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The nonradiative charge-transfer process for H+ + K(4s) collision is investigated using the quantum-
mechanical molecular-orbital close-coupling method for collision energies from 1 eV to 10 keV. The radiative-
decay and radiative charge transfer cross sections are calculated using the optical potential approach and the fully
quantal method, respectively, for the energy range of 10−5–10 eV. The radiative-association cross sections are
obtained by subtracting the radiative charge-transfer part from total radiative-decay cross sections. The relevant
molecular data are calculated from the multireference single- and double-excitation configuration interaction
approach. The nonradiative charge transfer is the dominant mechanism at energies above 2 eV, whereas the
radiative charge transfer becomes primary in the low-energy region of E < 1.5 eV. The present radiative-decay
cross sections disagree with the calculations of Watanabe et al. [Phys. Rev. A 66, 044701 (2002)]. The total
charge-transfer rate coefficient is obtained in the temperature range of 1–20 000 K.
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I. INTRODUCTION

The charge transfer in collisions of protons with alkali-
metal atoms affects the ionization balance in the atmospheres
of planets, dwarf stars, and the interstellar medium [1–4].
Because of the near-resonant condition, these charge-exchange
processes are known to possess large cross sections in a wide
energy range and are also important in laboratory plasma
environments [5–8]. At low temperature, such as in ultracold
experiments, where collision energies are much smaller than
1 eV, nonradiative charge transfer can be important if favorable
crossings occur in the potential curves of the initial and
final diabatic states. In the absence of suitable crossings, the
radiative charge transfer will often be more efficient through
photon emission. In our previous work [9–11], several methods
have been used to treat the radiative and nonradiative charge
transfer, as well as the radiative-association processes for pro-
tons colliding with sodium. This experience has encouraged us
to extend our investigations to the collision of protons with the
heavier alkali-metal atom, potassium, to provide accurate data
which can be useful in various applications. In the collisions of
H+ with the ground 4s state of K, the charge-exchange reaction
may occur by nonradiative charge transfer,

H+ + K(4s) → H + K+, (1)

by radiative charge transfer,

H+ + K(4s) → H(1s) + K+ + hv, (2)

or by radiative association,

H+ + K(4s) → KH+ + hv. (3)

In the keV energy region, the nonradiative charge-transfer
process (1) has been extensively investigated both experi-
mentally and theoretically [12–18]. In this article, we study
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the process (1) in a wide energy range of 0.001–10 keV
using a quantum-mechanical molecular-orbital close-coupling
(QMOCC) method.

For energies below several eV, the radiative processes
may become dominant over nonradiative charge transfer. The
radiative decay process including both reactions (2) and (3)
was investigated by Watanabe et al. [19] using the optical
potential method. In our previous work [10], we pointed out
errors in their calculations for protons colliding with sodium. In
this work, we study the radiative-decay and radiative charge-
transfer processes using the optical potential and the fully
quantal methods, respectively. The radiative-decay results are
compared with those of Watanabe et al. [19]. The radiative-
association cross sections are obtained by taking differences
between radiative-decay and radiative charge-transfer results.
The rate coefficients including both radiative and nonradiative
charge-transfer processes are presented. The molecular data
needed are calculated using the multireference single-
and double-excitation configuration interaction (MRD-CI)
method.

II. THEORETICAL METHODS

A. Nonradiative charge transfer

The QMOCC method to describe nonradiative charge
transfer in ion-atom collisions has been formulated in detail
in the literature [20,21], and it is only briefly outlined in
the present work. In the diabatic representation, the radial
scattering amplitude describing the relative motion of the
nuclei can be obtained by solving a coupled set of second-order
differential equations written as[

d2

dR2
− J (J + 1) − �2

R2
+ 2µE

]
gJ

γ

− 2µ
∑
γ ′

Uγ,γ ′ (R)gJ
γ ′ = 0, (4)
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where µ is the reduced mass of the ion-atom pair, E is the
relative collision energy in the center-of-mass frame, R is the
coordinate of the relative nuclear motion, J is the total angular
momentum quantum number, � is the projection of the total
electronic angular momentum along the internuclear axis, and
U (R) is the diabatic potential matrix in which the off-diagonal
elements are responsible for driving charge transfer in the
diabatic representation [21,22], defined by

U (R) = W (R)[V (R) − P (R)]W−1(R), (5)

where V (R) is the diagonal adiabatic potential matrix, W (R)
is the unitary transformation matrix that obeys the equation

dW (R)

dR
+ Ar (R)W (R) = 0, (6)

and P (R) is the rotational coupling matrix whose elements are
given by [20,23]

Pαβ = ∓ 1

µR2
[(J ∓ �α)(J ± �α + 1)]1/2Aθ

αβδ(�α,�β ± 1).

(7)

The elements Ar
αβ(R) = 〈ψα| ∂

∂R
|ψβ〉 and Aθ

αβ(R) =
〈ψα|iLy |ψβ〉 are, respectively, the radial and rotational
coupling matrix elements, with ψα and ψβ being the adiabatic
electronic eigenfunctions.

Equation (4) may be solved with the log-derivative method
of Johnson [24]. The K matrix can be extracted from the
scattering amplitude, and thus the scattering matrix S is given
by

SJ = [I + iKJ ]−1[I − iKJ ], (8)

with I the identity matrix. Finally, the charge-transfer cross
sections from channel α to channel β are expressed in terms
of the scattering matrix elements,

σα→β = π

k2
α

∑
J

(2J + 1)|(SJ )αβ |2, (9)

where kα denotes the initial momentum.

B. Radiative charge transfer and radiative association

The radiative charge-transfer cross section in the fully
quantum-mechanical approach [25–27] can be given by

σ =
∫ ωmax

ωmin

dσ

dω
dω, (10)

with

dσ

dω
= 8

3

(
π

kA

)2
ω3

c3

∑
J

[
JM2

J,J−1(kA, kX)

+ (J + 1)M2
J,J+1(kA, kX)

]
, (11)

where ω is the angular frequency of the emitted photon and c
is the speed of light. The subscripts A and X denote the upper
and the lower states, respectively, and

MJ,J ′ (kA, kX) =
∫ ∞

0
dRf A

J (kAR)D(R)f X
J ′ (kXR), (12)

where D(R) is the transition dipole moment connecting the
two electronic states and kA and kX are the entrance and exit

momenta, respectively. The partial wave f i
J (kiR) (i = A,X)

is the regular solution of the homogeneous radial equation{
d2

dR2
− J (J + 1)

R2
− 2µ[Vi(R) − Vi(∞)] + k2

i

}
f i

J (kiR) = 0

(13)

and normalized asymptotically according to

f i
J (kiR) =

√
2µ

πki

sin

(
kiR − Jπ

2
+ δi

J

)
, (14)

with δi
J , (i = A,X) the phase shifts.

On the other hand, the optical potential method [25,26,28]
can be adopted to obtain the total cross sections for radiative
decay, including both the radiative charge transfer and the
radiative-association processes. The radiative-decay cross
sections can be written as

σ (E) = π

k2
A

∞∑
J

(2J + 1)[1 − exp(−4ηJ )], (15)

and the phase shift ηJ is given in the distorted-wave approxi-
mation as

ηJ = π

2

∫ ∞

0
dR

∣∣f A
J (kAR)

∣∣2
A(R), (16)

where A(R) is the transition probability for the radiative
transition given by

A(R) = 4

3
D2(R)

|VA(R) − VX(R)|3
c3

. (17)

In order to extend the radiative-decay calculation to higher
energy, replacing the summation in Eq. (15) and applying
the Jeffrey-Wentzel-Kramers-Brillouin approximation, one
obtains the expression for the semiclassical cross section

σ (E) = 2π

√
2µ

E

∫
pdp

∫ ∞

R
ctp
A

dR
A(R)√

1 − VA(R)/E − p2/R2
,

(18)

where p is the impact parameter and R
ctp
A is the classical

turning point in the incoming channel [25,29]. For relatively
large energies (E � VA), the double integral is nearly energy
independent, and therefore σ (E) varies as 1/E1/2 [26–28].

By subtracting the radiative charge-transfer part from the
total radiative-decay cross sections, one obtains the radiative-
association cross sections.

III. RESULTS AND DISCUSSIONS

A. Nonradiative charge transfer

In the present study, ab initio configuration-interaction (CI)
calculations are carried out for potential curves of six +
electronic states in A1 symmetry and two � states in B1 sym-
metry of the KH+ molecule using the MRD-CI package [30,31].
In the calculation of hydrogen, the correlation-consistent,
polarization valence, quadruple-ζ (cc-pVQZ) basis set [32] is
used. In addition to the above basis set, (2s3p) diffuse functions
are added. The final contracted basis set for the hydrogen atom
is (8s, 6p, 2d, 1f)/[6s, 6p, 2d, 1f]. For the potassium atom, an
effective core potential (ECP) [33] is employed to describe the
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FIG. 1. Adiabatic potential curves for (KH)+. The solid and
dashed lines refer to the + and � channels, respectively.

ten core electrons, whereby only the remaining nine valence
electrons need to be considered explicitly in the ab initio self-
consistent-field (SCF) and CI calculations. The ECP-adapted
(5s4p) Gaussian basis set [33] without contraction is employed
for the 3s, 3p, and 4s subshells. A diffuse (1s 2p 4d 1f) basis
is employed for describing its Rydberg states. A threshold of
10−10 Hartree is used to select the configurations [30] of which
the electronic wave functions are composed. The errors in our
calculated energies for the considered electronic states are
no more than 0.07 eV in the asymptotic region. The obtained
electronic wave functions are then employed to calculate radial
and rotational couplings by using finite differentiation and
analytical approaches, respectively [34].

The adiabatic potentials are displayed in Fig. 1, in which
12 ∑+, 22 ∑+, 32 ∑+, 42 ∑+, 52 ∑+, 62 ∑+, 12�, and
22� correspond to K+ + H(1s), K(4s) + H+, K+ + H(2pσ+),
K+ + H(2pσ−), K(4pσ ) + H+, K(5s) + H+, K+ + H(2pπ ),
and K(4pπ ) + H+ states in the asymptotic region, respec-
tively. The 22 ∑+ state represents the initial channel for our
considered processes. The shallow wells, appearing at R ≈
3 a.u. in the potential curves except for the 12 ∑+ state appear
to be caused by the excitation of the inner 3p shell electrons
of the K atom. These wells did not appear in other theoretical
works [12,35,36], in which the KH+ molecule was treated as an
effective one-electron system and the inner 3p shell electrons
were not excited. Because this difference only exists at very
small internuclear separation in a narrow range, it may have
no apparent impact on the scattering cross sections, especially
for the low-energy results.

FIG. 3. Rotational coupling matrix elements for KH+.

In Figs. 2 and 3, we show some important radial and
rotational couplings, respectively. It is evident that the po-
sitions of the peaks in radial couplings are consistent with
the avoided crossings of the adiabatic potentials. The main
gateway to the charge exchange will be the 22∑+–32 ∑+

and
22∑+–12 ∏

couplings because of the very close encounters
in the associated potential curves. In comparison to the NaH+
case [9], the shapes of the couplings are similar, but the
regions of the peaks for KH+ shift to comparatively larger
internuclear separations. This is because the scale of the K
(K+) atom (ion) is larger than that of the Na (Na+) atom (ion)
and will result in the larger cross sections in the low-energy
region. It should be noted that in our calculations of radial
couplings, the origin of electronic coordinates is placed at the
mass center of the collision system. Furthermore, at higher
energies in a semiclassical, impact-parameter approach, it is
possible to include electron translation factors (ETFs) [37]
(such as of the plane-wave type), which leads to matrix
elements that have the correct boundary conditions and are
independent of the choice of origin and are simple in the
zero-velocity limit. But in this article, ETFs are not included
in our description of the collision. Since the influence of ETFs
is expected to be important when the incident energy E > 1
keV/u [38,39], the validity of our calculations is restricted to
the low-impact-energy region (typically E < 5 keV/u [9]).

Using the potentials and couplings described above, we cal-
culated the nonradiative charge-transfer cross sections using
the QMOCC method for H+ + K(4s) collision in the energy
range of 0.001–10 keV. Since Saha and Kumar [35] have tested

FIG. 2. Radial coupling matrix
elements for KH+.
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FIG. 4. The total nonradiative charge-transfer cross sections of
the present calculation and other results for H+ + K(4s) collisions,
and comparison with the results for H+ + Na(3s) collisions. The-
oretical results: present QMOCC calculation (solid line with filled
circles), Kimura et al. [12] (solid line), Gieler et al. [13] (dotted line),
Hayakawa et al. [16] (dashed line), Avakov et al. [17] (dash-dot-
dotted line), Tabata et al. [18] (dash-dotted line); experimental results:
Gieler et al. [13] (open downward triangle), Ebel and Salzborn [14]
(open up triangle), Morgan et al. [15] (open squares). The open circles
represent the results of H+ + Na(3s) collisions [9].

in their ten-state calculations for the H+ + K(4p) collision,
our eight-state results should be a good approximation for the
H+ + K(4s) collision, especially at low energies. The total
nonradiative charge-transfer cross sections are displayed in
Fig. 4, and compared with other experimental and theoretical
results. In the keV energy region, a number of experi-
mental measurements [13–15] and theoretical calculations
[12,13,16–18] have been performed. Our QMOCC results
are in good agreement with these results in the overlapping
energy region of 0.1–5 keV. There is no experimental work
in the low-energy region for E < 100 eV, and only Kimura
et al. [12] report theoretical results obtained by semiclassical
MOCC methods. Our results are larger than theirs at energies
less than 100 eV. This is similar to what was obtained in
previous calculations on H+ + Na(3s) [9,12]. Kimura et al.
[12] mentioned that in the internuclear separation R ≈ 18 a.u.
there is a strong radial coupling between the 42 ∑+ and
52 ∑+ states, which resulted in a loss of about two-thirds
of the charge-transfer flux in the low-energy region. However,
in our MRD-CI calculations, we do not find this apparent
coupling at R ≈ 18 a.u., and consistent with this finding, no
avoided crossing is found in either their [12] or our potential
curves. In fact, their semiclassical treatment for the scattering
calculation and the effective one-electron approximation for
the KH+ molecular structure calculation may be responsible
for this discrepancy. At energies larger than about 5 keV/u,
our QMOCC cross sections increase with increasing collision
energy, whereas the other theoretical and experimental results
decrease gradually. This is because we have not included ETFs,
which may be important in this relatively high-energy region.

The cross sections for H+ + Na(3s) charge transfer [9] are
also presented in Fig. 4 for comparison. The maximum cross
section for H+ + K(4s) collisions is larger than that for the
H+ + Na(3s) collisions and occurs at a lower energy. This is

FIG. 5. State-selected nonradiative charge-transfer cross sections
for H+ + K(4s) collision.

because the energy defect for H+ + K(4s) collisions between
22 ∑+ and 32 ∑+ (0.94 eV) is smaller than H+ + Na(3s)
(1.74 eV), and the ionization energy of K(4s) (4.34 eV) is
smaller than that of Na(3s) (5.14 eV) [40]. The cross sections
for H+ + K(4s) collisions are larger than those for H+ +
Na(3s) in the low-energy region. This is in agreement with the
results for the aforementioned comparisons for nonadiabatic
couplings.

The state-selected cross sections are shown in Fig. 5. The
calculation shows that the partial cross sections to the 32 ∑+

channel dominante at energies below 2.5 eV, and the 12� state
will become the most important charge-transfer final state in
the intermediate-energy region. The charge-transfer processes
to these two channels compete with each other at energies
above 100 eV. This is consistent with the energy gaps between
22 ∑+ and other potential curves (see Fig. 1), as well as with
the magnitude of the relevant couplings.

In the higher-energy region (E > 100 eV), the charge-
transfer processes are mainly induced by the couplings at
small internuclear separations, where the potential curves
22 ∑+

, 32 ∑+, and 12� come very close to each other.
All of the couplings among these three states will influence
the charge-transfer results, and then the electron occupation
in these states indicates close competition between these
processes.

As the the energy decreases, the efficient internuclear
separation range moves to a larger region and the energy
gap between the 22 ∑+ and the 32 ∑+ states increases. The
potential curves of the 22 ∑+ and 12� states come closer
and are almost degenerate at R ≈ 18 a.u. The most efficient
mechanism for populating the excited states will be via the
rotational coupling between the 22 ∑+ and the 12� states at
R ≈ 18 a.u.

As the collision energies decrease further and go below
2.5 eV, the classical turning point for each partial wave will
move to larger R, where the energy gap between the 22 ∑+

and the 12� curves is larger (see Fig. 1), thus making rotational
coupling relatively inefficient, with the result that the partial
charge-transfer cross section to 12� drops rapidly. For the
radial coupling between the 22 ∑+ and the 32 ∑+ states,
the avoided crossing is around 15 a.u., but the energy gap
is relatively large compared to that of the 12� channel at small
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R, and hence, this is not an efficient mechanism for making
a direct transition for energies larger than 2.5 eV. However, at
energies below 2.5 eV, this avoided crossing around 15 a.u.
drives the charge-transfer processes and the cross sections to
the 32 ∑+ channel become dominant.

B. Radiative-decay, radiative charge-transfer, and
radiative-association processes

In this work, for radiative processes, the upper A and the
lower X states in Eqs. (10)–(18) correspond to the 22 ∑+ and
the 12 ∑+ states, respectively. Because the 22 ∑+ state is the
initial channel, one only need consider it and the lower 12 ∑+

states. The dipole matrix element between 12 ∑+ and 22 ∑+

is shown in Fig. 6, and our results are in good agreement with
those of Watanabe et al. [19] and Magnier [36], especially at
relatively large internuclear separation, where it provides the
main contribution for low-energy processes.

Using Eq. (17), we calculated the transition probability
A(R), as shown in Fig. 7. It increases as the internuclear
distance increases, reaching a maximum at R ≈ 5.5 a.u. and
then decreases gradually thereafter. Our calculated A(R) is
similar in shape to that of Watanabe et al. [19]. But the unit
of A(R) in Ref. [19], shown as 10−8 s−1, is apparently an
error, so that our A(R) cannot be compared to theirs directly.
For comparison, the transition probability for H+ + Na(3s)
collisions [10] is also given in Fig. 7. Similarly as in the
case of radial or rotational couplings, the peak of A(R) for
H+ + K(4s) appears at a larger internuclear separation, and
then the magnitude of A(R) for H+ + K(4s) is larger than that
of H+ + Na(3s) at R > 5 a.u.

Beyond R = 30 a.u., the potential of the 22 ∑+ state can
be described by the long-range form

VL(R) = −1

2

[
C4

R4
+ C6

R6
+ C8

R8

]
, (19)

where C4, C6, and C8 are the dipole, quadrupole, and
octupole polarizabilities of the K(4s) atom, respectively. For
convenience of comparison, they are chosen to be the same
as those used in Ref. [19]. For the ground state 12 ∑+, the
form of the long-range potential is VL(R) = −(1/2)(αd/R

4),

FIG. 6. Dipole matrix element between 12
∑+ and 22

∑+ states.
Present calculation (solid line), Watanabe et al. [19] (dashed line),
Magnier [36] (dotted line).

FIG. 7. Transition probability A(R) between the 12
∑+ and the

22
∑+ states for H+ + K(4s) and H+ + Na(3s) collisions [10].

where αd is the dipole polarizability of the H(1s) atom. The
long-range asymptotic behavior of the dipole matrix element
is fitted to the form d0/R

n.
Using the optical potential method, we have calculated the

radiative-decay cross sections for energies from 10−5 to 10 eV,
as shown in Fig. 8. The cross sections decrease as the collision
energy increases. Rich resonance structures appear in the
energy range of 10−5–0.3 eV. These resonances are attributed
to the presence of quasibound or virtual rotational-vibrational
levels in the entrance channel, and may give rise to an
enhancement of the rate coefficients [26,28]. In order to
extend the treatment to higher energy, we also performed a
semiclassical calculation using Eq. (18) at the higher-energy
region of 1–100 eV, as shown in Fig. 8. In the overlapping
1–10 eV energy range, the optical-potential cross sections are
in agreement with the semiclassical results.

In Fig. 8, our radiative-decay cross sections are compared
with the results of Watanabe et al. [19]. Perhaps because
of the fewer calculated energy points, they did not find the
rich resonance structures. In addition, for collision energy

FIG. 8. Radiative-decay and radiative charge-transfer cross sec-
tions for H+ + K(4s) collisions. Radiative-decay results: the optical
potential method (solid line), the semiclassical method (crosses),
Watanabe et al. [19] (solid line with open circles). Radiative charge-
transfer results (filled circles). Nonradiative charge-transfer results
(solid line with filled squares).
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E < 10−2 eV, their calculated cross sections are about four
times larger than ours except at the positions of resonances.
Our cross sections have an energy dependence of 1/E1/2,
which is consistent with the Langevin cross-section formula
for a polarization potential. But the cross sections of Watanabe
et al. [19] have the 1/E dependence at energies above 10−2 eV.
As in our previous work [10], we re-examined the optical
potential calculations using the code of Ref. [41], the same
as that used by Watanabe et al. [19]. We arrive at the same
conclusion as in our previous article, that is, the probable
imprecision in the calculation of Watanabe et al. [19] results
in an incorrect energy dependence of the cross sections, and
the discrepancy in the magnitude of the cross sections probably
comes from the difference in transition probability A(R).

The radiative charge-transfer cross sections calculated from
the fully quantum-mechanical approach are also shown in
Fig. 8 by filled circles. Since the lower 12 ∑+ state of the
present system only has a very shallow well (∼0.056 eV) at
short range, the radiative charge transfer is responsible for most
of the radiative-decay process [10,28]. For comparison, the
nonradiative charge-transfer results are displayed in the same
figure. Below 1.5 eV, the radiative charge-transfer process is
the dominant charge-transfer mechanism. As the collision en-
ergy increases, the nonradiative charge-transfer cross sections
show a sharp increase and become dominant over the radiative
results at energies above 2 eV.

The radiative-association cross sections, which are obtained
by subtracting the radiative charge-transfer part from the
radiative-decay cross sections, are displayed in Fig. 9 and
compared with the radiative-decay results, as well as with the
corresponding results for the H+ + Na(3s) collisions [10,11].
The radiative-association cross sections are about one order
of magnitude smaller than the radiative-decay results at
energies from 0.01 to 0.3 meV. As the collision energies
increase, the difference between the radiative-decay and the
charge-transfer cross sections decreases (see Fig. 8). The
radiative-association cross sections decrease more rapidly than
the radiative-decay results. This is because the interaction time
for emitting the radiation is reduced [42] as the collision energy

FIG. 9. Comparison of the radiative-decay and radiative-
association cross sections for both H+ + K(4s) and H+ + Na(3s)
collisions [10,11]. H+ + K(4s): radiative decay (solid line), radiative
association (solid line with filled circles); H+ + Na(3s): radiative
decay (dotted line), radiative association (solid line with open circles).

is increased. Since the radiative-association cross sections
are obtained as differences between the radiative-decay and
the charge-transfer results in our calculation, the accuracy is
not sufficient in the energy region of E > 1 meV, and the
radiative-association cross section become increasingly less
smooth, especially at the position of resonances.

The comparison with the results for H+ + Na(3s) collisions
shows that the radiative-decay cross sections for H+ + K(4s)
collisions are about two times larger than those of H+ +
Na(3s), but the radiative-association results of H+ + K(4s)
differ very little from those of H+ + Na(3s) at energies
less than 0.3 meV, even becoming smaller than those of
H+ + Na(3s) collisions at larger energies. The difference
in radiative-decay cross sections is caused primarily by the
differences in transition probability A(R). As mentioned
earlier in this article, the results for the low-energy region rely
on the molecular data at large internuclear separation. For the
H+ + K(4s) collision, the larger A(R) at R > 5 a.u. results
in greater radiative-decay cross sections. But the radiative
association depends on not only the dipole matrix element,
but also the shape of the potential well in the final state.
Because the well of the lower 12 ∑+ state for KH+ (0.056 eV)
is shallower than that of NaH+ (0.125 eV) [10], the radiative-
association cross sections for H+ + K(4s) do not appear to
be larger than those of H+ + Na(3s). Because the effective
angular momentum quantum numbers increase with collision
energy, for the H+ + K(4s) collisions, the shallower well in
the effective potentials V eff

j (R) = V (R) + (J + 1)/2µR2 of

the 12 ∑+ state will disappear at a relative small value of
J, causing the radiative-association cross sections to decrease
more rapidly than for the H+ + Na(3s) collisions.

In many application fields, such as in astrophysics, the
rate coefficients are needed. In this work, the rate coefficients
for temperatures between 1 and 20 000 K are obtained by
averaging the radiative and nonradiative charge-transfer cross
sections over a Maxwellian velocity distribution. The results
are displayed in Fig. 10 and compared to those of Watanabe

FIG. 10. Raditive and nonradiative charge-transfer rate coeffi-
cients as a function of temperature. Only the radiative charge-transfer
process is included: present calculation (filled circles), Watanabe et al.
[19] (solid line with open circles). Both radiative and nonradiative
charge-transfer processes are included: present calculation (open
triangles), present fitted results (dotted lines).
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TABLE I. Rate coefficients for radiative
and nonradiative charge-transfer processes in
H+ + K(4s) collisions. Units for ai and ci are
10−12 cm3 s−1 and Kelvin, respectively.

T (K) α(T) (10−12 cm3 s−1)

1.0 0.347
2.0 0.334
4.0 0.328
6.0 0.328
8.0 0.329
10 0.330
20 0.326
40 0.321
60 0.318
80 0.316
100 0.315
200 0.314
400 0.321
600 0.328
800 0.333
1000 0.336
2000 0.336
4000 0.315
6000 0.414
8000 0.684
10 000 1.283
20 000 12.78
a1 0.0494
b1 −0.164
c1 178.8
a2 0.533
b2 0.156
c2 9737
a3 2.097
b3 4.47
c3 15415

et al. [19]. In the latter study, the unit of rate coefficients
(1012 cm3 s−1) given is apparently a typographical error, and
we have modified it in Fig. 10. For a specific temperature, the
rate coefficients mainly come from energies lower than five
times of the energies corresponding to that temperature. Our
rate coefficient approaches a constant value of approximately
3.3 × 10−13 cm3 s−1 at T < 4000 K. This is because in this
temperature region, the rate coefficients are mainly due to
the radiative charge-transfer cross section, which behaves as
1/E1/2. The total charge-transfer rate coefficients increase
sharply in the temperature region of T > 5000 K because
the contribution from the nonradiative charge-transfer process
becomes dominant at energies above 2 eV. The radiative
charge-transfer rate coefficients of Watanabe et al. [19] have

a very different temperature dependence than the present
calculation. Their results vary smoothly at T < 100 K and
then decrease rapidly for T > 100 K. Our rate coefficients
are a few times smaller than those of Watanabe et al. at
T < 1000 K and become larger than theirs at T > 1500 K. The
distinctions in the computed rate coefficients are consistent
with the discrepancy noted in the associated cross sections.

For convenience in future applications, the rate coefficients,
including both the radiative and the nonradiative charge-
transfer processes are given in Table I at temperatures between
1 and 20 000 K. We also fitted the rate coefficients to the form

α(T ) =
∑

i

ai

(
T

10000

)bi

exp

(
−T

ci

)
. (20)

The fitting parameters are provided at the end of Table I. Units
for ai and ci are 10−12 cm3 s−1 and Kelvin, respectively. The
fitting is reliable to within 2% over the temperature range of
1–20 000 K. The fitted data are also plotted in Fig. 10.

IV. CONCLUSION

We have calculated the total and state-selective nonra-
diative charge-transfer cross sections for protons colliding
with K(4s) atoms in a wide energy range of 0.001–10 keV
using the QMOCC method. The radiative-decay process
is investigated using the optical-potential and semiclassical
methods for collision energy ranges of 10−5–10 eV and
0.01–100 eV, respectively. The radiative charge-transfer cross
sections are calculated by the fully quantum method. We obtain
the radiative-association results by subtracting the radiative
charge-transfer part from the radiative-decay cross sections.
The calculations utilize ab initio molecular data obtained
from the MRD-CI approach. The nonradiative charge transfer
is the dominant mechanism at energies above 2 eV, and the
radiative charge transfer becomes the primary mechanism for
energies below 1.5 eV. Our radiative-decay results generally
disagree with the calculations of Watanabe et al. [19]. The
discrepancy in the magnitude of the radiative-decay cross
sections appears to be caused by differences of transition
probability, and the distinction in the energy dependence of the
cross sections are probably due to the inadequate precision in
the calculation of Watanabe et al. [19]. The total radiative and
nonradiative charge-transfer rate coefficient is also obtained
for temperatures between 1 and 20 000 K, which also differs
dramatically from the results of Watanabe et al. [19].
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