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Ultracold collisions of ions with neutral atoms in traps are studied. Recently, ultracold atom-ion systems have
become available in experimental setups, where their quantum states can be coherently controlled. This control
allows for an implementation of quantum information processing, combining the advantages of charged and
neutral particles. The state-dependent dynamics that is a necessary ingredient for quantum computation schemes
is provided in this case by the short-range interaction forces that depend on the hyperfine states of both particles.
In this work, a theoretical description of spin-state-dependent trapped atom-ion collisions is developed in the
framework of a multichannel quantum-defect theory and an effective single-channel model is formulated that
reduces the complexity of the problem. Based on this description, a two-qubit phase gate between a 135Ba+ ion
and a 87Rb atom is simulated using a realistic combination of the singlet and triplet scattering lengths. The gate
process is optimized and accelerated with the help of optimal control techniques. The result is a gate fidelity of
1 − 10−3 within 350 µs.
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I. INTRODUCTION

Ongoing developments in quantum information processing
stimulate an intense search for physical systems suitable for
its implementation. Besides solid-state and photonic systems,
cold ions and neutral atoms are major candidates in this
direction.

Neutral atoms can be accurately manipulated in dipole traps
[1,2], optical lattices [3], or on atom chips [4,5]. Advanced
evaporative and laser-cooling techniques allow neutral atoms
to be prepared in the vibrational ground state of different
trapping potentials. Single ions can be confined in Paul or
Penning traps [6] and sideband laser cooling allows them to
be cooled to the trap ground state.

Ultracold systems that combine ions and neutral atoms
are currently being explored [7–9]. Besides several quantum-
mechanical aspects of this system, the studies are motivated by
the potential applications. For example, techniques involving
the sympathetic cooling of trapped atoms by laser-cooled
trapped ions can be developed [10,11]. In this paper, we
propose a scheme for a quantum gate that combines the
advantages of atoms and ions for quantum computation.

The trapping potentials of atoms and ions, although both
are made up of oscillating electromagnetic fields, do not
interfere with each other since the oscillation frequencies
of the respective fields typically differ by orders of mag-
nitude. The strength of the effective ion potential can be
much stronger than that for neutral atoms. Tight confine-
ment enables fast transport and, combined with the good
addressability of single trapped ions with lasers, this is among
the advantages of using ions for implementing quantum
computation.

Realization of the Mott insulator phase allows an array of
atoms to be prepared with a well-controlled number of particles
in a single site of an optical lattice.

Controlled preparation combined with the long decoher-
ence times of neutral atoms is a reason to use atoms for the

storage of quantum information. Furthermore, the two-particle
interaction between an atom and an ion is typically much
stronger than for two neutral atoms, which allows fast gate
operations.

While qubits can be stored in internal electronic degrees
of freedom for both kinds of particles, the state-dependent
dynamics suitable for two-qubit gates requires some engi-
neering of the two-particle interaction. To this end one can
use external electromagnetic fields (e.g., magnetic Feshbach
resonances), which allow for a precise tuning of the two-body
effective scattering properties. The long-range part of the
atom-ion interaction also supports a trap-induced type of
resonance [12]; because of their generally state-dependent
nature, they constitute a basic element of our quantum
computation scheme.

This work solely makes use of these trap-induced shape
resonances that occur at relatively large distances. In this way,
some possible unwanted processes are avoided that may result
from molecular dynamics at short distances. We nevertheless
plan to include magnetic Feshbach resonances in our theory,
which can be applied to perform two-qubit operations in a
controlled collision [13,14].

A possible setup for quantum computation is schematically
depicted in Fig. 1. Atoms are stored in an optical lattice in a
Mott insulator phase such that each lattice site is occupied
by exactly one atom. One movable ion is used to create
long-distance entanglement between pairs of atoms and to
perform quantum gates. The basic ingredient of this idea is
the controlled and qubit-sensitive interaction between atoms
and ions. In this paper we focus on the dynamics of a single
atom interacting with a single ion; nevertheless, our approach
can be easily extended to the situation of many atoms, or more
than one ion, at a later stage.

In this work we develop a theoretical model for spin-
dependent atom-ion collisions. For the case of an alkaline-earth
metal ion and an alkali metal atom, a model is formulated based
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FIG. 1. (Color online) Concept for quantum computation with
atoms and ions: Atoms are prepared in an optical lattice in a Mott
insulator phase. A movable ion entangles the atoms and can also be
used for sympathetic cooling.

on the multichannel quantum-defect theory (MQDT) [9],
taking into account the presence of trapping potentials [15].
Within the model, the atom-ion interaction is described by
the long-range 1/r4 polarization potential combined with a
set of quantum-defect parameters representing the effect of
the short-range potential. The essential parameters for our
approach are the singlet and triplet scattering lengths, which
are not yet known with sufficient accuracy but can probably
be measured in upcoming experiments. This paper discusses
several different regimes for the values of the singlet and the
triplet scattering length. For some specific range of scattering
lengths, the complexity of the problem can be reduced by
employing an effective single-channel model for the atom-ion
dynamics.

Using the effective single-channel description, we are able
to simulate a two-qubit phase gate for an arbitrary combination
of atom and ion species. Applicability of the model, however,
requires values of singlet and triplet scattering lengths that
are nearly equal. In this case, within the single-channel
description and for a specific system of 135Ba+ ion and 87Rb
atom, we develop a phase-gate process yielding a fidelity
of 1 − 10−3 within the gate time of 346 µs. Because it
is equivalent to the controlled-NOT (CNOT) gate, the phase
gate is universal for quantum computation [16]. Therefore,
we demonstrate the feasibility of quantum computation on
the system under consideration. In a general situation, when
the scattering lengths are not similar, the phase gate can be
even faster; however, this situation requires going beyond the
single-channel effective description and is outside the scope
of the present paper.

There are two main mechanisms that could lead to failure of
the quantum gate. One is the radiative charge transfer, which
in the current scheme leads to a loss of both particles in the
case of heteronuclear species. In contrast, for a homonuclear
collision [8], the charge transfer results in a physically
equivalent situation and therefore cannot be considered a
loss mechanism. Heteronuclear alkaline-earth metal ion–alkali
metal atom systems have the advantage of a relatively simple
electronic level structure; for the systems studied thus far,
Na-Ca+ [9,11] and Rb-Ba+ [17], the charge exchange rate
remains much smaller than the elastic collision rate, even in
the presence of resonances. The second type of loss results
from spin-changing collisions. In our scheme the qubits
are encoded in hyperfine spin states, and collisions leading

to final states outside of the computational basis must be
avoided. In the regime of applicability of our single-channel
effective model, the coupling between different channels is
by definition very weak and those kinds of losses can be
safely neglected. Even in a general situation, a multichannel
treatment including all possible spin-state channels offers the
possibility of gaining control over spin-changing processes by
appropriate engineering of the gate dynamics.

The paper is organized as follows. Section II describes
the basic setup and model used throughout the paper. The
atom-ion polarization interaction is discussed briefly and the
concepts of correlation diagrams and trap-induced resonances
are introduced. The MQDT for trapped particles, as well as its
reduction to a single-channel model, is developed in Sec. III.
The presented theory allows for the computation of eigenstates
and eigenenergies in either single- or multichannel situations.
The dynamics of atom-ion collisions is discussed in Sec. IV,
where correlation diagrams and the Landau-Zener theory help
to understand the features of the system. Section V presents the
concepts and results of the two-qubit phase gate simulations.
A summary of the results, together with further perspectives
and ideas, is given in Sec. VI.

II. BASIC SETUP AND MODEL

We consider a system consisting of a single atom and a
single ion, stored in their respective trapping potentials. Such
potentials can be created with rapidly oscillating (rf) electric
fields for ions and with optical traps based on the ac Stark effect
for atoms. These traps can be well approximated as effective
time-independent harmonic traps, as long as the particles are
close to the ground state of the potential. For this setup we
introduce an effective Hamiltonian

H = − h̄2

2mi

�i − h̄2

2ma

�a + 1

2
miω

2
i (ri − di)

2

+ 1

2
maω

2
a(ra − da)2 + W (|ri − ra|), (1)

where mi(a) is the mass of the ion (atom), ωi(a) and di(a)

denote frequency and location of the harmonic trapping
potential of the ion (atom), and W (r) is the interaction
potential. A microscopic derivation of the Hamiltonian Eq. (1)
can be found in Ref. [12]. Here, for simplicity, we have
assumed spherically symmetric trapping potentials and the
same trapping frequencies for atom and ion: ωi = ωa = ω. It
should be stressed, however, that this approach can be easily
generalized to anisotropic trapping potentials and different
trapping frequencies [12]. A general treatment would imply
coupled c.m. and relative degrees of freedom and, thus,
a six-dimensional equation, but there are no fundamental
difficulties. In experiments, both traps can be designed to
be spherically symmetric, while the assumption of the same
trapping frequencies allows us to decouple the relative and
c.m. motions, thereby reducing the dimensionality of the
problem from six to three. This choice simplifies our numerical
calculations, but also allows the most important features of the
system to be captured.

We transform the Hamiltonian Eq. (1) by introducing c.m.
and relative coordinates, Rc.m. = (miri + mara)/(mi + ma)
and r = ri − ra , respectively. Without losing generality we
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can choose the coordinate frame such that the vector of trap
separation, d = di − da = dez, points in the z direction. In
this way we obtain the relative Hamiltonian

H
(d)
rel = H

(0)
rel + 1

2µω2d2 − µω2 dz, (2)

where µ = mima/(mi + ma) denotes the reduced mass of the
atom-ion system and

H
(0)
rel = − h̄2

2µ
�r + 1

2
µω2r2 + W (r) (3)

is the Hamiltonian for the special case d = 0.

A. Atom-ion interaction

At large distances the atom-ion interaction potential has
the asymptotic behavior W (r) � −C4/r4 (r → ∞). This
behavior results from the fact that the ion charge polarizes
the electron cloud of the atom, and the induced dipole and the
ion attract each other. Therefore, the atom-ion interaction falls
into an intermediate category between the long-range Coulomb
forces W (r) ∼ 1/r and the van der Waals forces W (r) ∼ 1/r6

for neutral atoms. The interaction constant C4 can be expressed
in terms of the electric dipole polarizability, α, of the atom in
the electronic ground state (S-state): C4 = αe2/2. The electron
charge is denoted as e. At short distances the interaction is
dominated by the exchange forces, and higher order dispersion
terms (C6/r6, C8/r8) also become relevant. In the current
approach, we model the short-range part of the potential using
the quantum-defect method; that is, we do not require the
knowledge of the exact form of the short-range interaction.
The interaction potential, in addition to the model potential, is
depicted schematically in Fig. 2.

By equating the interaction potential C4/R
∗4 to the kinetic

energy h̄2/2µR∗2, we can define some characteristic range
R∗ =

√
2µC4/h̄

2 and corresponding characteristic energy
E∗ = h̄2/2µR∗2 of the atom-ion interaction. Table I gives
the characteristic range and energy for some example atom-
ion systems. For comparison, it also includes the harmonic
oscillator length l0 = √

h̄/µω for ωi = ωa = 2π × 100 kHz.

Polarized atomIon
rmin R∗

V (r) ≡ −C4/r
4

r

W (r)

FIG. 2. (Color online) The long-range part of the atom-ion
interaction potential equals −C4/r4. At distances smaller than the
potential minimum rmin, repulsive terms start to dominate. Quantum
defect theory replaces the actual potential W (r) (solid line) with a
reference potential V (r) (dashed line) and includes the short-range
effects using a quantum-defect parameter related to the short-range
phase of the relative wave function. The characteristic range R∗ of
the interaction is typically much larger than rmin.

TABLE I. Characteristic length and energy scale for example
systems. Oscillator lengths are calculated with ωi = ωa = 2π ×
100 kHz.

Atom-ion system R∗ (units of a0) l0 (units of a0) E∗/h (kHz)

135Ba+ + 87Rb 5544 826 1.111
40Ca+ + 87Rb 3989 1178 4.142
40Ca+ + 23Na 2081 1572 28.545

B. Single-channel quantum-defect treatment

The short-range interaction potential between atom and
ion is typically quite complicated and in most cases it is not
known theoretically with an accuracy sufficient to determine
the scattering properties in the limit of ultracold energies. In
order to avoid complications while using the explicit form
of the short-range potentials, we resort to the quantum-defect
method, which allows the effects of the short-range forces
to be included in an effective way. This method consists of
substituting the actual potential with the reference potential
V (r) = −C4/r4 at all distances (see Fig. 2) and assigning an
appropriate short-range phase to the wave function to model
the effects of the short-range potential.

This approach can be illustrated by solving the relative
Schrödinger equation H

(0)
rel �(r) = E�(r) at d = 0. To this

end, we apply the partial wave decomposition

�(r) =
∑
lm

Ylm(r̂)ψl(r)/r (4)

to obtain the radial Schrödinger equation[
− h̄2

2µ

∂2

∂r2
+ h̄2

2µ

l(l + 1)

r2
+ µω2

2
r2 + V (r) − E

]
ψl(r) = 0

(5)

for the radial wave functions ψl(r). Here, Ylm are the
spherical harmonic functions describing the angular part of
the three-dimensional wave function, where l and m are the
quantum numbers of the relative angular momentum and its
projection on the symmetry axis z, respectively. In the limit
of r → 0 we can neglect the trapping potential, energy, and
centrifugal barrier in comparison to V (r) = −C4/r4, which
yields [

− h̄2

2µ

∂2

∂r2
− C4

r4

]
ψl(r) = 0 (6)

with the solution

ψl(r) = r sin

(
R∗

r
+ ϕ

)
, r → 0, (7)

where ϕ is a parameter that can be interpreted as the short-range
phase. In this method, Eq. (7) is treated as a boundary condition
that we impose on the radial wave functions at short distances
while solving the relative Schrödinger equation in the general
case d �= 0.

In the absence of a trapping potential, and for l = 0 and E =
0, the solution Eq. (7) becomes valid at all distances. By com-
paring the long-range behavior of Eq. (7), limr→∞ ψ0(r)/r ∼
(1 + R∗/r cot ϕ), with the well-known asymptotic form of the
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FIG. 3. (Color online) An example correlation diagram calculated
for R∗ = 3.68l0 and the short-range phase ϕ = 0.74π , showing
the energy spectrum versus the trap separation. The partial wave
number l is given for the lowest states at d = 0. As explained in
the text, molecular-state energies have an approximately parabolic
d dependence, indicated by the dashed line.

s-wave radial wave function, limr→∞ ψ0(r)/r ∼ 1 − a/r , we
can relate the short-range phase to the scattering length

a = −R∗ cot ϕ, (8)

which is a measurable physical quantity. We note that R∗
determines the typical length scale for the scattering length. In
this section, we have focused only on single-channel collisions
and without considering internal states of the particles. The
present approach is generalized in Sec. III to the realistic
multichannel situation.

C. Correlation diagram and trap-induced resonances

To obtain an intuitive understanding of atom-ion collisions,
we describe them in terms of correlation diagrams, showing
the energy spectrum as a function of the trap separation d

(see Fig. 3). Such correlation diagrams in this case connect
the asymptotic vibrational states for large trap separation to
the molecular and vibrational states at zero trap separation. At
large distances we find harmonic-oscillator-like equidistant
eigenenergies that are independent of d. Molecular bound
states, that correspond to the eigenstates with energies well
below the zero-point vibration energy E0 = 3/2h̄ω, experi-
ence a quadratic shift with distance d. This effect can be
easily understood by noting that the bound states �mol(r)
are well localized around r = 0, and 〈�mol|H (d)

rel |�mol〉 ≈
Emol + 1

2µω2d2, where Emol is the molecular binding energy
at d = 0. Besides the given arguments, the quadratic shift in
the molecular energy becomes immediately clear in Fig. 4. The
molecular potential “hangs” from the relative trapping poten-
tial in the low-distance region; thus, increasing (decreasing)
d shifts the molecular energy up (down) as d2.

At some particular distances, the energies of the molecular
states become equal to the energies of the vibrational levels
(see Fig. 4), and the spectrum exhibits avoided crossings,

E

rdres

molecular state vibrational state

FIG. 4. (Color online) Trap-induced shape resonance: At a certain
trap separation d = dres, the energy of a molecular bound state
degenerates to a trap vibrational energy. The adiabatic eigenenergies
exhibit an avoided crossing at this position. The arrows indicate that
the molecular energy is shifted if the relative trap position is changed.

known as the trap-induced shape resonances [18]. By slowly
changing the trap separation d, we can pass through the
resonance adiabatically, converting the trap vibrational states
into molecular states and, thus, producing molecular ions.
Since this process is reversible, we can coherently control
the dynamics of our system by appropriately adjusting the trap
distance.

III. QUANTUM-DEFECT THEORY FOR TRAPPED
PARTICLES

A. Multichannel formalism

In general, the interaction properties depend on the internal
state of two colliding particles. For these internal states we
choose a convenient basis in which the two-particle Hamilto-
nian is diagonal at large particle distance, where the interaction
potential is negligible. We then refer to the two-particle basis
states as scattering channels. The wave function is decomposed
into the chosen basis, which allows us to write Schrödinger’s
equation in matrix form. In the following we introduce an
MQDT formalism, following closely the formulation by F.
Mies [19] and adapting it to a situation that includes an external
trapping potential. If the same trapping frequencies for atom
and ion are assumed, the c.m. and relative degrees of freedom
are decoupled. In this case we can describe the relative motion
with the close-coupled Schrödinger equation

− h̄2

2µ
��(r) + [W(r) + U(r) − EI] �(r) = 0, (9)

where I denotes the identity matrix, W(r) is the interaction
matrix

Wij (r)
r→∞−→

[
E∞

i − C4

r4

]
δij , (10)

which is asymptotically diagonal, with {i, j} indicating the
channels. The trapping potential U(r) is diagonal at all
distances:

Uij (r) = 1
2µω2(r − d)2δij . (11)

The matrix �(r) contains N linearly independent solutions,
where N is the number of channels. The threshold energies for
the molecular dissociation in channel i are denoted by E∞

i .
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1. Special case: d = 0

For d = 0 the external potential is spherically symmetric
and the dynamics for different relative angular momenta l

is decoupled. We can decompose F(r) into a partial wave
expansion

�(r) =
∑

l

clFl(r)Yl0(r̂)/r, (12)

where for simplicity we consider only the m = 0 subspace.
The radial wave functions Fl(r) fulfill

[HlI + W(r)] Fl(r) = EFl(r), (13)

with

Hl = − h̄2

2µ

∂2

∂r2
+ h̄2l(l + 1)

2µr2
+ 1

2
µω2r2. (14)

In our calculations we model the short-range potential by
choosing appropriate short-range phases ϕi for each of the
channels. This approach is equivalent to setting Wij (r) =
(E∞

i − C4/r4)δij at all distances. In this case the reference
potentials that are necessary to define the MQDT functions
[19] can simply be taken as diagonal elements of W(r):
Vi(l, r) ≡ Wii(r) + h̄2l(l+1)

2µr2 . Given the reference potentials,
Vi(l, r), one can associate them with a pair of linearly
independent solutions f̂i(l, r) and ĝi(l, r) of the single-channel
Schrödinger equation that have WKB-like normalization at
small distances:

f̂i(l, r) ∼= ki(l, r)−1/2 sin βi(l, r)

ĝi(l, r) ∼= ki(l, r)−1/2 cos βi(l, r)

}
r ∼ rmin, (15)

where ki(l, r) = √
2µ[E − Vi(l, r)]/h̄ is the local wave vector

and βi(l, r) = ∫ rdxki(l, x) is the WKB phase. Here rmin

denotes a typical distance where the minima of the realistic
potential occur, and the semiclassical approximation is appli-
cable. In our modeling, rmin → 0, and Eq. (15) describes the
asymptotic behavior r → 0.

The solution to Eq. (13) can be expressed in terms of a pair
of functions, f̂l(r) ≡ {δij f̂i(l, r)} and ĝl(r) ≡ {δij ĝi(l, r)}:

Fl(r) = [f̂l(r) + ĝl(r)Yl(E)]Â, (16)

where Yl(E) is the quantum-defect matrix that represents the
effects of the short-range potential, in particular couplings
between channels, and is discussed later. The matrix Â has
constant coefficients and is determined by the boundary
conditions at r → ∞. We note that in MQDT the functions
f̂l(r) and ĝl(r) generally describe only the asymptotic (r → ∞)
behavior of Fl(r). Because of our choice of W(r) and Vi(l, r),
however, in our case these functions are valid at all distances.

In analogy to MQDT in free space, we introduce another
type of solution, normalized at r → ∞. At large distances,
the harmonic potential dominates and the solution vanishing
at r → ∞ reads

φi(l, r)
r→∞−→ Dν(

√
2r/ξ ), (17)

where Dν(z) is the parabolic cylinder function, E = E∞
i +

h̄ω(ν + 1
2 ), and ξ is the harmonic oscillator length ξ =√

h̄/µω. The two types of solutions, Eqs. (15) and (17), can

be related by the MQDT functions νi(l, E) and Ni(l, E):

φi(l, r) = Ni(l, E)[cos νi(l, E)f̂i(l, r)

− sin νi(l, E)ĝi(l, r)]. (18)

The function νi(l, E) mixes the two solutions of Eq. (15), lead-
ing to the exponentially decaying function φi(l, r), whereas
Ni(l, E) provides the overall normalization. In fact the
normalization can be calculated directly from νi(l, E) [19]:

Ni(l, E) =
(

h̄2

2µ

∂νi(l, E)

∂E

)−1/2

. (19)

Now the wave function Fl(r) can be equivalently expressed in
terms of solutions �l(r) ≡ {δijφ

l
i (r)} normalized at infinity:

Fl(r) = �l(r)A. (20)

By comparing Eq. (16) with Eq. (20), one arrives at the
following equation:

[Yl(E) + tan ν l(E)] N l(E) cos ν l(E)A = 0, (21)

where ν l(E) ≡ {δij ν
l
i (E)} and N l(E) ≡ {δijN l

i (E)}. This
equation has a nontrivial solution (A �= 0) if

|Yl(E) + tan ν l(E)| = 0, (22)

which is a standard condition that determines bound states in
the MQDT approach. From Eq. (22) one can evaluate eigenen-
ergies in the multichannel case, whereas the eigenstates are
given by Eq. (20), with A determined from Eq. (21). This
procedure yields a set of eigenfunctions Fln(r) = �l(r)bln

and corresponding eigenenergies Eln, where bln is a constant
vector, and the label n enumerates the solutions:

[HlI + W(r)]Fln(r) = ElnFln(r). (23)

Similarly to ordinary scalar wave functions, the multichannel
eigenstates corresponding to different nondegenerate eigenen-
ergies are orthonormal:∫ ∞

0
drFln(r)†Flm(r) = δnm. (24)

2. Generalization to d �= 0

At nonzero trap separation, the Hamiltonian is no longer
rotationally invariant, and the procedure presented in the
previous section based on decoupling of states with different
values of l does not apply. Nevertheless, we can use the
previous solutions at d = 0 to diagonalize the full problem
of Eq. (9) at d �= 0. To this end, the total wave function is
decomposed in terms of arbitrary expansion coefficients cln:

F(r) =
∑
ln

clnFln(r)Yl0(r̂)/r. (25)

Substituting this into Eq. (9) and setting d = dez gives the set
of coupled equations(

Eln + 1

2
µω2d2

)
cln + µω2d

∑
l′n′

Dl′n′
ln cl′n′ = Ecln, (26)
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which in principle can be solved numerically with standard
methods for matrix diagonalization. Here

Dl′n′
nl ≡ 〈Yl0| cos θ |Yl′0〉

∫ ∞

0
drFln(r)†rFln′(r) (27)

and

〈Yl0| cos θ |Yl′0〉 =
∫

d�Y ∗
l0(r̂) cos θYl′0(r̂)

= l + 1√
(2l + 1)(2l + 3)

δl+1,l′

+ l√
(2l − 1)(2l + 1)

δl−1,l′ . (28)

3. Parametrization of Yl (E) and the frame transformation

In the regime of ultracold collisions, the variation of the total
energy E and the height of the angular momentum barrier (for
the lowest partial waves, which are important in the ultracold
regime [9]) are much smaller than the depth of the potential
at r ∼ rmin, where the matrix Yl(E) is defined. Therefore, it
is justified to neglect the dependence of Yl(E) on both energy
and angular momentum and to set Yl(E) ∼= Y. In this way,
by determining the matrix Y at a single value of energy, we
may describe the atom-ion collisions in the whole regime of
ultracold temperatures.

This paper considers collisions of an alkali metal atom
with an alkaline-earth metal ion in their electronic ground
states. Hence, the asymptotic channel states that are used in
the Schrödinger equation, Eq. (13), can be characterized by
the hyperfine quantum numbers f1,mf1 and f2,mf2 for ion and
atom, respectively, and by the angular-momentum quantum
numbers l and ml of the relative motion of the atom and ion
c.m. In the rest of this section, those channels are labeled as
α = {f1f2mf1mf2 lml}.

At short distances, the potential matrix becomes diagonal
in the molecular basis characterized by the total electron and
nuclear spins and their projections, because the short-range
forces depend on the electronic configuration of the entire
atom-ion molecular complex. In fact, the molecular potentials
that correlate with atom and ion electronic ground states at
large distances depend only on the total electron spin S [9].
For our choice of species, the electronic configurations are
identical, as in the collision of two hydrogen atoms. Thus,
S can take the values 0 (singlet configuration) and 1 (triplet
configuration). Hence, the quantum-defect matrix Y, which
contains the full interaction information, can be parametrized
with only two constants, the singlet and triplet scattering
lengths, as and at , respectively. These constants depend only
on the species.

The approach is to apply a frame transformation to find Y
in the basis of hyperfine states [20,21]. As shown in Ref. [9],
this approximation is very accurate for atom-ion collisions due
to a clear separation of length scales associated with the short-
and long-range forces. On the one hand, exchange interaction
becomes significant only at distances of the order of a few
tens of a0 (atomic units), when the electronic wave functions
of atom and ion begin to overlap. On the other hand, the
polarization forces are very long-ranged and they are modified
by the presence of the centrifugal barrier only at large distances
of the order of R∗.

B. Reduction to an effective single-channel model
in the case of as ≈ at

The off-diagonal matrix elements in the quantum-defect
matrix Y are proportional to the “coupling” scattering length,
which is defined as 1/ac = 1/as − 1/at [9]. Therefore, in the
case of as ≈ at , the coupling between channels is weak and
the multichannel description can be effectively reduced to a
single-channel model. To this end, we solve the multichannel
problem at d = 0 and find the corresponding eigenenergies Enl

and eigenstates Fnl(r) from Eqs. (21) and (22). If the mixing
between channels is weak, in each of the eigenfunctions Fnl(r),
there is only one channel that dominates; that is, the vector bln

has only one element that is close to unity. We divide the total
multichannel spectrum into N distinct subsets according to
the channel that gives the leading contribution to Fnl(r), and
for each of the subsets we determine the effective short-range
phase ϕeff

l (or the scattering length, aeff
l = −R∗ cot ϕeff

l ). This
is done by matching the multichannel spectrum Enl in each
of the subsets with the single-channel spectrum generated by
Eq. (5) with the quantum-defect parameter ϕeff

l . In the limit
of zero coupling between channels, the effective scattering
length aeff

l is equal to as = at . In the presence of weak
coupling, aeff

l is generally different from as and at , since the
asymptotic channels typically correlate both to singlet and
triplet molecular states at small distances. This procedure
yields a set of N short-range phases {ϕeff

l }, which are used
at a later stage in the single-channel calculations. We note
that the effective phases {ϕeff

l } depend on the relative angular
momentum, and in principle they weakly depend on the energy.
We have verified, however, that within the considered range of
energies limited to the bound states close to the dissociation
threshold, and to a few tens of the lowest vibrational states,
the variations of ϕeff

l (E) with the energy are negligible.
For collisions occurring when only a single open channel

exists, the remaining closed channels are typically only
weakly coupled to the open channel (apart from the case
of resonances), and the resulting multichannel wave function
is dominated by the open-channel component. The situation
changes, however, when there are more open channels, and
channel mixing can be significant. This issue was investigated
numerically by picking the specific ion and atom pair 135Ba+-
87Rb and the trapping frequency ωi = ωa = 2π × 30 kHz.
We have considered collisions within the mF = 3 subspace,
assuming that initially the particles are prepared in the chan-
nel α1 = {fi = 1,mfi

= 1, fa = 2,mfa
= 2}. This choice is

relevant for our modeling of the quantum gate, as shown later.
For the collision energies above the dissociation threshold of
channel α1, a second open channel exists, with α2 = {fi = 2,

mfi
= 2, fa = 1,mfa

= 1}. In this case, the admixture of the
two remaining closed channels is negligible, whereas the
contribution of both channels α1 and α2 in the multichannel
eigenstates is typically large, and the contributions from α1

and α2 cannot be separated. The only exception is the case of
similar as and at , in which the interchannel coupling 1/ac is
small, and the multichannel eigenstates are dominated by the
single-channel contributions.

We estimate the validity of the single-channel approxima-
tion by calculating the overlap of the exact multichannel and
single-channel wave functions, in the range of trap separations
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d, that are interesting for our dynamics. The minimum
over d yields some overall fidelity related to the reduction
to the single-channel model. For similar singlet and triplet
phases, we have φeff

l ≈ φs ≈ φt , and the multichannel wave
functions differ from their single-channel counterparts by the
presence of negligible contributions in the channels other than
the dominating one. The relative contributions of individual
channels are given by the vectors bln that are obtained in the
calculation of eigenstates at d = 0. When d > 0, one has to
take into account that the multichannel wave functions are
linear combinations of the solutions at d = 0 [see Eq. (25)],
and the overlap between single- and multichannel eigenstates
is a linear combination of the overlaps calculated at d = 0 with
the expansion coefficients given by |cln|2.

Resonances occurring at d = 0 can lead to significant
channel mixing for few states, although the average fidelity
is very high. The more these highly mixed states contribute to
the wave functions, the larger is the error of the model. For
the error estimation used in this work, only the trap ground
state at maximal d and a molecular state at minimal d of
interest are used. The two fidelities are found to lie in the
same range; thus, we take the minimum of them and assume
the result as a lower bound for the fidelity at intermediate
distances. We have additionally verified that reductions to
the single-channel model work best for positive values of
singlet and triplet scattering lengths around R∗.

IV. ATOM-ION DYNAMICS

Traps for individual ultracold atomic particles used in
schemes for quantum information processing provide, in most
cases, for the ability to manipulate the particles’ motion via
appropriate tuning of external trap parameters. This case is
particularly true for optical lattices and Paul traps, where
field polarizations and intensities can be changed to control
the shape and position of the traps to a high degree of
accuracy. Our proposal relies on these standard techniques,
thereby introducing the innovative aspect of combining traps
for ions and atoms. As already discussed elsewhere [12], the
physical mechanisms generating the traps for ions and atoms
are different and they lead, under appropriate conditions, to
independent microscopic traps, which can be modeled as
follows.

In this section, the dynamics is described by introducing
a time-dependent trap displacement d(t). Below a certain
distance d ∼ R∗, the eigenenergies of the system start to
depend on the spin state as well as on d itself, and positions of
trap-induced resonances are determined by the internal state
of both particles. In this way, trap displacement can be used
for spin-dependent control of the atom-ion system.

A. Landau-Zener theory

The Landau-Zener formula gives a basic understanding
of the atom-ion dynamics in the vicinity of trap-induced
shape resonances. It describes a general two-level system
whose eigenstates |�1〉 and |�2〉 are coupled by some kind
of interaction, and in which the two eigenlevels E1 and E2

form an avoided crossing when varying an external parameter.
In the current work, this external parameter is the trap dis-

placement d. The probability of a nonadiabatic passage of the
crossing [12],

Pna = exp

(
−2π

|〈�1|H |�2〉|2
h̄|ḋ∂E12/∂d|

)
, (29)

depends on the coupling matrix element, the velocity ḋ of
passage of the resonance, and the relative slope ∂E12/∂d

of the levels, where E12 = E1 − E2. A fast passage of the
avoided crossing (Pna ≈ 1) results in a nonadiabatic evolution,
preserving the shape of the wave function. At small velocities
the resonance is passed adiabatically (Pna ≈ 0); that is,
the system follows its eigenenergy curves. In the trapped
atom-ion system, for certain trap separations, the energy of
some molecular bound states becomes equal to harmonic-
oscillator energies, resulting in the avoided crossings. If
such an avoided crossing is passed adiabatically, then the
initial harmonic-oscillator state with atom and ion located
in their separated traps can evolve into a molecular bound
state, where the atom and ion are trapped in a combination
of the two external potentials. This process is reversible
and is used in Sec. V to realize an entangling two-qubit
operation.

To precisely predict the outcome of a collision process,
in our simulations we have calculated the time evolution
numerically using the Landau-Zener formula only as a guide
to estimate the relevance of the avoided crossings for the
transfer process. Since the energy of the molecular bound
states changes according to Emol(d) ≈ Emol(0) + 1/2µω2d2

(see Fig. 3), deeply bound states can cross vibrational states
only at large d. In this case avoided crossings are very weak
because �E decays exponentially with the trap distance [12].
Hence, the deeply bound states have no relevance for the
dynamics and in the current simulations only shallow bound
states that are closest to the dissociation threshold have been
included.

B. Full dynamics in the single-channel model

In the case of similar as and at , when the effective
single-channel description is applicable, the dynamics of the
controlled atom-ion collision can be desrcibed by the following
time-dependent Hamiltonian:

H
(d)
rel (t) = H

(0)
rel + 1

2µω2d(t)2 − µω2d(t)z. (30)

We decompose the corresponding time-dependent wave func-
tion in the basis of the eigenstates at d = 0

|�(t)〉 =
∑
nl

cnl(t)
∣∣�(0)

nl

〉
, (31)

in analogy to Eq. (25). Substituting into the Schrödinger
equation, we obtain a set of coupled differential equation for
the expansion coefficients cnl :

ih̄ċn′l′ =
∑
nl

cnl(t)
{[

E
(0)
n′l′ + 1

2µω2d(t)2
]

× δn,n′δl,l′ − µω2d(t)Dn′l′
nl

}
, (32)

where Dn′l′
nl = 〈�(0)

n′l′ |z|�(0)
nl 〉 is the dipole matrix element,

which in the context of the multichannel formalism is defined
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FIG. 5. (Color online) Correlation diagrams for as = 0.90 and
at = 0.95, where for each of the qubit pairs we subtract the threshold
energy of the corresponding channel. The energy curve followed in
the adiabatic process is marked with a thick line between �ini and
�mol in part (a). We only show the complete diagram for the |11〉
channel. Small energy differences of the channels around d = dmin

can be seen in the close-up (b). These differences are the basis of our
proposal for realizing an atom-ion phase gate.

in Eq. (27). We determine the radial part of the single-channel
wave functions and the eigenenergies E

(0)
nl with the Numerov

method [22], using the effective short-range phase as a bound-
ary condition at minimal distance. From the wave functions,
one can calculate the matrix elements Dn′l′

nl . Inserting these
elements into Eq. (32), we are able to solve the equation for the
coefficients numerically using standard calculations. Thereby
we verify in each case that our basis, limited by the maximal
values of quantum numbers l and n, is large enough and that
the results do not change when increasing the basis.

By comparing exact numerical dynamics with the results
predicted by the Landau-Zener theory, an error of about 0.5%
was found, for example, for the probability of a fast, diabatic
passage of the avoided crossing at d = 1 in the spectrum of
Fig. 5(a), with a speed of 1 mm/s. Similar good agreement
was observed in the adiabatic limit, and discrepancies of the
order of 10% were found only for intermediate speeds. These
discrepancies might be due to the complexity of the spectrum,
which makes it impossible to isolate an avoided crossing
between two eigenstates from the influence of the rest of the
eigenstates. Thus, the Landau-Zener theory is not applicable
for quantum gate calculations performed, for example, in
Sec. V E1. Also, faster processes lead to excitations to higher
vibrational states that cannot be described by the Landau-Zener
theory.

V. QUANTUM GATE

A. Qubit states

In this section the model of the spin-state-dependent atom-
ion collisions are applied to construct a two-qubit controlled-
phase gate. Qubit states are encoded in hyperfine states of atom
and ion. According to previous notation, a given two-particle
spin state is referred to as a channel α = {fifamfi

mfa
lml}.

The total spin projection mf = mfi
+ mfa

is a conserved
quantity during the collision. Therefore, two states of unlike
mf cannot be coupled. In our case it is convenient to pick the

mfa mfi

i = 3
2 Atom (87Rb) i = 3

2 Ion (135Ba+)

f =1f =1

f =2f =2

−1−1 −2− 12 21 2 00

|1|1

|0|0

FIG. 6. (Color online) Specific choice of the qubit states out of
the manifold of hyperfine spin states of a 87Rb atom and a 135Ba+ ion.

computational basis states

|0〉i,a = |fi,a =1,mfi,a
=1〉i,a

|1〉i,a = |fi,a =2,mfi,a
=2〉i,a (33)

according to Fig. 6, leading to the two-qubit states

|00〉 = |fi =1,mfi
=1, fa =1,mfa

=1〉 = |1, 1, 1, 1〉,
|01〉 = |fi =1,mfi

=1, fa =2,mfa
=2〉 = |1, 1, 2, 2〉,

|10〉 = |fi =2,mfi
=2, fa =1,mfa

=1〉 = |2, 2, 1, 1〉,
|11〉 = |fi =2,mfi

=2, fa =2,mfa
=2〉 = |2, 2, 2, 2〉.

(34)

Each of the two-qubit states is represented by a scattering
channel. The state |00〉 has mf = 2 and is coupled to seven
other channels, which have higher dissociation energies and
therefore remain closed for |00〉 collisions. Thus, the state |00〉
is stable with respect to spin-changing collisions. The channels
|01〉 and |10〉, belonging to the mf = 3 subspace, are coupled
to each other and to two other channels that are closed for
both |01〉 and |10〉 collisions. There is no coupling for the state
|11〉, since it is the only state in the mf = 4 subspace. In this
way our choice of the qubit states minimizes the possibility of
spin-changing collisions, and the only process that can lead to
potential losses is the inelastic collision |10〉 → |01〉.

B. Dynamics of four isolated channels

Our multichannel theory describes collisions between atom
and ion for general spin states of particles, in particular for
the four qubit states introduced in Eq. (34). For simplicity
of the numerical calculations, we do not perform the full
multichannel dynamics here but rather we focus on the
regime of applicability of the effective single-channel model,
described in Sec. III B. For every choice of parameters assumed
in our calculations, we verify that the coupling to other
spin states can be neglected. The total Hamiltonian including
external degrees of freedom, for the subspace corresponding
to our computational basis, reads

H = H00 ⊗ |00〉〈00| + H01 ⊗ |01〉〈01|
+H10 ⊗ |10〉〈10| + H11 ⊗ |11〉〈11|. (35)

We denote a qubit channel by |A〉 with A ∈ {00, 01, 10, 11}.
Linear combinations of the computational basis states form a
general two-particle state |�〉 = ∑

A aA|�A〉|A〉, where |�A〉
denotes the quantum state of the atom-ion relative motion for
the channel |A〉. Obviously, the time evolution of |�〉,

|�(t)〉 =
∑

aAe−iEAt/h̄|�A(t)〉|A〉, (36)
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is determined by the dynamics of the spatial part of the wave
function |�A(t)〉, which we evaluate from Eq. (32). On the
other hand, the phases due to the differences in threshold
energies EA in each of the channels do not lead to state-
dependent dynamics and can be eliminated by single-qubit
operations (see discussion in the next subsection).

C. Phase gate process

The two-qubit phase gate is represented by the
transformation

|00〉 Interaction−→ eiφ00 |00〉 US−→ |00〉,
|01〉 −→ eiφ01 |01〉 −→ |01〉,

(37)
|10〉 −→ eiφ10 |10〉 −→ |10〉,

|11〉 −→ eiφ11 |11〉 −→ eiφ|11〉,
performed on the computational basis states. The first step is
the controlled interaction of atom and ion that leads to a specific
phase for each two-qubit state. By applying the single-qubit
transformation US we can undo three of these phases and
assign the total gate phase

φ = φ00 + φ11 − φ01 − φ10 (38)

to the |11〉 state [23]. If this phase equals π , the phase
gate, combined with single-qubit gates, is a universal gate
for quantum computation, because it is equivalent to a CNOT

gate. It is possible to realize this phase gate scheme within
our single-channel model, since the transformation of each
two-qubit basis state can be treated separately.

For our gate scheme, atom and ion are initially prepared in
the motional ground state of their respective traps. The channel
phases are gained by the control of the relative motion of atom
and ion during the collision. Ideally we aim at obtaining back
the motional ground state at the end of the gate process, so
that the phase accumulated by relative motion is assigned to
the qubit state.

D. Gate fidelity

The fidelity definition is based on the overlap of the initial
state of relative motion |�A

ini〉 with the final state |�A(T )〉. In
an ideal process, these states are equal up to a state-dependent
phase. The fidelity needs to account for this phase. For one
channel A and at zero temperature, according to Ref. [24] we
can define the fidelity FA as follows:

FA = 1
2

[
1 − ∣∣〈�A

ini

∣∣�A(T )
〉∣∣ cos(π − �φA)

]
, (39)

where �φA = φA(T ) − φ′
A is the difference between the

desired channel phase φ′
A and the phase φA(T ) obtained by

actual time evolution. In the following, it is assumed that,
according to Eq. (37), the phases for the channels |00〉, |01〉,
and |10〉 are undone perfectly due to the single-qubit rotations
leading to �φ00 = �φ10 = �φ01 ≡ 0, while �φ11 is nonzero.
Hence, for channels |00〉, |01〉, and |10〉, the fidelity is restricted
only by the overlap between initial and final states, while for
state |11〉 we additionally require that the total gate phase,
computed from the single-channel phases with Eq. (38), is
φ = π .

We can further define the overall gate fidelity as

Fgate = min
A

FA, (40)

since in our model the channels are decoupled (spin-changing
collisions are neglected).

E. Adiabatic regime

The adiabatic dynamics can be understood with the help
of the correlation diagrams introduced in Sec. II C. Our gate
scheme aims at an adiabatic transfer from an initial oscillator
state �ini, to a molecular state �mol, and back to the initial state.
This transfer is achieved by a variation of the trap distance
across an appropriate avoided crossing, which we choose
after investigating the correlation diagram. For example, the
resonance at the trap distance d ∼ 0.7 in Fig. 5(a) appears
strong enough and we use it in numerical calculations in the
following. During the transfer process each logical basis state
acquires a different phase, since the energies of molecular
states depend on the channel [see Fig. 5(b)]. The phase
accumulated for each channel in an adiabatic transfer process
is given by the integral

φA
pot = −1

h̄

∫ tmax

tmin

EA(t)dt, (41)

where EA is the energy of the adiabatic eigenstate depicted
as a function of d in Fig. 5 (thick curve). In the adiabatic
regime, excitations to higher vibrational states are avoided by
keeping the velocity ḋ small compared to the characteristic
velocity of the harmonic motion in the trap: ḋ � √

h̄ω/µ. On
the other hand, the velocity across weaker resonances at larger
distances is chosen high enough to pass them diabatically, as
seen in Fig. 5. We want to find a particular function d(t),
which, if applied to the trapped atom-ion system, results in
a desired total gate phase while ensuring diabatic passage of
the weak resonances as well as adiabatic passage of the strong
resonance. Since the total phase depends on the difference
between single-channel phases [see Eq. (38)], the gate speed
in fact is determined by the differences in the potential energy
curves of unlike channels.

For the sake of concreteness we assume specific values
of the singlet and triplet scattering lengths in such a way
that the single-channel effective model is applicable. For
our calculations we chose as = 0.90R∗ and at = 0.95R∗.
According to the procedure described in Sec. III B, the estimate
of the error introduced by the model is 2 × 10−3. For singlet
and triplet scattering lengths that differ by more than 10%, the
channel mixing is already significant and does not allow for a
single-channel description.

Actually, the singlet and triplet scattering lengths are
uniquely determined by the specific choice of the atom-ion
system we describe. Thus far these parameters have not been
measured experimentally for any atom-ion system. However,
as soon as the accurate values of as and at are determined,
one can repeat the calculations with the physically correct
parameters, which may require going beyond the single-
channel model and including the full multichannel dynamics
according to Sec. III.

Assuming the single-channel effective model, we first
compute a correlation diagram for each of the channels, which
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is done by diagonalizing the Hamiltonian in the basis of eigen-
states evaluated at d = 0. The result is depicted in Fig. 5(a)
for the |11〉 channel. The diagrams show small differences in
the molecular states at small distances [Fig. 5(b)], since the
energy of the molecular states depends on the atom-ion spin
configuration (the qubits).

1. Numerical simulation of an adiabatic phase gate

In our simulation of the gate process the initial and final
trap separations coincide: d(0) = d(T ) = dmax. We assume
that initially each of the atom and the ion are in the ground
state of its own trap. The distance dmax is determined in
such a way that there are no bound states in the vicinity
of dmax that would influence the harmonic-oscillator ground
state.

The controlled time evolution of our atom-ion system
requires the appropriate adjustment of the distance d(t)
between the two trapping potentials as a function of time.
The slope of this function is essential for the result.

In order to follow the energy curve depicted in Fig. 5(a), we
construct a specific function d(t). We start at dmax with an initial
velocity d ′

1 = 0.5R∗/(h̄/E∗), which is large enough to traverse
weaker resonances diabatically. However, much larger veloci-
ties would cause unwanted motional excitations in the trap. At
d = 0.95R∗, the velocity is decreased to d ′

2 = 0.1R∗/(h̄/E∗)
in order to adiabatically convert the trap state into a molecular
bound state using a stronger resonance. The curve is followed
down to some minimal distance dmin. Then the reversed pulse
brings the system to the initial trap separation. Figure 7(a)
shows the complete d(t) function. It is known that sharp kinks
can cause motional excitations; therefore, we use a smooth
function d(t) = d̃ + 1/2(d ′

1 + d ′
2)t ± √

(d ′
1 − d ′

2)2t2 + C2 to
change between two slopes d ′

1,2 = 0.5 and 0.1R∗/(h̄/E∗).
Here, the + (−) sign is used for increasing (decreasing) slope,
d̃ is an offset, and C is a parameter adjusting the curvature at
the kink around the turning point at dmin d(t) ∼ t2.

We can now compute the solution of the Schrödinger
equation numerically at a given time by solving Eq. (32) with
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FIG. 7. (Color online) (a) The function d(t) starts at dmax = 1.4R∗

with a slope of d ′
1 = 0.5R∗/(h̄/E∗) large enough to diabatically

pass weaker resonances. The velocity is changed to around d =
0.95R∗ to d ′

2 = 0.1R∗/(h̄/E∗) to ensure an adiabatic traversal of
a stronger resonance. The system is brought to the initial distance
with the reversed pulse and the kinks are smoothed to avoid
motional excitations. The characteristic unit of speed is R∗/(h̄/E∗) =
2.05 mm/s. (b) Gate phase as a function of dmin using the described
d(t) shape. We find that with dmin = 0.591 a gate phase of φ = 1.009π

is reached.
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FIG. 8. (Color online) Energy difference as a function of trap
separation. For d <∼ 0.3R∗ the function is practically constant, which,
for the phase gate process, means that bringing the traps closer than
dmin ∼ 0.3R∗ does not lead to a significant advantage.

standard numerical routines. This yields the gate phase which,
for example, can be adjusted by a variation of dmin. This phase
is in fact a phase difference accumulated due to the energy
splitting

�E = E00
mol + E11

mol − E01
mol − E10

mol, (42)

shown in Fig. 8 as a function of trap separation; the larger �E,
the faster a phase difference is reached. Thus, decreasing dmin

increases the phase, as seen in Fig. 7(b). We find a gate phase
of φ = 1.009π at dmin = 0.591R∗. The corresponding gate
fidelity is Fgate = 0.994 according to Eq. (40). The process
takes time T = 9.14h̄/E∗, which equals T = 1.31 ms for our
choice of the trapping frequency, ω = 2π × 30 kHz, and the
masses and hyperfine structure of the 87Rb atom and the 135Ba+
ion. We show the population of the instantaneous eigenstates
in Fig. 9. At dmax the trap ground state is labeled with n = 1.
The system is initialized in this state. At half gate time the
quantum state changes to n = 4, which is the molecular state
at dmin. Finally, at the end of the gate process, the initial state
has been almost perfectly obtained.

F. Fast gate using optimal control

Quantum optimal control techniques are powerful tools in
that they allow the fidelity of a time evolution process to be
increased by finding an appropriate pulse shape for some
external control parameter. The outcome of the controlled
collision of an atom and an ion is very sensitive to the particular
shape of the time dependence in the trap distance, d(t). It is
hard to manually design a specific function d(t) that leads to a
phase gate fidelity very close to unity.

The most significant problem in our specific example
calculation results from a relatively weak resonance at d0 ≈
1R∗, which we want to pass in a nonadiabatic way. We could
not find an optimal constant slope that brings us from the
trap state at d > d0 to the trap state with d < d0 across the
resonance without losses. Large velocities lead to excitations
of energetically higher states, while the consequence of smaller
velocities is a non-negligible population of the molecular state
that crosses the trap state. This population is not fully recovered
on the way back. In Sec. V E1 we nevertheless find a process
that yields a gate fidelity of Fgate = 0.994.
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FIG. 9. (Color online) Population of the most important adiabatic
eigenstates for the qubit channel |11〉 during the adiabatic gate process
(the remaining channels show similar behavior). States are labeled
according to their energy in the correlation diagram in ascending
order. The initial state at t = 0 is the relative-motion ground state in
the trapping potential for d = dmax. The label of this state is set to
n = 1. The molecular state marked in Fig. 5(a) then bears the label
n = 4. Around a crossing, the labels of molecular and trap states
switch because their energies change order. Our goal is to follow the
energy curve marked between �ini and �mol in Fig. 5(a). We observe
that indeed two resonances are passed diabatically. At t = T/2 the
state n = 4 is reached with relatively high fidelity, which means that
a molecular ion is formed here. At d(T ) = dmax the initial state is
regained (the state-dependent phase of the final state is not depicted
here). To better show the features of the curves, the time axis is
squeezed between t1 = 0.12 ms and t2 = 1.18 ms, where the velocity
is lower (see Fig. 7).

With optimal control, not only can we find a pulse shape that
produces a satisfactory gate fidelity, but we can also go beyond
the adiabatic regime and reduce the gate time. By applying
larger velocities, we allow for excitations to higher energy
levels. By making use of interference effects, an appropriate
d(t) pulse shape can undo these excitations in the final state of
the process.

This optimal pulse shape is found here with an iterative
optimization algorithm called intermediate feedback control,
which is introduced in Ref. [13]. We start with an initial guess
for the control function d(t), which in general does not yield a
satisfactory fidelity. The fidelity of the process is increased in
every iteration step by updating d(t). We divide the time axis
in small time steps dt . At each time step we evolve the wave
function forward in time using the Crank-Nicholson scheme
[25]. The update of d(t) is successively performed in every
time step.

1. Enhancing the fidelity of the adiabatic gate

The adiabatic gate process of Sec. V E1 has the fidelity
Fgate = 0.994. With only three iterations of the optimal control
algorithm, we can enhance this fidelity to Fgate = 1 − 7 ×
10−4, which even exceeds the validity of the underlying
single-channel model. The gate phase is improved to 1.0026π .
The optimized function d(t) shows small-scale variations
(“wiggles”) that are a typical feature of this particu-
lar optimization algorithm. These wiggles have amplitude
∼0.002R∗ ≈ 0.6 nm and happen on a time scale of the order
of 10 µs. This amplitude is smaller than the uncertainty
of the ion-trap center position in up-to-date experimental
realizations.

2. Fast gate scheme

It is desirable to reduce the gate time to a minimum. In our
case this minimum is given by the least time that is required
for accumulating the gate phase φ = π . We profit from the
energy differences of the molecular states for the different
channels. The differences are largest at small distance dmin,
but below d ≈ 0.3R∗ they are practically constant. The fastest
possible gate must effectively transport the atom-ion relative
wave function into a molecular state, where the gate phase
is accumulated during a certain time. The gate ends with a
reversed pulse and brings the system to the initial trap ground
state, while the logical phase is preserved.

The optimal control algorithm can be used to build such
a gate process. As a first step, we design d(t), changing the
quantum state of atom and ion from the trap ground state
at dmax = 1.4R∗ to the molecular state at dmin = 0.3R∗, for
all channels during the transport time ttrans. The optimization
objective J = ∑

A 2Re{〈�A(ttrans)|�A
mol〉} for this step aims

at maximizing the overlap of the time-evolved state with
the desired molecular state. The second step is a stationary
evolution at dmin, where the main part of the differential phase
is accumulated. Subsequently we perform the reverse of the
initial pulse. The combined d(t) pulse is shown in Fig. 10(a).

The total gate time is T = 346 µs. With respect to the
adiabatic case this indicates a reduction by a factor of 4. Since
our scheme makes use of the channel energy differences in
the molecular state at d = dmin = 0.3R∗, we can estimate a
quantum speed limit of Tlimit = πh̄/�E for this process, with
�E from Eq. (42), which gives the minimal gate time and
neglects transport durations and infidelities of the molecular
state’s population. In our example this limit is Tlimit ≈ 250 µs.
Our gate process time lies very close to this value, considering
an overall transport time of 2ttrans = 158 µs. We note that a
part of the phase is accumulated during the transport phase,
since we already enter the regime where the energy differences
become significant.

Further reduction of the transport time may be possible,
but the optimization algorithm used here stopped converging
in reasonable time for larger transport velocities. However,
we have already shown that the process could be significantly
accelerated by using optimal control techniques.

3. Perspectives for further improvement

Certainly the gate speed would improve if the difference
between singlet and triplet scattering lengths was larger than
assumed in the example calculation. In a general case one can
use the current multichannel formalism for an accurate descrip-
tion of the dynamics beyond the single-channel approximation.
We point out that the essential parameters as and at are still
unknown and they must be measured experimentally in order
to do realistic calculations for specific systems. However, this
work demonstrates the feasibility of an ion-atom quantum gate,
even one based on the simplified scheme we assume for the
purpose of calculations.

Further possibilities occur for very different values of as

and at . In this case the |10〉 and |01〉 states in particular are
coupled strongly. In this case optimal control mechanisms can
be used to suppress effects of spin-changing collisions in the
final state in order to realize a phase gate. The coupling of |01〉
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FIG. 10. (Color online) (a) Optimized d(t) function and initial
guess (dashed) for the fast gate process. The initial state is the trap
ground state at dmax. The populations of the adiabatic eigenstates
are changed by the optimization process. (b) After the initial guess
pulse is applied, higher vibrational and also molecular states become
populated. (c) These excitations are prevented or undone using the
optimized pulse. In this case, at dmin the desired molecular state n = 4
is reached almost perfectly. For simplicity, only the plots for the qubit
channel |11〉 are shown here; the situation is very similar for the other
channels. Note the different time scales used for the transport and
phase-accumulation sequences, respectively.

and |10〉 states could also be effectively used for a SWAP gate,
which inverts the populations of these two channels—or for its
square root, which in combination with single-qubit rotations
constitutes an alternative universal set of gates for quantum
computation.

VI. CONCLUSIONS AND OUTLOOK

In this work we analyzed the spin-state-dependent
interaction between a single atom and a single ion guided
by external trapping potentials. We applied our insight on
this system to realize a two-qubit quantum gate process and
thereby provide the basic ingredients for quantum computation
with atoms and ions combined in one setup. This work
was motivated by recent experimental possibilities combining
magneto-optical traps or optical lattices for atoms, and rf traps
for ions. These experiments are currently established in several
groups worldwide [8,17].

We started our description of controlled interaction of an
atom and an ion by formulating an MQDT for trapped particles,
analogous to the free-space case discussed in Ref. [9]. This step
simplifies the description of atom-ion collisions because it does
not require a detailed knowledge of the molecular potentials at
short range. Experiments measuring the positions of Feshbach
resonances can determine the two essential parameters for
our theory—the singlet and triplet scattering lengths. Since
these experiments have not yet been performed, here we
focused on the case of similar singlet and triplet scattering
lengths given in order of magnitude by R∗, whereas the
general case of different scattering lengths was discussed only
qualitatively.

We were able to reduce the multichannel formalism to an
effective single-channel model that singles out a specific spin
state of atom and ion. This model is found to be accurate
for similar values of the singlet and triplet scattering lengths.
In calculations we assumed as = 0.9R∗ = 4989a0 and at =
0.95R∗ = 5266a0 for the singlet and triplet scattering lengths,
respectively. In contrast, opposite signs of scattering lengths
exclude a single-channel description. We estimated the error
introduced by our specific single-channel model to be 2 ×
10−3, which is due to a mixing of channels in the eigenstates
of the system. Taking even closer values of singlet and triplet
scattering lengths leads to better applicability of the single-
channel description.

Where applicable, our effective single-channel model can
be implemented in calculations in the context of ultracold
chemistry as well as ultracold scattering physics. A single-
channel description assigning quantum-defect parameters
to each channel separately has already been discussed in
Ref. [12]. However, the spin state was not included in
previous research. In the present approach, starting from
the fundamental parameters as and at of the multichannel
formalism, we derive the quantum-defect parameters of each
isolated channel consistently. We take the channel coupling
into account and estimate the error introduced by assuming
isolated channels. Therefore, the model can be applied to
quantum computation schemes that store qubits in internal
spin states of atom and ion.

A remarkable feature of the system is trap-induced shape
resonances that couple molecular bound states to unbound trap
states. Quasistatic eigenenergy curves show these resonances
as avoided crossings. They can be used to form ultracold
trapped molecular complexes and thereby allow full control
of cold chemical reactions.

Trap-induced resonances also form the basis for our idea
of the phase gate process. Initially an atom and an ion are
prepared in the trap vibrational ground state. We realized a
qubit-dependent two-particle phase via controlling the external
degrees of freedom. By bringing the traps close together,
we allowed the particles to interact and finally separated
them, again obtaining the motional ground state. In doing
so, we cross weaker resonances diabatically (remaining in a
trap state) and then follow a stronger resonance adiabatically
into a molecular bound state, where a two-qubit phase
is accumulated. Since the positions of the resonances are
different for each spin combination, the accumulated phase
is different for each qubit channel and we are able to control
the trap distance in such a way that a two-qubit phase gate

012708-12



ATOM-ION QUANTUM GATE PHYSICAL REVIEW A 81, 012708 (2010)

is realized. This phase gate, in combination with single-qubit
rotations, is a universal gate for quantum computation.

We performed numerical simulations of the controlled
collision specifically for a 135Ba+ ion interacting with a 87Rb
atom, each guided by a spherically symmetric harmonic trap
with ωi,a = 2π × 30 kHz. Specific hyperfine qubit states were
chosen to obtain the four qubit channels, 00, 01, 10, and
11. In this framework we developed a two-qubit phase gate
process entangling an atom and an ion, thereby showing that
trap-induced resonances can be used to control the atom-ion
interaction. The error for our gate process is 1 × 10−3 and
in this case the gate time is 1.3 ms. Using optimal control
techniques we were able to accelerate the process to 346 µs.
In future work we plan to decrease the gate time by using
higher trapping frequencies to allow faster transport.

The choice of very similar scattering lengths allowed single-
channel calculations to be performed, but it limits the gate time
because the amount of energy splitting between the channels
is rather small. A more general description can be done in
the framework of our multichannel formalism, allowing for
arbitrary combinations of singlet and triplet scattering lengths.
It is possible that the actual values of the scattering lengths are
in fact very different, which would require a more complicated
multichannel computation but would possibly allow much
faster quantum gates. However, in the regime considered
here, a gate time of less than a millisecond ha already been
demonstrated.

In our model, harmonic trapping potentials were assumed
and the oscillator frequencies were equal for the atom and the
ion. Among the advantages of ions for quantum computation
is the existence of much tighter trapping potentials than
those that exist for atoms. The basic ideas developed in this

paper are expected to be applicable to more general situations
with different trapping frequencies. A generalization is highly
desirable, but it would lead to a more complicated theoretical
treatment as, for example, c.m. motion becomes coupled to
the relative motion. Very elongated cigar-shaped traps have
already been treated in previous works. One of our goals is the
consideration of particular experimental realizations in order to
describe them with our theory, compare the results, or suggest
directions of experimental research.

In the present, external magnetic fields were not used to
manipulate the interaction. Magnetically induced Feshbach
resonances have been applied very successfully to engineer
neutral-atom collisions. Future investigations will include
magnetic fields to control the atom-ion interaction even more
efficiently and possibly combine trap-induced resonances and
Feshbach resonances for this purpose. Our work can be seen
as a principle investigation of an interesting physical system
and can be extended in many directions.
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