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Near-threshold vibrational excitation of acetylene by positron impact
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We report vibrational excitation cross sections for C–C and C–H symmetric stretch modes of acetylene by
positron impact. The contribution of these infrared inactive modes to the annihilation parameter is also addressed.
The Feshbach projection operator approach was employed to vibrationally resolve e+-acetylene scattering phase
shifts obtained with the Schwinger multichannel method. The present results point out a virtual state pole at the
equilibrium geometry of acetylene that becomes a bound state as either bond is stretched, in qualitative agreement
with previous calculations for small hydrocarbons. The vibrational couplings are stronger for the C–C mode,
giving rise to a bound state pole within the Franck-Condon region of the vibrational ground state. These bound
and virtual states give rise to sharp threshold structures (vibrational resonances) in both the vibrational excitation
cross sections and the annihilation parameter (Zeff ). We found fair agreement between the present calculations
and previously reported e+-acetylene vibrational excitation cross sections.
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I. INTRODUCTION

Recent years have witnessed an increasing interest on
low-energy antimatter physics and chemistry [1]. It is now
widely appreciated that positrons are not only useful for
fundamental studies covering QED tests, gravity on antiatoms,
Bose-condensed positronium (Ps) gases, and astrophysics but
also for scientific and technological applications ranging from
material science to the probing of metabolic processes with
positron emission tomography (see Ref. [2] for a review).
Such progress is to a large extent based on the improvement of
accumulation and manipulation techniques that have allowed
for bright low-energy antimatter beams [3].

A major advance in the field was the experimental evidence
of vibrationally enhanced positron annihilation in molecular
gases [4,5] that brought a lot of attention to positron-
nucleus couplings in collision processes. Though considerable
knowledge has been gained from annihilation theories and
models [6–8], the ab initio description of positron interactions
with large polyatomics is still challenging and details of the
annihilation mechanism are yet to be unveiled. In this sense,
computational studies of small hydrocarbons would be of
key importance since they form low-energy metastable states
with positrons [9,10] that can transfer energy into the nuclear
degrees of freedom, thus enhancing the annihilation rates.

We recently implemented a computational method to
vibrationally resolve positron-molecule collisions wherein
bound and virtual states are found [11]. This approach is
based on the Feshbach projection operator formalism [12],
a well-known tool of electron-molecule scattering that has
also proved useful for description of positron scattering and
annihilation [8,11]. In this work, the method is applied to
positron-impact vibrational excitation of symmetry-preserving
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modes of acetylene, namely C–C and C–H stretch. The
well-known e+-acetylene virtual state is significantly coupled
to vibrations and becomes a bound state as the molecule is
stretched, in agreement with independent calculations [10].
In addition to the inherent interest on vibrational excitation,
state-to-state cross sections may help the development of
annihilation theories. The connection between vibrational
resonances in the annihilation parameter (Zeff) and the total
(vibrationally summed) cross section was recently pointed out
[8], and state-to-state excitation cross sections might provide
finer tests of theoretical approaches, since Zeff is inherently
vibrationally summed (i.e., it cannot be resolved in state-to-
state transitions). Finally, though the infrared inactive modes
addressed here do not have a clear signature in the experimental
annihilation rate [5] we briefly discuss vibrationally resolved
Zeff estimates for these modes.

This paper is organized as follows. The theoretical and
computational frameworks are outlined in Secs. II and III,
respectively. The vibrational couplings and cross sections
as well as model results for the annihilation parameter are
discussed in Secs. IV and V. Our conclusions are summarized
in Sec. VI.

II. THEORY

A. Feshbach projection operator approach

The application of the Feshbach projection operator (FPO)
formalism [12] to vibrationally resolved collisions is discussed
in detail elsewhere [13,14], so we only outline its main
features. By decomposing the scattering wave function into
discrete and continuum components, with the former embed-
ded and coupled to the latter, the collision is described as
the formation of a temporary positron-molecule compound: A
positron in the continuum has a finite probability of capture in
the discrete state, which eventually decays to the continuum
by positron detachment. The nuclei, initially in the potential
surface of the isolated target, are launched onto the potential
surface of the transient, and long-lived compounds may allow
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for significant energy transfer into the vibrational degrees of
freedom. The vibrational excitation integral cross section is
given by

σνi→νf
= π

k2
i

∣∣∣∣ T bg
νiνf

+ 〈ηνf
|�1/2(Ef )

× 1

E − K − Vopt(E − HN )
�1/2(E) |ηνi

〉
∣∣∣∣
2

, (1)

where E = k2
i /2 is the positron incident energy (with ki

the magnitude of the incident wave vector) and T
bg
νiνf

is the
background contribution to the ηνi

→ ηνf
T -matrix element,

where ην is a vibrational eigenstate of the target. K denotes
the nuclear kinetic energy and Vopt is the complex and energy-
dependent potential surface of the transient (the so-called
optical potential [13]),

Vopt(E − HN ) = V0(q) + εd(q) + �(E − HN )

− i

2
�(E − HN ), (2)

where a single vibrational coordinate (q) is assumed for
simplicity. HN = K + V0(q) is the vibrational Hamiltonian
of the target (where V0 is the potential energy surface of
the electronic ground state) and εd(q) is a potential energy
shift related to positron capture (discrete state). The width
� and the energy-dependent level shift � account for the
discrete-continuum coupling,

�(E − HN ) = 2π

∫
kdk

∫
dk̂ Uk δ

(
E − HN − k2

2

)
U ∗

k ,

(3)

and

�(E − HN ) = 1

2π
P

∫
dE′ �(E − HN )

E − E′ , (4)

where the Cauchy principal value is indicated in Eq. (4). The
FPO approach to positron annihilation is described elsewhere
[8], and the angle-averaged annihilation parameter Zeff is given
by

Zeff = π

ki

〈ηi | �1/2(E)

[E − K − Vopt(E − HN )]†

× ρd
�1/2(E)

[E − K − Vopt(E − HN )]
|ηi〉, (5)

where ρd(q) is the electron density at the positron. In obtaining
Eq. (5), it was assumed that only the discrete component
(trapped positron) contributes to the annihilation process, since
a positron in the continuum would be weakly coupled to
molecular vibrations and would have a low density at the target
electrons.

B. Schwinger multichannel method

The complex potential of the positron-molecule tran-
sient can be obtained from fixed-nuclei scattering calcu-
lations performed for a number of target geometries. The
Schwinger multichannel method (SMC), described in detail
elsewhere [15], was employed in these calculations. The
variational expression for the fixed-nuclei transition matrix is

given by

tki ,kf
(E) =

∑
m,n

〈Skf
|V |χm〉(d−1)mn〈χn|V |Ski

〉, (6)

where

dmn = 〈χm|(PV P + QĤeleQ − V G
(+)
P V )|χn〉. (7)

In these expressions, Hele = H0 + V is the fixed-nuclei scat-
tering Hamiltonian, where H0 describes the noninteracting
positron-molecule system, and V is the scattering potential.
P is a projector onto the energy-allowed target electronic
channels (comprising only the ground state in the present
application), Q = (1 − P ) is the closed-space projector, G

(+)
P

is the free-particle Green’s function projected onto P space,
and Ĥele = E − Hele. Sk is an eigenstate of H0, and the
(N + 1)-particle configuration state functions χm (which are
products of target electronic states and projectile scattering
orbitals) provide the basis for expansion of the trial scattering
wave function. The dynamical response of the target electrons
to the projectile field (correlation-polarization effects) is
accounted for through the Q space (virtual excitations of the
target).

C. Complex potential parametrization

The optical potential in Eqs. (1) and (5) depends on the
collision energy and vibrational coordinates. Since the energy
dependence would be important in near-threshold scattering
[13], we account for the position dependence numerically and
employ a model parametrization similar to those proposed in
Refs. [16,17] to analytically describe the energy dependence of
the complex potential. The decomposition of the fixed-nuclei
T matrix is equivalent to the decomposition of the fixed-nuclei
eigenphase sum [18],

δ(E) = δbg(E) + δd(E), (8)

with

δd(E) = tan−1

(
1
2�(E)

E − εd − �(E)

)
, (9)

and the following model form is assumed for the width:

�(E) =
n∑

α=1

AαE1/2 exp(−bαE) ≡
n∑

α=1

�α. (10)

Aα and bα are model parameters and the Wigner threshold law
[19] has been imposed on the assumption that near-threshold
scattering is dominated by the s wave (l = 0). The level shift
may be readily obtained in closed form from Eqs. (4) and (10),

�(E) = �0 + 1

2

n∑
α=1

�α |erf(i
√

bαE)|, (11)

where erf denotes the error function and

�0 = −1

2

n∑
α=1

Aα√
πbα

. (12)

The background eigenphase is described with the leading term
of the threshold expansion,

δbg(E) = aE1/2, (13)
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where a is a model parameter. The discrete-state potential
energy shift (εd) is also viewed as a model parameter, so
the eigenphase sum at any given geometry is expressed in
terms of (2n + 2) parameters, namely a, {Aα}, {bα}, and εd.
These are obtained from least-squares fits of Eq. (8) to SMC
eigenphases, and the dependence of the optical potential on the
nuclear coordinates is numerically described by interpolating
the model parameters over the range of molecular geometries
of interest. The operators in Eqs. (1) and (5) may therefore be
represented in the basis of the vibrational eigenstates of the
target {ην} (see Ref. [11] for details), such that

σνi→νf
= π

k2
i

∣∣∣∣∣ T bg
νi νf

+
∑
νµ

�
1/2
f µ (Ef )[D−1]µν�

1/2
νi (E)

∣∣∣∣∣
2

, (14)

with

Dµν = 〈ηµ|[E − K − Vopt(E − HN )]|ην〉, (15)

�µν(E − HN ) =
∑

j

〈ηµ|�1/2(E − εj )|ηj 〉

× 〈ηj |�1/2(E − εj )|ην〉 (16)

and

�µν(E − HN )

= 1

2π

∑
j

P
∫

dE′

× 〈ηµ|�1/2(E′ − εj )|ηj 〉〈ηj |�1/2(E′ − εj )|ην〉
E − E′ . (17)

In these expressions, εj is a vibrational eigenvalue of the target,
and the annihilation parameter can be expressed in a similar
fashion,

Zeff = π

ki

ρd

∑
νµ

�
1/2
iµ [D†−1]µν[D−1]νµ�

1/2
µi , (18)

where the density ρd is calculated at the equilibrium geometry
of the target; that is, its dependence on the vibrational
coordinate is neglected, 〈ηµ|ρd|ην〉 � δµν ρd(qeq).

III. COMPUTATIONAL PROCEDURES

A. Fixed-nuclei calculations

The target electronic ground state was described at the
restricted Hartree-Fock (HF) level with a 5s3p1d basis set
on carbon atoms, 3s1p on hydrogen atoms, and 1s1p1d on
the center of mass (the details of which are given elsewhere
[20]). The scattering basis set was augmented with s-, p-,
and d-type functions on dummy centers located at the corner
of a cube. The equilibrium bond lengths rCC = 2.233a0 and
rCH = 1.998a0 were obtained with the HF potential, and the
target was treated as a D2h molecule due to limitations of
our computer codes. Correlation-polarization effects were
accounted for by including all singly excited target states (from
valence hole orbitals) in the closed space, giving rise to 6053
configurations to expand the scattering wave function.

The frequencies and reduced masses of the normal modes
were also obtained from the HF potential [21]. The cal-
culated values were 2216 cm−1 and 3.630 g/mol for C–C
stretch, and 3660 cm−1 and 1.250 g/mol for C–H stretch.

For the C–C mode, scattering calculations were performed for
qCC = −0.500a0, −0.350a0, −0.200a0, −0.100a0, −0.050a0,
−0.025a0, 0.000a0, 0.025a0, 0.050a0, 0.075a0, 0.100a0,
0.125a0, 0.150a0, 0.200a0, 0.275a0, 0.350a0, 0.500a0, and
0.650a0, where qCC = 0.000 is the equilibrium geome-
try. For C–H stretch, fixed-nuclei calculations were per-
formed at qCH = −0.500a0, −0.350a0, −0.200a0, −0.100a0,
−0.050a0, 0.000a0, 0.050a0, 0.100a0, 0.150a0, 0.175a0,
0.200a0, 0.225a0, 0.250a0, 0.275a0, 0.300a0, 0.325a0,
0.350a0, 0.375a0, 0.400a0, 0.500a0, and 0.650a0. For all
geometries, the projectile energies were taken from 10−4 to
3.0 eV.

B. Vibrational excitation cross sections

The operators and wave functions were represented on
evenly spaced 256-point grids for both modes. A six-parameter
model, corresponding to n = 2 in Eq. (10), was employed to
represent the l = 0 eigenphase, and the deviations between
least-squares fits and SMC eigenphases were typically 2%–3%
(with the maximum deviation not exceeding 5%). The target
vibrational eigenstates were obtained from the HF potentials
by employing the energy screening technique [22], and the
0 → 0, 1, 2 cross sections were well converged with the
representation of the nonlocal operator truncated at ν = 9.
The energy integration in Eq. (17) was performed with Gauss-
Legendre quadratures for three intervals defined from the
position of the pole (Epole = E) as follows: 0 � E′ < E,
E < E′ < 2E, and E′ > 2E. This procedure ensured that the
quadrature points were evenly distributed below and above the
poles, thus avoiding significant errors. The convergence of this
numerical integration was crucial to obtain accurate vibrational
cross sections near the thresholds (see the following).

IV. RESULTS

The s-wave phase shifts obtained from fixed-nuclei SMC
calculations and the corresponding least-squares fits are shown
in Fig. 1 for geometries given in Sec. III A, where results for
the C–C and C–H stretch modes are shown in the upper
and lower panels, respectively. For both modes, the threshold
behavior indicates the formation of bound states as the bonds
are stretched, since δ(E → 0) → π would be expected for
such states [23]. In view of the large scattering lengths, the
behavior of the phase shifts can be understood on the basis of
effective range theory, such that negative slopes at very low
energies indicate bound states,

δ0(k) � π − kα, (19)

where α > 0 is the scattering length and k is the positron
momentum. Positive slopes point out virtual states (α < 0),

δ0(k) � −kα = k|α|, (20)

where the relation between the scattering lengths and the poles
on the imaginary axis of the complex k plane (±iκ0),

α = ± 1

κ0
, (21)

make clear that the slopes should be larger for shallower poles
(i.e., smaller κ0). The SMC phase shifts shown in Fig. 1 show
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FIG. 1. (Color online) Fixed-nuclei s-wave scattering phase shifts
(δ0). The lines are least-squares fits of Eq. (8) to SMC calculations
(circles). Results for the C–C and C–H symmetric stretch modes are
shown in the upper and lower panels, respectively, and the different
curves correspond to selected geometries. For both modes, the low-
energy eigenphases (also shown in the insets) monotonically increase
as the bonds are stretched.

clear signatures of virtual states becoming bound states as the
molecular bonds are stretched (i.e., the potential becomes more
attractive the more stretched the molecule is).

The corresponding level shifts (�) and widths (�) are
shown in Fig. 2 for the C–C (upper panel) and C–H (lower
panel) modes. The parametric dependence on the vibrational
coordinates may be easily followed since the width peak
heights monotonically increase with the bond lengths, while
the level shift at zero energy is monotonically decreasing (a
tendency that is inverted at higher energies due to the crossings
around 1.1 eV).

The phase shifts in Fig. 1 suggest that the threshold behavior
of elastic and vibrationally inelastic cross sections would
result from low-lying virtual and bound states. To survey the
trajectory of these poles in the complex momentum plane, an
advantage may be taken from the analytical model employed
for the energy dependence of the complex potential. Virtual
and bound states show up as singularities on the negative and
positive imaginary axis of the complex k plane, respectively
[23]. These can be obtained from the analytic continuation of
the complex potential [16,17] and correspond to the zeros of

E − εd − �(E) − i

2
�(E) = 0. (22)

On the imaginary axis, one finds � = 0 and

�(−|E|) = �0 ±
n∑

α=1

|E|1/2 exp(bα|E|) erfc(
√

bα|E|), (23)
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FIG. 2. (Color online) Fixed-nuclei level shifts (�) and widths
(�) for selected geometries. Results for the C–C and C–H symmetric
stretch modes are shown in the upper and lower panels, respectively.
For both modes, the width peak heights around 0.6 eV monotonically
increase with the bond lengths, while the level shift at zero energy is
monotonically decreasing.

where the ± sign on the right-hand side of Eq. (23) correspond
to the ±ik branches. As a result, the intersections of the straight
line (E − εd) with the plus (minus) branch indicates the bound
(virtual) states, as shown in Fig. 3. The pole trajectories as
functions of the vibrational coordinates are shown in Fig. 4,
along with the probabilities of the vibrational ground states
of both modes. Though the virtual state at the equilibrium
geometry becomes a bound state for longer bond lengths
in both cases, the slope of the C–C mode trajectory is
considerably larger, giving rise to a bound state within the
Franck-Condon region of the vibrational ground state. The
C–H mode pole, on the other hand, has a virtual state character

-6

-3

0

-9

-6

-3

0

-1 0 1

-6

-3

0∆ 
(e

V
)

Energy (eV)
-1 0 1

-9

-6

-3

0

FIG. 3. (Color online) Bound-state (solid black lines) and virtual-
state (dashed red lines) branches of the the level shift (�). Selected
results are shown for the C–C (upper panels) and C–H (lower panels)
stretch modes. Pole energies are obtained from the crossings of the
branches with the E − εd straight lines (with virtual and bound states
in the left and right panels, respectively).
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FIG. 4. (Color online) Pole trajectories in the complex momen-
tum plane for the C–C (black triangles) and C–H (red circles)
symmetric stretch modes. Bound and virtual states are found in
the positive (+ik) and negative (−ik) half-planes, respectively. The
probability densities of the vibrational ground states are also indicated
in the upper plane for the C–C (black solid line) and C–H (red dashed
line) modes.

over a broad range of geometries. The 0 → 1 vibrational
excitation cross sections are shown in the left panel (C–C
mode) and right panel (C–H mode) of Fig. 5. Though both
modes show threshold structures arising from the low-energy
poles, the vibrational resonance of the C–C mode has a much
greater strength.

V. DISCUSSION

Previous studies of positron scattering by small hydrocar-
bons [9,10], with the target molecules frozen in the equilibrium
geometries, brought out the existence of virtual state poles. The
calculations of Nishimura and Gianturco [10] also indicated
that these poles become bound states as the C–H bond is
stretched. These results, obtained with an independent com-
putational framework, point out the same behavior reported
here for the C–C and C–H stretch modes of acetylene (see
Fig. 4). This is a relevant fact not only because this general
trend is confirmed by the present results but also because
the couplings of virtual state poles to molecular vibrations,
though widely acknowledged in electron scattering [13,17,24],
are often disregarded in positron-molecule collision models
[6,7]. The present results also suggest that these couplings
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FIG. 5. (Color online) Integral cross section for the 0 → 1
vibrational excitation of the C–C (left panel) and C–H (right panel)
symmetric stretch modes of acetylene by positron impact. Solid green
lines: present results; dashed blue lines: calculation of Franz and
Gianturco [27]. For the C–C mode, the small peak around 0.53 eV is
a signature of the 0 → 2 channel threshold.
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FIG. 6. (Color online) Model single-mode calculations for the
annihilation parameter (Zeff ). Solid green line: C–C symmetric stretch
mode; dashed blue line: C–H symmetric stretch mode; bullets:
experimental data of Gilbert et al. [4] (rescaled by a factor of 0.1).

are stronger for the C–C mode, as indicated by the slope
of the pole trajectory at the equilibrium geometry. Since
longer bond lengths seem to better accommodate the positron,
stretching the C–C triple bond should give rise to a more
attractive e+-acetylene potential due to its high electron
density.

Model single-mode calculations for the annihilation param-
eter (Zeff) are shown in Fig. 6, where the experimental data
of Ref. [4] were rescaled by a factor of 0.1 for comparison
purposes. The one-to-one correspondence between resonances
in the vibrationally summed cross section and in the annihi-
lation parameter was recently pointed out [8] and the present
results illustrate that virtual state poles give rise to resonantly
enhanced annihilation rates. It is well known that low-lying
singularities in the fixed-nuclei scattering matrix give rise to
vibrational resonances in the vicinity of elastic and inelastic
thresholds when vibrations are included in the model [24] and
these should also be present in the annihilation parameter.
Though experimental results indicate that infrared active
modes give rise to much stronger Zeff resonances, the present
results indicate that vibrationally enhanced annihilation should
also arise from infrared inactive modes. Our results are not
directly comparable to the experimental data [4] for a number
of reasons, namely the complete neglect of infrared active
modes and many-mode effects; the threshold shifts due to the
HF description of the target potential energy surface; and the
fact that partial waves other than l = 0 were not accounted
for (since the experimental energy resolution, ∼25 meV, is
also much larger than the resonance widths and of the order
of the vibrational energy spacings, the signature of symmetric
stretch modes becomes blurred). Nevertheless, the existence
of vibrational resonances is a relevant fact from a conceptual
standpoint.

Finally, we would like to comment on the numeri-
cal convergence of the present results. As described in
Sec. III B, the numerical energy integration of the level-shift
operator in Eq. (17) was carried out with distinct Gauss-
Legendre quadratures for three intervals, namely 0 � E′ < E,
E < E′ < 2E, and E′ > 2E, where E is the pole energy.
This procedure ensures that quadrature points are evenly
distributed below and above the pole and was essential to
attain numerically converged cross sections [25]. Though
small quadratures were adequate at higher energies, a proper
description of the threshold peaks in the vibrational excitation
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cross sections (Fig. 5) could only be obtained with a total
of nearly 1000 quadrature points. In addition, the energy
grid for cross-section plots must be very dense around the
threshold peaks (10−6 eV step), because the resonances are
very narrow [�(E) ∼ 10−5–10−4 eV]. For these reasons, the
present threshold peak for the C–C mode is significantly higher
than in previously reported calculations [26], obtained with a
total of nearly 150 quadrature points and energy steps of around
10−2 eV. The present cross sections also compare favorably
with the body-frame vibrational close coupling estimates of
Franz and Gianturco [27]. The major discrepancy is the peak
height of the C–C mode excitation cross section, which should
be very sensitive to small differences in the description of
the e+-acetylene interaction potential as well as to numerical
aspects. Though we are not in position to criticize their model,
the figures of Ref. [27] (in particular, the insets) suggest that
energy grids with 10−2 eV steps were employed. It is possible
that denser grids could favor the comparison with the present
results.

VI. CONCLUSIONS

The Feshbach projection operator approach was employed
to vibrationally resolve e+-acetylene scattering phase shifts
obtained with the SMC method. Vibrational excitation cross
sections were calculated for the 0 → 1 transitions of the C–C
and C–H symmetric stretch modes, and the contribution of

these infrared inactive modes to the annihilation parameter
was also discussed. In agreement with previous calculations
for small hydrocarbons [10], the present results point out a
virtual state pole at the equilibrium geometry of acetylene that
becomes a bound state as either bond is stretched. Though
this pole keeps its virtual state character over a fairly broad
range of C–H bond lengths, stretching the C–C bond gives rise
to a bound state in the vicinity of the equilibrium geometry,
within the Franck-Condon region of the vibrational ground
state. These poles give rise to sharp threshold structures
(vibrational resonances) in both the vibrational excitation cross
sections and the annihilations parameter Zeff , as expected.
The present vibrational excitation cross sections are in fair
agreement with the calculations of Franz and Gianturco [27],
the major discrepancy being the C–C mode threshold peak
height.
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