξ
2
x + (q2

y + q2
z )ξ 2

r ]/8, where ξx

and ξr are the widths of the atomic wave functions in the
axial and radial direction, showing explicitly that this term
is analogous to the Debye-Waller factor [1,45]. The term
proportional to J is instead a novel feature with respect to
traditional condensed-matter systems that arises from light-
induced tunneling.

The Stokes component for the Mott insulator is evaluated
taking the final states |f 〉 = |ψ (1)

[r,s]〉 given in Eq. (28) and reads
as

σ
(1)
MI (�,ω) = A(�)

∑
r,s

sin2
(πr

M

)
|Br,s |2

× δ(ωL − ω − ωr,s)δ
(M)
q(s),G, (50)

with ωr,s = (Er,s − E0)/h̄, and where we have introduced

q(s) = qx − 2π

Md0
s. (51)

The coefficient in Eq. (50) takes the form

Br,s

=
√

8g(g + 1) ×
{

J1(q) for r + s odd,
2 J

U
J0(q) sin

(
π
M

s
)

for r + s even,

(52)

showing that the transition to the excited states with r + s odd
is due to photon recoil and is hence a light-induced hopping
process. Note that condition q(s) = G shows that the quantum
number s, and more specifically 2πs/L, with L = Md0 the
length of the lattice, plays the role of the quasimomentum
of the states |ψ (1)

r,s 〉. We remark that Eq. (53), for r + s even,
agrees with the result evaluated in [24] [see Eq. (9) of that
paper for comparison]. The result we find for r + s odd, on
the contrary, is discarded in the treatment of [24], as there
the authors neglected light-induced hopping terms. In the
Mott-insulator regime, these terms are usually very small with
respect to the other contributions. They give rise to a significant
contribution when interfering with ordinary tunneling. This
latter type of contributions is ruled out in the analytical model
by the selection rule introduced by the assumption g � 1, but
it is visible in the numerical results, as it will be shown in
Sec. III.

2. Superfluid

When evaluating the differential scattering cross section
in the superfluid phase, we assume all atoms to be initially
prepared in the Bose-Einstein condensate. In addition, for the
analytical calculation, we consider the limit U → 0. In this
limit, we can neglect the quantum depletion of the condensate
due to the interactions and take the initial state |i〉 = |0〉SF

according to our notation. The zero-phonon term takes now
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the form

σ
(0)
SF (�,ω) = A(�)δ(ωL − ω)δ(M)

qx,G
N2

⎛
⎝|J0(q) + 2J1(q)|2 + 2

∑
p �=0

|vp|2
N

Re{[J0(q) + 2J1(q)]∗[J0(q) + 2J1(q) cos(pd0)]}
⎞
⎠ ,

(53)

showing that the light-induced tunneling effects enter already
at first order in this expression. As in the Mott-insulator case,
the analogous of the Debye-Waller factor can be here identified
in the term |J0(q)|2. In this case, though, tunneling effects
become more important, modifying significantly the signal as
we will show. The first-phonon term reads as

σ
(1)
SF (�,ω) = A(�)N

∑
p �=0

δ(ωL − ω − �p)
εp

h̄�p

× |(J0(q) + J1(q)(1 + e−ipd0 ))|2δ(M)
qx−p,G, (54)

and describes the creation of Bogoliubov excitations with
quasimomentum h̄p by photon scattering, such that the relation
p = qx − G holds.

B. Numerical results

In this section, we report the numerical results for the
differential scattering cross section obtained when the atoms
are in the Mott insulator or in the superfluid state. The
numerical results are obtained for a lattice of M = 7 sites
and a fixed particle number of N = M . The coefficient
entering the Bose-Hubbard Hamiltonian in Eq. (13) and
the operator T (q) in Eq. (17) are calculated by using the
Wannier functions relative to a given lattice depth V0 of optical
potential (4). The Hamiltonian (13) is diagonalized exactly,
and the corresponding states are used for determining the
differential scattering cross section in Eq. (43). The numerical
results are also compared with the analytical predictions of
the scattering cross sections reported in the previous section.
Although the latter are valid for very large lattices and for large
mean-site occupation g � 1, we find reasonable agreement
when comparing these predictions with those for a small lattice
of seven sites and single occupancy (see also [24]).

Figures 2(a) and 2(c) display the one-phonon contribution
to the differential scattering cross section, σ (1)(�,ω), as a
function of the frequency ω and for different scattering angles
when the atoms are in the Mott-insulator state. The numerical
results are compared with the analytical model (dashed line)
and with the model used in the numerical simulations in [24],
in which light-induced hopping terms are not considered.

We first discuss the numerical results which most closely
approach the exact solution. The appearance of multiple peaks
corresponds to the excitations of the atoms in the Mott insulator
due to the photon recoil. The number of peaks for the numerical
result is M − 1, which correspond in this case to 6. They
can be individually resolved, as the system considered here
is finite, and the width of each individual peak is limited by
the detection time T (or the spectral resolution 1/T ) [46].
The analytical results are found using the model described

in Sec. II, which assumes a large on-site occupation. They
are characterized by the same peak number, although only
half of them is visible in the figure. In fact, the intensity
of the peaks arising from the coupling of the ground state
to the corresponding excitation via light-induced hopping
[corresponding to the terms in Eq. (52) with r + s odd] are
very small compared with the other ones (corresponding to the
terms with r + s even) and are therefore not visible (note that,
due to the assumption of large on-site occupation, interference
between ordinary tunneling and light-induced hopping is
suppressed). The central positions of the visible peaks present
a systematic shift with respect to the ones found numerically.
This systematic shift originates from the assumption g � 1
and has been observed in [24]. Nevertheless, the analytical
solution still provides some insight into the numerical results.
In Eq. (28), using Eq. (51), we find that the peaks are centered
around the energy E′ = U with a spreading about this mean
value of width 4J (2g + 1) cos( qxd0

2 ). Such spreading decreases
as qxd0 approaches π [compare Figs. 2(a) and 2(c)]. In
particular, for qxd0 = π , the width of the distribution of the
Stokes excitations vanishes and the spectrum reduces to a
single peak, corresponding to the on-site energy U .

The results for the superfluid regime are reported in
Figs. 2(b) and 2(d). Here, the analytical solution predicts that
in the limit g � 1, the total momentum of photon and lattice
is conserved in a scattering event. Such property implies that
the Bogoliubov mode matching the momentum-conservation
condition is excited, and therefore, one expects a single peak
in the spectrum. For N = 7 atoms and g = 1, the numerical
results for U/J ≈ 1 give a single peak at qxd0 = 2π/7,
while at qxd0 = 6π/7, multiple peaks are found. In this case,
instead of a collective density fluctuation with a well-defined
momentum p, one observes particle-hole types of excitations
as in the Mott-insulator case. In Fig. 2(d), one observes a larger
spread of the peaks as compared with the Mott-insulator case
at the same Bragg angle. This is due to the larger value of the
tunneling rate J . We remark that, choosing smaller values of
the ratio U/J by ramping down the on-site interaction strength,
as will be shown, the spectrum reduces to a single peak at all
Bragg angles and approaches the limit of the single-particle
spectrum, as it is recovered in Eq. (34) by setting U = 0.

We now compare the numerical results, obtained taking
systematically into account the light-induced hopping term, to
the results found when this term is neglected, corresponding to
the treatment in [24]. In the Mott-insulator case, comparison
between the numerical results with and without light-induced
hopping effects shows that in the first case one finds interfer-
ence between ordinary tunneling and light-induced hopping.
This gives rise to an alternating enhancement and reduction
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FIG. 2. (Color online) Stokes component of the differential scattering cross section [in units of A(�)] as a function of frequency (in units
of the recoil frequency ωR) for two different scattering angles, corresponding to qxd0 = 2π/7 (top row) and to qxd0 = 6π/7 (bottom row). The
curves have been evaluated for a lattice of M = 7 site and N = M = 7 composed by 87Rb atoms in the |F = 2, mF = 2〉 hyperfine ground state.
The black solid line corresponds to the numerical results, the blue dashed line to the analytical formulas (see text), and the red dashed-dotted
line to the model of [24], where the light-induced hopping is neglected. Plots (a) and (c) are evaluated for V0 = 8.1 h̄ωR (U/J ≈ 17) which
corresponds to the Mott-insulator state. Plots (b) and (d) are evaluated for V0 = 0.1 h̄ωR (U/J ≈ 1) which corresponds to the superfluid state.
Other parameters are d0 = 413 nm, as = 105a0, with a0 being the Bohr radius and ωr = 10ωR corresponding to the experimental parameters
in [22]. (For these parameters, the size of the radial wave packet is ξr = 10as .) The frequency resolution is set to �ω = 300 Hz, corresponding
to an integration time T = 3 ms.

of the peak heights at different frequencies, which is absent in
the model discarding light-induced hopping effects. In general,
the light-hopping term contributes to determining the height of
some peaks, giving substantial modifications of the spectrum
which can be revealed experimentally. The effect is larger in
the superfluid regime, where tunneling is enhanced, as one can
see in Fig. 2(b). Here, the central peak at qxd0 = 2π/7 is 50%
higher than in absence of this contribution.

Figures 3(a)–3(c) display the spectra of σ (1) as a function of
the frequency and of the Bragg angle, in three different points
of the phase diagram. We remark that the width and spacing
of the Bragg peaks are determined by the finite size of the
lattice. The plots in Figs. 2(a) and 2(b) are made in the same
parameter regimes as in Figs. 2(a) and 2(c) and 2(b) and 2(d),

respectively, namely U/J ≈ 17 and U/J ≈ 1. Figure 3(c),
instead, corresponds to the value U/J ∼ 0.1. Here, one
observes almost a single peak at each Bragg angle, as expected
in the weakly interacting superfluid phase.

Figure 4 shows σ (1) as a function of the frequency and
the depth of the potential, hence, sweeping from the Mott
insulator to the superfluid regime at a given Bragg angle,
corresponding to a large momentum transfer (qxd0 = 6π/7).
Here, one observes that the spectrum varies from multiple
peaks, deep in the Mott-insulator regime, to a single peak
in the weakly interacting superfluid regime. The single peak
appears around a value of U/J much smaller than the critical
value [U/J ]c for the Mott-to-superfluid transition (which, in
the thermodynamic limit, is predicted for [U/J ]c = 3.37; see
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FIG. 3. (Color online) Stokes component of the differential scattering cross section [in units of A(�)] as a function of the frequency (in
units of ωR) and of the Bragg angle � = qxd0 (in units of π ). The plots have been evaluated numerically for (a) V0 = 8.1 h̄ωR and U/J ≈ 17,
(b) V0 = 0.1 h̄ωR and U/J ≈ 1, and (c) V0 = 0.1 h̄ωR and U/J ≈ 0.1. The other parameters are as in Fig. 2.

FIG. 4. (Color online) Contour plot of the Stokes component
of the differential scattering cross section [in units of A(�)] as a
function of the frequency (in units of ωR) and of the lattice depth V0

in units of ωR for qxd0 = 6π/7 (the corresponding value of the ratio
U/J is reported in the axis between the squared bracket). The black
dashed line marks the critical value at which the phase transition
occurs in the thermodynamic limit. The other parameters are given in
Fig. 2.

Ref. [47]). The presence of multiple peaks also in the superfluid
phase close to the phase transition is reminiscent of a strongly
interacting superfluid phase. Such phase contains, beyond the
gapless phononic modes, also gapped modes [48–52], which
are predicted to be dominant at large quasimomentum. We
expect that also in the thermodynamic limit the transition
to a single peak in the scattered-light spectrum will occur
at lower values of U/J than the Mott-insulator-to-superfluid
phase transition and will be also dependent on the momentum
transfer. The identification of the Mott-insulator-to-superfluid
phase transition should rather rely on the existence of a gapless
spectrum. Despite the very small size of the considered system,
indications of a gapless spectrum are present in our results, as
one can see comparing Fig. 3(a) with Figs. 3(b) and 3(c).

The intensity of the scattered light as a function of the Bragg
angle is determined by the differential scattering cross section

dσ

d�
=

∫
dωσ (�,ω), (55)

and is reported in Fig. 5 for the atoms in the Mott insulator
[Fig. 5(a)] and in the superfluid state [Fig. 5(b)]. The solid
line here corresponds to the numerical results, the dashed line
to the analytical predictions, and the dashed-dotted line to
the model where light-induced hopping has been discarded,
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FIG. 5. (Color online) Intensity of the scattered light (in arbitrary units) as a function of the Bragg angle � = qxd0 (in units of π ). The
parameters are the same as in Fig. 2 and (a) V0 = 8.1ER (U/J ≈ 17) and (b) V0 = 0.1ER (U/J ≈ 1). The black solid line corresponds to
the numerical result, the blue dashed-dotted line to the analytical solution, and the red dashed line to the numerical result obtained discarding
the light-induced hopping term as in [32] and [24].

which is similar to the case considered in Ref. [32]. In this
latter work, in fact, corrections due to the tunneling J were
neglected when evaluating light scattering by the atoms in the
Mott-insulator state, while the calculation of light scattering
from the superfluid state was made discarding the finite
value of the on-site interaction as well as the finite width
of the Wannier functions. In Fig. 5(a), we observe that in
the Mott-insulator regime, the signal is dominated by the
elastic component and corresponds to a classical diffraction
grating. In the superfluid regime, on the other hand, one
finds that the amplitude of the Bragg peak is modified, and
a background signal appears which is due to light scattering
by the condensate fraction. This signal is the signature of the
superfluid phase, and it arises from the coherent effects of
tunneling and light-induced hopping. We also notice that in
the superfluid phase, only the first diffraction order is visible.
This is due to the increased width of the atomic wave function,
which yields a faster decaying Debye-Waller factor J0(q). We
remark that higher diffraction orders would be visible if the
superfluid regime was accessed by keeping the lattice depth
constant, for instance by ramping down the on-site energy
using a Feshbach resonance. The Bragg signal as a function of

FIG. 6. (Color online) Intensity of the scattered light (in arbitrary
units) as a function of the Bragg angle � = qxd0 (in units of π ) and
of the lattice depth V0 (in units of h̄ωR) (the corresponding values
of the ratio U/J are reported between squared brackets). The other
parameters are reported in Fig. 2.

the lattice depth is reported in Fig. 6, showing the appearance of
the background signal as the superfluid regime is approached.

IV. CONCLUSIONS

We have discussed Bragg spectroscopy of ultracold bosonic
atoms in an optical lattice, focusing on the signatures of the
Mott insulator and superfluid quantum state in the scattered
photons. A full quantum theory for the atoms and photons
dynamics and interactions has been developed, allowing us
to identify the various contributions to the detected signals.
We have characterized the Bragg scattering signal for the
parameters sweeping across the transition from the Mott
insulator to the superfluid quantum state. In particular, the
contribution of light-induced hopping, arising from atomic
recoil due to photon scattering, has been put into evidence.
This term has been neglected in previous theoretical treatments
[24,32]. In this work, we have shown that its contribution
can interfere with ordinary tunneling between sites, thereby
significantly affecting the spectroscopic signal. Its effect is
visible in the behavior of the height of the peaks in the spectrum
as a function of the emission angle, and it has been singled
out by comparing the spectrum evaluated when this effect is
discarded. This effect can be revealed experimentally in large
systems, according to the analytical theory we develop by
extending the one derived in [24,42], and in small systems,
as we observe by numerically evaluating the spectrum for
a lattice of seven atoms. It is interesting to consider whether
such properties can be used as resources for photonic interfaces
based on strongly correlated atoms in optical lattices.

This analysis has been made in the linear regime, assuming
a weak probe and far-off resonance both from the atoms and
from the frequency of the lattice beam. Using instead Bragg
beams at the same frequency as the optical lattice, wave-mixing
effects are expected, as reported, for instance, in Refs. [4,5,53].
In addition, optical lattices have been discussed in the literature
as a possible realization of photonic bandgap materials
[15,54–60]. An interesting question is how such photonic
properties are modified when the many-body quantum state of
the atoms is relevant to the atom-photon interactions dynamics.
When the light is close to resonance with the atoms, hence in
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the dissipative regime, the state of the atoms is significantly
heated up. On the other hand, interesting photon-photon
correlations could be observed, due to interference in multiple
scattering by the atoms (see, e.g., Ref. [61]).

We remark that, while monitoring the state of the gas by
means of photons is attractive, Bragg spectroscopy modifies
the atomic system, as the recoil imparted by the scattered
photon significantly perturbs the state of the atomic gas. It
would be desirable to identify schemes, such as the quantum
nondemolition type of measurements [62,63], which can allow
one to measure the relevant quantities in a noninvasive way.
This may permit one to implement feedback mechanisms
[36,64], which would allow one to prepare other nonclassical
states of the atomic gas.
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