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Inelastic collisions in ultracold gases confined by one-dimensional optical lattices
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We present a formalism for rigorous multichannel scattering calculations of cross sections for inelastic
collisions of atoms and molecules confined in one-dimensional optical lattices. We obtain analytical expressions
for the mean frequency of inelastic collisions in a confined gas in the temperature regime T ∼ h̄ω and at
temperatures T � h̄ω, where ω is the oscillation frequency of trapped particles in the confining potential. Our
numerical calculations for the gaseous mixture of Li and Rb atoms show that inelastic collisions in the temperature
regime T ∼ h̄ω exhibit a deviation from three-dimensional scattering. This deviation is more significant for
systems with stronger confinement and larger scattering lengths. We find that the ratios of rate constants for
inelastic scattering and elastic collisions are suppressed in confined gases at T ∼ h̄ω, and this suppression is
significant for Li-Rb collisions at T < 40 µK.
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I. INTRODUCTION

Atomic ensembles cooled to ultracold temperatures can be
confined by optical forces and trapped in an optical lattice,
which is a standing-wave interference pattern of counterprop-
agating laser beams. By providing for the variation of the
depth and the geometry of confining potentials, optical lattices
can be used as powerful instruments to study fundamental
problems and to explore new phenomena in several areas
of physics [1–4]. For example, they may allow for quantum
simulations of novel condensed-matter systems [5,6] and the
development of new schemes for quantum computation [7,8].
Optical lattices can also be used to produce low-dimensional
quantum gases. Of particular interest here is an ultracold gas
confined by a one-dimensional (1D) optical lattice, where
atoms or molecules move freely in two dimensions and
oscillate harmonically in the third dimension. Such gases
exhibit novel quantum phase transitions and dynamics not
observable in unconfined thermal ensembles of atoms [9–17].
The many-body behavior of confined gases can be manipulated
by adjusting the depth of the confining potential [12,18–20]
as well as the frequency of the trapping laser light. The
study of collision dynamics of atoms and molecules in 1D
optical lattices may lead to fundamental discoveries and
new research directions [21–23]. For example, the threshold
energy dependence of elastic and inelastic cross sections in an
ultracold gas under strong confinement is very different from
that in three dimensions (3D) [23,24], and the threshold laws
for inelastic collisions can be tuned by varying the confinement
strength and external magnetic fields [21]. Applying laser
confinement in one direction may stabilize ultracold collision
systems and allow for the study of ultracold chemistry in
restricted geometries [21,25] and collisional decoherence [26].
The study of collision dynamics of atoms and molecules in
1D optical lattices may therefore have applications reaching
beyond the field of cold atoms and molecules.

Petrov and Shlyapnikov have recently developed a theory
of elastic collisions between atoms confined in a 1D harmonic
trap [22] and studied the effect of the confinement on elastic
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collisions in a single-species atomic gas. They identified
two regimes of scattering for confined atoms: (i) the quasi-
two-dimensional (quasi-2D) regime (T � h̄ω) and (ii) the
confinement-dominated 3D regime (T ∼ h̄ω), where T is
the temperature of the confined gas and ω is the oscillation
frequency of particles in the confining potential. They found
that the scattering wave function of ultracold atoms in the
quasi-2D regime exhibits the features of a scattering wave
function in a purely 2D geometry, whereas in the confinement-
dominated 3D regime, the 2D character of the scattering
wave function is not significant. However, the confinement
may still affect the interparticle interactions to a great extent,
even when T > h̄ω. In our previous communication, we
extended the work of Petrov and Shlyapnikov to present a
formalism for rigorous scattering calculations of probabilities
for inelastic and chemically reactive collisions of atoms and
molecules in the quasi-2D regime [21]. Our results showed
that the elastic-to-inelastic ratio of collision cross sections is
enhanced in the presence of confinement. However, the effects
of confinement on the dynamics of inelastic collisions in the
confinement-dominated 3D regime remain unknown.

In this article, we extend our theory for quantum calcula-
tions of inelastic cross sections in a quasi-2D geometry [21] to
the confinement-dominated 3D regime and discuss in detail the
effects of the confinement on inelastic collisions of atoms and
molecules confined in 1D optical lattices. We present rigorous
multichannel scattering calculations of inelastic collision rates
in a mixture of atomic gases. We show that inelastic collisions
in the confinement-dominated 3D regime deviate from 3D
scattering and this deviation is more significant for systems
with stronger confining potentials and larger scattering lengths.
We also show that inelastic collisions in the confinement-
dominated 3D regime are generally suppressed. As the
temperature of the gas increases, this suppression becomes
less significant. In many experiments with optical lattices, the
temperature of atoms and molecules is not cold enough to reach
the quasi-2D or confinement-dominated 3D regimes. Petrov
and Shlyapnikov demonstrated that when the temperature of
atomic ensemble is much higher than the confinement strength,
the confinement modifies the dynamics of elastic collisions
of atoms and molecules only through changing the density
distribution along the confining axis. This result indicates that
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the effect of the confinement on binary elastic collisions of
atoms vanishes above a certain temperature. Our calculations
here are based on accurate interatomic interaction potentials
for 6Li and 87Rb atoms generated by fitting experimentally
measured Feshbach resonances [27,28]. The main goal of
this article is to identify the temperature intervals where the
effects of the confinement on binary inelastic collisions and
the suppression of inelastic collisions can be observed.

II. THEORY

A. Atomic mixture with 1D harmonic confinement

If a single laser field is used to confine a mixture of
cold atoms, different atomic species will experience different
trapping potentials. Here, we consider a cold mixture of Li and
Rb atoms and denote the frequencies of the confining potentials
for Li and Rb by ωLi and ωRb, respectively. Collision dynamics
of the Li-Rb system in the presence of the confining laser force
is determined by the following Hamiltonian (in atomic units):

Ĥ = − 1

2mLi
�Li − 1

2mRb
�Rb

+ V̂ (xLi, yLi, zLi, xRb, yRb, zRb)

+ 1

2
mLiω

2
Liz

2
Li + 1

2
mRbω

2
Rbz

2
Rb, (1)

where m denotes the atomic mass and V̂ models the inter-
atomic interaction potentials. Rewriting Eq. (1) in terms of the
center-of-mass coordinates and the interatomic separation r ,
we obtain

Ĥ = − 1

2M
�c.m. − 1

2µ
�rel + V̂ (r)

+ 1

2

(
mLiω

2
Li + mRbω

2
Rb

)
z2

c.m. +
(
ω2

Rb − ω2
Li

)
µzzc.m.

+ 1

2

(
µ2

mLi
ω2

Li + µ2

mRb
ω2

Rb

)
z2, (2)

where M = mLi + mRb, µ is the reduced mass of the Li-Rb
collision complex, and zc.m. and z describe the center-of-mass
motion and the relative motion of particles along the z-axis,
respectively.

We note that if ωLi �= ωRb, the center-of-mass motion and
the relative motion of the collision complex are coupled by the
term (ω2

Rb − ω2
Li)µzzc.m.. If this term is significant enough, it

may be possible to control the center-of-mass motion of the
binary-collision complex by varying the difference between
the frequencies. This can be achieved by applying an additional
laser potential that would selectively modify one of the two fre-
quencies. In our calculations, we assume that ωLi = ωRb = ω.
As a result, the center-of-mass motion and the relative motion
can be separated and the former can be omitted from the
scattering problem.

B. Inelastic collisions of trapped particles in a particular
oscillation state

The theory described in this article is general and applies to
elastic, inelastic, and reactive collisions of ultracold atoms or
molecules. We will therefore refer to the trapped particles
generally as “atoms and molecules.” In a tightly confined

system, the strength of the harmonic potential can be described
by the oscillation length l0 = √

h̄/µω of trapped particles.
The oscillation length of the confining potential is usually
much larger than the characteristic radius re of interatomic
or intermolecular interaction potentials [29]. Therefore, at
short interparticle separations r < re, the interaction between
collision partners is not affected by the confining potential.
The collision complex of atoms and molecules is therefore
unconstrained and the collision process occurs in 3D. As a
result of collisions that conserve the internal energy of the
colliding particles (elastic collisions in an unconfined gas),
the atoms or molecules may change their oscillation states
while still remaining trapped in the harmonic potential. An
inelastic collision or chemical reaction, however, releases
a lot of energy and accelerates the collision products. As
a result, atoms and molecules escape from the trap and
are free to move in 3D, leading to trap loss. The theory
of Petrov and Shlyapnikov [22] relates the scattering wave
function of confined atoms in the region re � r � �̃ε to
the 3D wave function by a proportionality coefficient ηϕν(0),
where �̃ε ∼ h̄/

√
µ(ε + h̄ω/2) is the characteristic de Broglie

wavelength of the particles [22], ϕν is the wave function for
a particular oscillation state in the confining potential, and ε

is the collision energy. In this study, we consider collision
processes that induce transitions from state (α; l = 0; ml = 0)
(denoted hereafter by α00) to another state α′l′m′

l , where l′ is
the rotational angular momentum of the collision complex in
state α′ and m′

l is the projection of l′ on the quantization axis.
We assume that particles are initially confined in a particular
eigenstate ν of the harmonic potential and any transition
α → α′ results in loss of confinement. The indices α and α′
are used to describe the internal energy as well as the chemical
identity of the colliding particles (i.e., they specify the collision
channels).

The probability of inelastic or chemically reactive collisions
in 3D scattering is described by the elements Sα′←α of
the scattering S-matrix [30]. For r > re, different collision
channels are uncoupled, and we can treat the confined and
unconfined collision channels separately. We express the
s-wave component of the wave function for the confined
channel α in a particular oscillation state ν at re � r � �̃ε

as a regular single-channel wave function in 3D multiplied by
ηϕν(0):

ψν
α (r) = iηϕν(0)

2kαr

[
e−ikαr − Sα←αeikαr

]
φα, (3)

where kα is the wave number of the collision complex, φα is
the eigenfunction of the Hamiltonian at r = ∞, and Sα←α is
the S-matrix element for elastic scattering in 3D. Repeating
the derivation of Petrov and Shlyapnikov [22] and using
Eq. (3), we obtain the following expression for η in terms
of the S-matrix element:

η =
√

4π
(1−Sα←α )w(ε/2h̄ω)

ikαl0
+ √

π (1 + Sα←α)
, (4)

where w(ε/2h̄ω) is a complex function [22]. This expression
is more general than Eq. (17) in Ref. [22] because it is valid
also in the temperature regime where the s-wave cross section
cannot be represented by the square of the energy-independent
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scattering length. Note that the expression for η in our previous
communication [21] should be multiplied by

√
4π and all cross

sections for inelastic collisions reported in communication
[21] should be multiplied by the factor 4π . This error does
not modify any of the conclusions of Ref. [21].

In the region of re � r � �̃ε , the wave function given by
Eq. (3) for channel α and oscillation state ν can be generally
written as

ψν
α00 = υ

− 1
2

α r−1

√
4π

[
A ν

α00e
−ikαr − Bν

α00e
ikαr

]
φα, (5)

where A ν
α00 and Bν

α00 are the amplitudes of the incoming and
outgoing scattering waves, and υα is a normalization constant
[31]. For re � r � �̃ε , A ν

α00 can be written as χνAα00, where
Aα00 is the amplitude of the incoming scattering wave for
s-wave collisions in 3D. By comparing the coefficient in front
of the term e−ikαr in Eq. (3) with that in Eq. (5) and using
the conventional form Aα00 = i

√
π/kα [30], we obtain the

coefficient

χν = − i
√

πηϕν(0)

kαAα00
= ηϕν(0). (6)

The confinement thus modifies the amplitude of the incom-
ing scattering wave in the 3D collision region re � r � �̃ε .
Because the asymptotic motion of the collision products after a
reactive or inelastic process is unconstrained, a combination of
the exponential functions and 3D spherical harmonics should
be used to describe the wave function in the outgoing collision
channels:

ψν
α′l′m′

l
= −υ

− 1
2

α′ r−1Bν
α′l′m′

l
ei(kα′ r−l′π/2)φα′Yl′m′

l
(r̂). (7)

The 3D wave function after a collision ψout is related to
the 3D wave function before the collision ψin by the S-
matrix operator ψout = Ŝψin. Therefore, the amplitudes of the
outgoing scattering waves Bν

α′l′m′
l

are related to the amplitude
of the incoming wave A ν

α00 by the S-matrix elements

Bν
α′l′m′

l
= Sα′l′m′

l←α00A
ν
α00. (8)

Because the colliding particles are initially prepared only
in the internal state α, the scattered part of the wave function
in the inelastic channels is given by

ψν
sc(inel) = −

∑
α′ �=α

∑
l′

∑
m′

l

υ
− 1

2
α′ r−1Sα′l′m′

l←α00χν

× i
√

π

kα

ei(kα′ r−l′π/2)φα′Yl′m′
l
(r̂). (9)

The scattering amplitudes for inelastic collisions are defined
as follows:

ψν
sc(inel) =

∑
α′ �=α

υ
− 1

2
α′ f ν

α′←α

(
eikα′ r

r

)
φα′ . (10)

Comparing Eq. (9) with Eq. (10), we obtain the inelastic
scattering amplitude

f ν
α′←α = −

∑
l′

∑
m′

l

Sα′l′m′
l←α00χν

(
i
√

π

il
′
kα

)
Yl′m′

l
(r̂), (11)

which yields the integral cross section for inelastic or reactive
scattering of atoms and molecules originally confined in a
particular oscillation state ν:

σ ν
α′←α =

∑
l′

∑
m′

l

π

k2
α

|η|2 ϕ2
ν (0)|Sα′l′m′

l←α00|2, (12)

where η is given by Eq. (4) and ϕν(0) = (ν−1)!!√
ν!

(πl2
0)−1/4.

C. Collision frequency for ultracold mixture in 1D trap

The mean collision frequency � is usually used to describe
kinetic properties of atoms and molecules in a thermal gas. For
a single-species system, � is given by

� = ñ〈α〉, (13)

where ñ is the density of atoms and α is the collision rate
constant. For a two-component gaseous mixture, � is related
to the density of both species and has the following expression:

� = nAnB

nA + nB
〈α〉 = n〈α〉, (14)

where n = nAnB/(nA + nB), and nA and nB are the densities
of species A and B, respectively.

At the temperature T � h̄ω, atoms and molecules in 1D
optical lattices populate a manifold of states ν in the confining
potential, where the distribution of the particles obeys the
Boltzmann law. We can obtain the mean frequency for
inelastic collisions by averaging inelastic cross sections over
a Maxwell-Boltzmann velocity distribution and the oscillation
states:

�inel = n

〈
v

∑
l′

∑
m′

l

|η|2 ϕ2
ν (0)

π

k2
α

|Sα′l′m′
l←α00|2

〉
, (15)

where v is the velocity of particles. During the collision
process, the distance between two particles along the z-axis
is much smaller than l0 (z � l0). Therefore, the contribution
of the scattering amplitude from the part of the wave
function corresponding to odd eigenstates of the harmonic
potential is negligible. The mean collision frequency is
thus an average over even values of ν [22]. Our numerical
calculations show that the dependence of |η|2 on the energy
ε is no longer significant at T � h̄ω. We can therefore
take |η|2 out from the mean value [cf. Eq. (15)]. Note that
Eq. (12) can be rewritten in terms of the proportionality coef-
ficient and 3D cross sections σ 3D

α′←α: σ ν
α′←α = |η|2ϕ2

ν (0)σ 3D
α′←α .

In order to get an analytical expression for �inel, we expand
σ 3D

α′←α as σ 3D
α′←α = −4π Im(a)/k + β [32]. Here, a is the

zero-temperature scattering length for ultracold particles in
state α and β is a fitting constant. The values of a and β are
obtained from rigorous multichannel scattering calculations.
The analytical expression for the mean frequency of inelastic
collisions at T � h̄ω is thus given by

�inel = n

2
|η|2

[
−4πh̄Im(a)

µ
+ β

(
8kBT

πµ

) 1
2

]

× 1√
πl0

tanh
1
2

(
h̄ω

kBT

)
. (16)
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It might be interesting to analyze the high-temperature limit
of Eq. (16). In order to do this, we express �inel in terms of the
axial momentum �k as follows:

�inel =
∑

ν

n

∫∫ +∞

−∞

h̄2

2πµkBT

(
vσ ν

α′←α

)
Ae−ε/kBT d2�k. (17)

where A = 1 − exp(−h̄ω/kBT ) is the normalization factor.
Because our expression for inelastic cross sections of atoms
and molecules under confinement is written in terms of 3D
S-matrix elements, we need to average the rate constant
over the 3D momentum k = (k2

x + k2
y + k2

z )1/2. When the
temperature of atoms and molecules in 1D optical lattices
is much higher than the confinement strength, i.e., T � h̄ω,
ϕ2

ν (0) ≈ ( 1
πl2

0
)

1
2 ( 2

πν
)

1
2 , we can replace the summation over

ν with an integral. Converting the integration over ν to
an integration over �kz, using the relation k2

z = 2ν/l2
0 , and

integrating out the angular part of the axial momentum, we
obtain the following expression for the inelastic collision
frequency:

�T �h̄ω
inel = n

∫ +∞

0

h̄2

4π2µkBT
(vσ3D)|η|2

×A exp

(
− h̄2k2

2µkBT

)
4πk2dk, (18)

which yields

�T �h̄ω
inel = 2nA|η|2

[
− Im(a)

µ

√
2πµkBT + βkBT

πh̄

]
. (19)

At temperatures T � h̄ω, |η| ∼ 1 and Eq. (18) coincides
with the expression for the average 3D rate constant multiplied
by the density distribution in a 1D optical lattice, which is given
by

�3D = 1

N

∫
nBA (z)

〈
vσ 3D

inel

〉
nBB (z)dxdydz. (20)

Here, N is the total number of particles in the trap, and

nBA(B) (z) = nA(B)√
πR2

A(B)

e−z2/R2
A(B) (21)

is the classical Boltzmann density profile along the z-axis for
particles in a harmonic potential with R2

A(B) = 2kBT m−1
A(B)ω

−2.
That Eq. (18) coincides with Eq. (20) at high temperatures is
consistent with the results for elastic collisions of atoms under
confinement [22]. It indicates that at high temperatures, the
confinement modifies the dynamics of a confined quantum gas
only through changing the density distribution of atoms and
molecules in a 1D optical lattice.

III. NUMERICAL RESULTS

The experimental realization of ultracold atomic and
molecular ensembles confined in optical lattices has been
achieved by many research groups [9–17]. The study of
kinetic properties of quantum gases in restricted geometries
is therefore of significant interest to researchers of ultracold
atoms and molecules. Here, we present the results of rigorous
multichannel calculations of collision frequencies for inelastic

collisions and the inelastic-to-elastic ratios of collision rate
constants for Li and Rb atoms confined in 1D optical lattices.
Our study focusses on the collision dynamics of confined
atoms in the confinement-dominated 3D regime, where T ∼
h̄ω, and at temperatures T � h̄ω. Based on calculations using
accurate interatomic interaction potentials [27], our results
demonstrate the effect of the confining potential on inelastic
collisions of Li and Rb atoms in 1D optical lattices and provide
guidance for future experiments as to when this effect is
significant and can be observed experimentally.

Equation (12) gives an expression for the cross sections
for inelastic or reactive scattering of atoms and molecules
initially confined in a particular oscillation state ν. However,
this expression, derived in terms of the 3D S-matrix elements,
cannot be used to obtain a general analytical formula for
inelastic collision frequencies in the confinement-dominated
3D regime. For our calculations, we rewrite Eq. (12) as the
product of a proportionality coefficient and the 3D inelastic
cross section. The latter can be represented as a series
expansion in relative momentum of the colliding particles [32].
This allows us to obtain the analytical expressions for the
mean frequency of inelastic collisions at temperatures T > h̄ω.
Our numerical calculations show that at a collision energy of
10−3 cm−1 and a magnetic field of 200 G, the cross section
for s-wave inelastic collisions of Li in the state |f = 1

2 ,mf =
− 1

2 〉6Li with Rb in the state |f = 1,mf = 0〉87Rb is 5.35 bohr2.
The notation |f mf 〉 is used to label different energy states of
Rb and Li atoms, where f and mf refer to the total atomic
spin and its projection, respectively [27]. The s-wave cross
section is 50 times larger than the cross section for p-wave
inelastic collisions 0.114 bohr2. Therefore, p-wave scattering
of Li and Rb can be neglected for T < 10−3 K. The s-wave
scattering cross section at collision energies corresponding
to T < 10−3 K obtained from our numerical calculations
can be well approximated by the two leading terms in the
momentum expansion: σ 3D

inel = −4π Im(a)/k + β [32]. The
reader should be cautioned that this expansion may not be
valid for inelastic cross sections near Feshbach resonances.
Instead, the Breit–Wigner expression should be used to fit the
cross sections near a resonance.

Petrov and Shlyapnikov showed that elastic collisions of
atoms in a tightly confined cold gas deviate from regular 3D
collision behavior in the confinement-dominated 3D regime
[22]. Here, we study the effect of the confinement on inelastic
collisions of atoms in this regime. Our results are consistent
with their observation. Figure 1 shows the quantities �/n and
�3D/n for s-wave inelastic collisions of 6Li and 87Rb atoms in
the states |f = 1

2 ,mf = − 1
2 〉6Li ⊗ |f = 1,mf = 0〉87Rb in 1D

optical lattices as functions of the temperature of the atomic
ensemble for two different confining potentials with l0 =
600 bohr and l0 = 1000 bohr. The calculation is for a
magnetic field of 200 G, which yields the scattering length
|a| = 13.58 bohr. The S-matrix elements were computed as
described in Ref. [30]. We find a substantial deviation of
the scattering cross sections for inelastic collisions in the
confinement-dominated 3D regime from the 3D cross sections.
This deviation is more significant for stronger confinement.
As the temperature of the atoms increases, the effect of the
confinement becomes less significant and the mean collision
frequency of the atomic ensemble gradually merges to that
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FIG. 1. (Color online) The quantities �/n and �3D/n for s-wave
inelastic collisions of 6Li and 87Rb atoms confined in 1D optical
lattices as functions of the temperature of the atomic ensemble for
the confining potential with l0 = 600 bohr (solid and dashed curves,
respectively) and l0 = 1000 bohr (dot-dashed and dotted curves,
respectively). The inset shows the merging of �/n and �3D/n at
T � h̄ω for the confining potential with l0 = 1000 bohr. The initial
atomic states are |f = 1

2 , mf = − 1
2 〉6Li and |f = 1, mf = 0〉87Rb.

The magnetic field B = 200 G (|a| = 13.58 bohr).

in the 3D regime, as shown in the inset of Fig. 1. However,
this merging is slow, which is consistent with the previous
observation of the effect of laser confinement on inelastic
collisions induced by perturbative weak interactions [22].

The merging of �/n to �3D/n at high temperatures
indicates that the effect of confinement on binary inelastic
collisions of atoms is not significant for certain combinations
of the confining potential strength and temperature. In order
to explore in detail the effect of confinement on inelastic
collisions, we plot in Fig. 2 the ratios �/�3D for s-wave
inelastic collisions of 6Li and 87Rb atoms as functions of
the confining potential strength and the temperature of the
atomic ensemble. The dotted curve shows the locus of points
where T = h̄ω. This graph demonstrates that the effect of
the confinement on binary inelastic collisions is significant
at temperatures T � h̄ω. We find a critical temperature of
about 20 µK, below which a significant difference between �

and �3D for inelastic collisions can be observed for harmonic
potentials with different strengths. In the presence of the
confining potential with l0 < 800 bohr, one can observe an
effect of the confinement on inelastic collisions at temperatures
greater than 20 µK. For a tight confinement with l0 < 300 a.u.,
the effect of the laser field on inelastic scattering is significant
at temperatures as high as 250 µK. We also notice that the
increase of the ratio �/�3D is very slow in the region of high
temperatures (i.e., T > 100 µK) and large oscillation lengths
(i.e., l0 > 600 bohr), which is consistent with the observation
in Fig. 1.

In the experiments with optical lattices, one can control
collision dynamics of atoms and molecules by varying the
scattering length of the system in addition to modifying the
strength of the confining potential and the temperature of

FIG. 2. (Color online) The ratio �/�3D for s-wave inelastic
collisions of 6Li and 87Rb atoms confined in 1D optical lattices as
functions of the temperature of the atomic ensemble and the confining
potentials. The dotted curve shows the locus of points where T = h̄ω.
The initial hyperfine atomic states are |f = 1

2 ,mf = − 1
2 〉6Li and |f =

1, mf = 0〉87Rb. The magnetic field B = 200 G (|a| = 13.58 bohr).

the atomic ensemble. Figure 3 shows the quantities �/n and
�3D/n for s-wave inelastic collisions of 6Li and 87Rb atoms
confined in 1D optical lattices as functions of temperature
for two values of the scattering length. The calculations were
performed with the values of the magnetic field fixed at
200 G (|a| = 13.58 bohr) and 1104.9 G (|a| = 1708.26 bohr).
The confinement has a more significant effect on inelastic
collisions of atoms with larger scattering length, which can
be used as an additional tool to control the dynamics of
inelastic collisions in a confined gas. Here, the calculations
for |a| = 1708.26 bohr are performed at collision energies
below 10−5 K because inelastic cross sections of 6Li and
87Rb atoms near Feshbach resonances can be approximated
by the momentum expansion only in this temperature region.
In the presence of a weak confinement (e.g., l0 = 5000 bohr),
atoms and molecules are still in the confinement-dominated
3D regime at these low temperatures.

In our previous communication, we demonstrated that the
elastic-to-inelastic ratio of cross sections for collisions of
atoms and molecules confined in a quasi-2D geometry is
dramatically enhanced. The present calculations show that
this trend can also be observed for atoms in the confinement-
dominated 3D regime. Figure 4 displays the ratios of the
mean collision rate constants for s-wave inelastic and elastic
collisions of 6Li and 87Rb atoms in an unconfined gas
and in a gas confined by 1D optical lattices with differ-
ent confinement strengths. We find that inelastic collisions
are suppressed more significantly than elastic collisions in
the confinement-dominated 3D regime. The suppression is
more significant for stronger confinement. Figure 4 shows that
the inelastic-to-elastic ratio for the 3D uniform gas decreases
dramatically as the temperature of the gas increases, whereas
the ratios for the confined gas slightly increase with increasing
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FIG. 3. (Color online) The quantities �/n and �3D/n for s-wave
inelastic collisions of 6Li and 87Rb atoms confined in 1D optical
lattices as functions of the temperature of the atomic ensemble for
a small scattering length |a| = 13.58 bohr (solid and dot-dashed
curves in upper panel, respectively) and for a large scattering length
|a| = 1708.26 bohr (solid and dot-dashed curves in lower panel,
respectively). The initial atomic states are |f = 1

2 , mf = − 1
2 〉6Li

and |f = 1, mf = 0〉87Rb. The oscillation length of the trap l0 =
5000 bohr.

temperature. These results indicate that confined systems may
be more stable than a 3D unconfined gas against inelastic
collisional losses in the presence of strong laser-field potential
and at low temperatures. Our results suggest that it may
be possible to observe significant suppression of inelastic
collisions in a tightly confined gas at temperatures below
40 µK.

IV. SUMMARY

We have presented a formalism for rigorous multichannel
scattering calculations of cross sections for inelastic collisions
of atoms and molecules confined in 1D optical lattices.
The theory provides expressions for inelastic and reactive
scattering cross sections in terms of the S-matrix elements
for collisions in 3D and the laser confinement parameters.
These expressions are general and valid even in the temperature
regime where the cross section for s-wave elastic scattering is
energy dependent and the cross section for s-wave inelastic
scattering is no longer inversely proportional to the collision
velocity. Petrov and Shlyapnikov have developed a formalism
based on perturbation theory to study inelastic collisions
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FIG. 4. (Color online) Inelastic-to-elastic ratios of the mean
collision rate constants for s-wave scattering of 6Li and 87Rb atoms
in a 3D uniform gas (solid curve) and a gas confined in 1D optical
lattices with l0 = 600 bohr (dotted curve) and l0 = 500 bohr (dashed
curve) as functions of the temperature of the atomic ensemble. The
initial hyperfine atomic states are |f = 1

2 , mf = − 1
2 〉6Li and |f = 1,

mf = 0〉87Rb. The magnetic field B = 200 G (|a| = 13.58 bohr).

induced by weak interatomic interactions (such as the magnetic
dipole-dipole interaction in collisions of alkali metal atoms)
[22]. Our derivations and calculations are consistent with their
results. Schmelcher and coworkers have recently developed
a theory to describe collision-induced transitions of confined
atoms and molecules between different oscillation states in a
harmonic trap [25,33,34]. Our theory generalizes the results
of Ref. [22] and can be used in conjunction with the theory in
Refs. [25,33,34] for a complete description of the kinetics of
ultracold gases in optical lattices. Direct numerical integration
of the Schrödinger equation to obtain the probability of
inelastic and reactive collisions of molecules in the presence
of laser fields is prohibitively difficult. Our theory presented
here makes the analysis of reactive collisions of atoms and
molecules in confined geometries feasible.

We have obtained analytical expressions for the mean
frequency of inelastic collisions in a confined gas in the
confinement-dominated 3D regime, where T ∼ h̄ω, and at
temperatures T � h̄ω. Using these expressions, we carried
out rigorous multi-channel scattering calculations of inelastic
collision rates in a gaseous mixture of Li and Rb atoms.
We demonstrated that inelastic collisions in the confinement-
dominated 3D regime exhibit a deviation from 3D scattering,
and that this deviation is more significant for systems with
stronger confining potentials and larger scattering lengths. As
the temperature of the atomic ensemble increases, the effect
of the confinement on binary inelastic collisions becomes
vanishingly small. Our calculations suggest combinations of
the confining potential strength and temperature for which
the effect of the confinement on binary inelastic collisions
is significant. We also find a critical temperature of about
20 µK, below which the confinement with different strengths
can influence inelastic collisions of confined atoms to a great
extent. In addition, our results show that inelastic collisions
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are suppressed more significantly than elastic collisions in
the confinement-dominated 3D regime. The suppression is
more significant for stronger confinement, and our results
suggest that it may be possible to observe significant sup-
pression of inelastic collisions in a tightly confined gas at
temperatures below 40 µK. The calculations presented in
this article are based on accurate interatomic interaction
potentials and our results therefore provide guidance for future
experiments.

The results presented in this article should be of significant
immediate interest to researchers of ultracold atoms and
molecules since it is currently feasible to create atomic
and molecular systems confined in 1D optical lattices. Our
work may also stimulate new experimental studies as the

suppression of inelastic processes may allow for the creation
of ultracold atoms in quantum states that are unstable in
the usual experiments. In addition, our work suggests new
research directions for the study of ultracold chemistry in
the temperature regime where chemical reactions can be
influenced by varying the strength and shape of the laser-field
potential.
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