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Self-energy correction to the bound-electron g factor of P states
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The radiative self-energy correction to the bound-electron g factor of 2P1/2 and 2P3/2 states in one-electron ions
is evaluated to order α(Zα)2. The contribution of high-energy virtual photons is treated by means of an effective
Dirac equation, and the result is verified by an approach based on long-wavelength quantum electrodynamics.
The contribution of low-energy virtual photons is calculated both in the velocity and in the length gauge, and
gauge invariance is verified explicitly. The results compare favorably to recently available numerical data for
hydrogenlike systems with low nuclear charge numbers.
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I. INTRODUCTION

When a bound electron interacts with an external, uniform,
and time-independent magnetic field (Zeeman effect), the
energetic degeneracy of the atomic energy levels with respect
to the magnetic projection quantum number is broken, and the
different magnetic sublevels split according to the formula

�E = gjµBBµ, (1)

where gj is the bound-electron (Landé) g factor, µB =
−e/(2m) is the Bohr magneton, and B is the magnetic field
which is assumed to be oriented parallel to the quantization
axis. Finally, µ is the magnetic projection quantum number of
the electron, i.e., the projection of its total angular momentum
(divided by h̄) onto the quantization axis.

In leading order, the bound-electron g factor is determined
by nonrelativistic quantum theory and is equal to a rational
number for all bound states in a hydrogenlike ion. Both
relativistic atomic theory as well as quantum electrodynamics
(QED) predict deviations from the nonrelativistic result.
The relativistic effects follow from Dirac theory and can
be expressed in terms of a power series in the parameter
Zα, where Z is the nuclear charge number and α is the
fine-structure constant. The QED effects are caused mainly
by the anomalous magnetic moment of the electron, which is
turn in caused by the exchange of high-energy virtual photons
before and after the interaction with the external magnetic
field. Here, by “high-energy” we refer to a virtual photon with
an energy of the order of the electron rest mass. A second
source for QED effects are exchanges of virtual photons with
an energy commensurate with the atomic binding energy scale,
which is smaller than the electron rest mass energy by a factor
(Zα)2. Here, the electron emits and absorbs a virtual photon
before and after the interaction with the external magnetic field,
undergoing a virtual transition to a excited atomic state in the
middle. For P states, the latter effects lead to a correction to the
bound-electron g factor of order α(Zα)2. The complete result
for the correction of order α(Zα)2 is obtained after adding the
anomalous magnetic moment correction (high-energy part)
and the low-energy photon contribution of the same order.

Previous studies of the bound-electron g factor for
P states in hydrogenlike systems include Refs. [1–5]. Quite
recently, the problem has received renewed interest [6,7].
For few-electron ions, the bound-electron g factor has been
investigated in Refs. [6–10]. For the 23P states of helium,

there is still an unresolved discrepancy of theoretical and
experimental results (see Refs. [10–12]).

The expansion of the quantum electrodynamic radiative
correction to the electron g factor, which is an expansion
in powers of α for a free electron, is intertwined with
an expansion in powers of Zα for a bound electron (this
fact has been stressed in Ref. [13]). For an nPj state in
a hydrogenlike system, we can write down the following
intertwined expansion in powers of α and Zα,

δg(nPj ) = g00 + (Zα)2 g20

n2
+ O(Zα)4

+ α

π

{
b00 + (Zα)2 b20

n2
+ O(Zα)4

}
. (2)

The coefficients g00 and g20 characterize the relativistic effects,
whereas b00 and b20 are obtained from the one-loop radiative
correction. The nonrelativistic result for the Landé g factor
reads

g00(nP1/2) = 2
3 , g00(nP3/2) = 4

3 . (3)

The relativistic correction follows from Breit theory and the
Dirac equation in an external magnetic field [3,14],

g20(nP1/2) = − 2
3 , g20(nP3/2) = − 8

15 . (4)

The leading correction due to the anomalous magnetic reads
as (see Refs. [1,3]),

b00(nP1/2) = − 1
3 , b00(nP3/2) = 1

3 . (5)

We are concerned here with the evaluation of the b20 coefficient
of nPj states, which is determined exclusively by self-energy
type corrections (vacuum polarization does not contribute).

We adopt the following outline for this paper. In Sec. II,
we reexamine the contribution of high-energy virtual photons
(see also Ref. [3]). Two alternative derivations are presented,
which are based on an effective Dirac equation (Sec. II A)
and on an effective low-energy long-wavelength quantum
electrodynamic theory (Sec. II B) which is obtained from the
fully relativistic theory by a combined Foldy-Wouthuysen and
Power-Zienau transformation [10]. The low-energy part is also
treated in two alternative ways. The velocity-gauge calculation
in Sec. III A is contrasted with the length-gauge derivation in
Sec. III B. Conclusions are reserved for Sec. IV. Natural units
(h̄ = c = ε0 = 1) are used throughout the paper.
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II. HIGH-ENERGY PART

A. Effective Dirac equation

In Ref. [3], the contribution to b20 due to high-energy
virtual photons was obtained on the basis of the two-body
Breit Hamiltonian. Here, we perform the calculation using a
simple approach, based on an effective Dirac Hamiltonian (see
Chap. 7 of Ref. [15]). For an electron interacting with external
electric and magnetic fields, this equation reads

Hrad = �α · [ �p − eF1( �∇2) �A] + βm + F1( �∇2)V

+F2( �∇2)
e

2m
(i �γ · �E − β �� · �B). (6)

We here take into account the Dirac form factor F1 and the
Pauli form factor F2. The matrices �α = γ 0 �γ and β = γ 0

are the standard Dirac matrices in the Dirac representation
[15], m is the electron mass, and e = −|e| is the electron
charge. Up to the order relevant for the current calculation, we
may approximate both form factors in the limit of vanishing
momentum transfer as

F1( �∇2) ≈ F1(0) = 1, F2( �∇2) ≈ F2(0) ≈ κ ≡ α

2π
. (7)

The vector potential �A corresponds to a uniform external
magnetic field, i.e., �A = 1

2 ( �B × �r), and the electric field
�E is that of the Coulomb potential (e �E = −�∇V ). Finally,
V = −Zα/r is the binding potential. So,

Hrad ≈ �α · �p + βm + V − e

2
�α · ( �B × �r)

− iκ

2m
�γ · �∇V − e

2m
κβ �� · �B. (8)

Dirac eigenstates fulfill (�α · �p + βm + V )ψ = EDψ , where
ED is the Dirac energy. The first few terms in the perturbative
expansion of ED in a magnetic field read

�E = 〈ψ | − e

2
�α · ( �B × �r)|ψ〉 − e

2m
κ〈ψ |β �� · �B|ψ〉

+ eκ

2m
〈ψ |(i �γ · �∇V )

Q
2m

[�α · ( �B × �r)]|ψ〉, (9)

where Q = 1
2 (1 − γ 0) is a projector onto virtual negative-

energy states, and ψ is the relativistic wave function. An
evaluation of the first term on the right-hand side of Eq. (9)
with Dirac wave functions confirms the results for g00 and g20

given in Eqs. (3) and (4). The second term on the right-hand
side of Eq. (9) yields the result for b00 as given in Eq. (5). When
the Dirac wave functions are properly expanded in powers of
Zα, the second and third terms on the right-hand side of Eq. (9)
yield the following high-energy contribution b

(H )
20 to the b20

coefficient defined in Eq. (2),

b
(H )
20 (nP1/2) = − 1

2 , b
(H )
20 (nP3/2) = 1

10 . (10)

These results are in agreement with those given in Eq. (5) of
Ref. [3].

B. Long-wavelength quantum electrodynamics

It is instructive to compare the fully relativistic approach
outlined above to an effective nonrelativistic theory. In
Ref. [16], a systematic procedure has been described in
order to perform a nonrelativistic expansion of the interaction

Hamiltonian for a light atomic system with slowly varying
external electric and magnetic fields. This procedure involves
two steps, (i) a Foldy-Wouthuysen transformation of an
interaction of the type Eq. (6), suitably generalized for many-
electron systems, and (ii) a Power-Zienau transformation to
express the vector potentials in terms of physically observable
field strengths. The result is an interaction, given in Eq. (30)
of Ref. [16], which describes a nonrelativistic expansion of
the atom-field interaction in powers of Zα and can be used in
order to identify terms which contribute at a specified order.

If we are interested in evaluating the corrections to the g

factor up to order α(Zα)2, i.e., all corrections listed in Eq. (2),
the relevant effective interactions for a one-electron system are

Hmag = HM +
3∑

i=1

Hi, HM = µB( �L + �σ ) · �B, (11a)

H1 = − µB

2m2
�p2( �L + �σ ) · �B, (11b)

H2 = µB(1 + 2κ)

4m

Zα

r3
(�r × �σ ) · (�r × �B), (11c)

H3 = −µBκ

2m2
( �p · �σ )( �p · �B), (11d)

where µB = −e/(2m) is the Bohr magneton. We denote the
Schrödinger-Pauli two-component wave function by φ in order
to distinguish it from the fully relativistic wave function
ψ . Specifically, φ reads as φ(�r) = R(r)χµ

κ (r̂) in the coordi-
nate representation, where R(r) is the nonrelativistic radial
component of the wave function and χµ

κ (r̂) is the standard
two-component spin-angular function [17]. An evaluation of
the perturbation

�E = 〈φ|Hmag|φ〉 (12)

confirms the results of Eqs. (3), (4), (5), and (10) for the high-
energy part. No second-order effects need to be considered in
this formalism up to the order in the Zα-expansion relevant
for the current study.

III. LOW-ENERGY PART

A. Velocity gauge

The most economical approach to the calculation of the
low-energy contribution of order α(Zα)2 to the g factor of P

states consists in a calculation of the orbital g� factor, with a
conversion of the orbital g� factor to the Landé gj factor in a
second step of the calculation. In the order α(Zα)2, one may
indeed convert the spin-independent correction to the orbital
g� factor to a spin-dependent correction to the gj factors of the
2P1/2 and 2P3/2, as described in Appendix A. However, a more
systematic approach to the problem, which is also applicable
to higher-order (in Zα) corrections, is based on a perturbation
of the nonrelativistic self-energy of the bound electron by the
magnetic interaction Hamiltonian (11). This is the approach
outlined below.

We thus investigate the perturbation of the nonrelativis-
tic bound-electron self-energy [18] due to the magnetic
interaction Hamiltonian

HM = − e

2m
( �L + �σ ) · �B (13)
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given in Eq. (11a). In the velocity gauge, the interaction of
the electron with the vector potential �A of the quantized
electromagnetic field is given by the term − �p · �A/m, where
�p is the electron momentum. In an external magnetic field,
it is the physical momentum �p − e

2 ( �B × �r), not the canonical
momentum �p, which couples to the quantized electromagnetic
field. This amount to a correction δ �J to the electron’s transition
current given by

δJ i = − e

2m
( �B × �r)i = − e

2m
εijkBj rk. (14)

Because of the symmetry of the problem (Wigner-Eckhart
theorem), we may fix the axis of the B field to be along the
quantization axis (z axis) and the projection of the reference
state to be µ = 1

2 . This procedure allows one to simplify the
angular algebra. It is inspired by the separation of nuclear
and electronic tensors that are responsible for the hyperfine
interaction. Such a separation has been used in Eq. (1) of
Ref. [19] and in Eqs. (10) and (11) of Ref. [20]. In the case
of the g factor, the magnetic field of the nucleus is replaced
by the external, homogeneous magnetic field of the Zeeman
effect.

We divide out a prefactor −e/(2m) from both the mag-
netic Hamiltonian HM and from the current δJ i and obtain
the perturbative Hamiltonian hM,0 and the scaled current
δj i

0. In the spherical basis, this procedure leads to the
operators

hM,0 = L0 + σ0, δj i
0 = εi3krk, (15)

which are aligned along the quantization axis of the external
magnetic field. The index zero of the operators, in the
spherical basis, denotes the z component in the Cartesian
basis (see Ref. [17]). The following shorthand notation for
the atomic states with magnetic projection µ = 1

2 proves
useful:∣∣j 1

2

〉 ≡ ∣∣nPj

(
µ = 1

2

)〉
, 〈hM,0〉 ≡ 〈

j 1
2

∣∣hM,0

∣∣j 1
2

〉
. (16)

Finally, we can proceed to the calculation of the perturbed
self-energy. The nonrelativistic (Schrödinger) Hamiltonian of
the atom is

HNR = �p2

2m
+ V, (17)

and the nonrelativistic self-energy reads

δE = − 2α

3πm2

∫ mε

0
dω ω

〈
j

1

2

∣∣∣∣ �p 1

HNR − ENR + ω
�p
∣∣∣∣ j 1

2

〉
.

(18)

The wave-function correction to the self-energy reads

δEψ = − 4α

3πm2

∫ mε

0
dω ω

〈
j

1

2

∣∣∣∣ �p 1

HNR − ENR + ω

× �p
(

1

ENR − HNR

)′
hM,0

∣∣∣∣ j 1

2

〉
. (19)

Here, [1/(ENR − HNR)]′ is the reduced Green function, with
the reference state being excluded from the sum over virtual
states. The contribution of virtual nPj states (with j being
equal to that of the reference state and n � 2) vanishes
because of the orthogonality of the nonrelativistic radial wave

functions. The interaction hM,0 couples 2P1/2 and 2P3/2 states,
but the contribution of virtual states with different j as
compared to the reference state vanishes after angular algebra
[17] because the self-energy interaction operator { �p[1/(HNR −
ENR + ω)] �p} is diagonal in the total angular momentum.
Virtual states with different orbital angular momentum than
the reference state are not coupled at all to the reference state
by the action of the perturbative Hamiltonian hM,0. Because all
contributions vanish individually, we can thus conclude that
δEψ = 0.

Hence, we have to evaluate first-order corrections to
the Hamiltonian and to the energy corresponding to the
replacements HNR → HNR + hM,0 and ENR → ENR + 〈hM,0〉
in Eq. (18). Furthermore, we have a correction to the current
corresponding to �p/m → �p/m + δ �j0. The energy correction
reads as

δEE = − 2α

3πm2
〈hM,0〉

∫ mε

0
dω ω

×
〈
j

1

2

∣∣∣∣ �p
(

1

HNR − ENR + ω

)2

�p
∣∣∣∣ j

1

2

〉
, (20)

where mε is an upper cutoff for the photon energy [18] (the
scale-separation parameter ε is dimensionless). It corresponds
to the following g factor correction:

δgE(nPj ) = g00(nPj )
δEE

〈hM,0〉 . (21)

A numerical evaluation of this correction according to estab-
lished techniques [21] yields

δgE(2P1/2) = 2α

3π
(Zα)2

[
−1

6
ln

(
ε

(Zα)2

)
− 0.12831

]
,

(22a)

δgE(2P3/2) = 4α

3π
(Zα)2

[
−1

6
ln

(
ε

(Zα)2

)
− 0.12831

]
.

(22b)

For the correction to the Hamiltonian, we get

δEH = 2α

3πm2

∫ mε

0
dω ω

×
〈
j

1

2

∣∣∣∣ �p
(

1

HNR − ENR + ω

)2

hM,0 �p
∣∣∣∣ j

1

2

〉
, (23)

where we have used the relation [HNR, hM,0] = 0. This
translates into the following correction for the g factor:

δgH (nPj ) = g00(nPj )
δEH

〈hM,0〉 . (24)

A numerical evaluation leads to the following results:

δgH (2P1/2) = 2α

3π
(Zα)2

[
1

6
ln

(
ε

(Zα)2

)
+ 0.25134

]
,

(25a)

δgH (2P3/2) = 4α

3π
(Zα)2

[
1

6
ln

(
ε

(Zα)2

)
+ 0.15907

]
.

(25b)
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The correction to the current is given by

δEC = − 4α

3πm2

∫ mε

0
dω ω

×
〈
j

1

2

∣∣∣∣pi 1

HNR − ENR + ω
δj i

0

∣∣∣∣ j 1

2

〉
, (26)

where we take into account the multiplicity factor due to
the current acting on both sides of the propagator. The
corresponding correction to the g factor is

δgC(nPj ) = g00(nPj )
δEj

〈hM,0〉 . (27)

We obtain the following numerical results:

δgC(2P1/2) = 2α

3π
(Zα)2 0.24607, (28a)

δgC(2P3/2) = 4α

3π
(Zα)2 0.06151. (28b)

Summing all low-energy corrections, the spurious logarithmic
terms cancel, and we obtain

b
(L)
20 (2P1/2) = 0.98428, (29a)

b
(L)
20 (2P3/2) = 0.49216, (29b)

as the spin-dependent low-energy contribution to the bound-
electron g factor. The result for 2P3/2 is equal to half the
correction for 2P1/2 (this fact is independently proven also
Appendix A). We denote the low-energy contribution to the
b20 coefficient defined in Eq. (2) by b

(L)
20 .

B. Length gauge

In the length gauge, the interaction with the quantized elec-
tromagnetic field is given by the dipole interaction −e�x · �E,
where �E is the electric-field operator [22]. The gauge-invariant
[22] nonrelativistic self-energy in the length-gauge reads

δE = − 2α

3π

∫ mε

0
dω ω3

〈
j

1

2

∣∣∣∣�x 1

HNR − ENR + ω
�x
∣∣∣∣ j 1

2

〉
.

(30)

In the length gauge, the contribution of the wave-function
correction vanishes because of the same reasons as for the
velocity gauge. Also, there is no correction to the transition
current, because the canonical momentum does not enter the
interaction Hamiltonian in the length gauge. We only have
corrections to the Hamiltonian and to the energy. We start with
the energy perturbation,

δEE = − 2α

3π
〈hM,0〉

∫ mε

0
dω ω3

×
〈
j

1

2

∣∣∣∣ �x
(

1

HNR − ENR + ω

)2

�x
∣∣∣∣ j

1

2

〉
. (31)

The subscript E instead of E serves to differentiate the length-
gauge as opposed to the velocity-gauge form of the correction.
Indeed, the numerical results for the corresponding correction
to the bound-electron g factor are different from those given

in Eq. (22) and read

δgE (2P1/2) = 2α

3π
(Zα)2

[
−1

2
ln

(
ε

(Zα)2

)
− 0.88488

]
,

(32a)

δgE (2P3/2) = 4α

3π
(Zα)2

[
−1

2
ln

(
ε

(Zα)2

)
− 0.88488

]
.

(32b)

For the correction to the Hamiltonian, we get

δEH = 2α

3π

∫ mε

0
dω ω3

×
〈
j

1

2

∣∣∣∣ �x
(

1

HNR − ENR + ω

)2

hM,0 �x
∣∣∣∣ j

1

2

〉
. (33)

A numerical evaluations leads to

δgH(2P1/2) = 2α

3π
(Zα)2

[
1

2
ln

(
ε

(Zα)2

)
+ 1.25399

]
,

(34a)

δgH(2P3/2) = 4α

3π
(Zα)2

[
1

2
ln

(
ε

(Zα)2

)
+ 0.97716

]
.

(34b)

Adding the length-gauge corrections, the logarithmic terms
cancel, and it is straightforward to numerically verify the
gauge-invariance relation

δgE + δgH + δgC = δgE + δgH (35)

and thus, the numerical results already given in Eq. (29).
Let us finally discuss the analytic proof of the gauge

invariance. Using the commutator relation

pi

m
= i[HNR − ENR + ω, xi], (36)

and with the help of a somewhat lengthy calculation, it is
possible to show analytically that the velocity-gauge and the
length-gauge forms of the low-energy contributions are equal.
The calculation follows ideas outlined in detail in Ref. [23]
where the more complicated case of a relativistic correction
to a transition matrix element was considered. Here, we are
interested mainly in the numerical value of the correction, for
which the gauge invariance provides a highly nontrivial check.
Note that the matrix elements governing the transitions of the
reference to the virtual states are completely different in the
length and in the velocity gauges, and the final results are
obtained after summing over the discrete and continuous parts
of the spectrum of virtual states.

IV. CONCLUSIONS

In our approach to the calculation of the bound-electron g

factor of P states, the contribution due to high-energy virtual
photons can be obtained using two alternative approaches,
based either on an effective Dirac equation or on a low-energy
effective Hamiltonian. The contribution due to low-energy
photons is treated as a perturbation of the bound-electron
self-energy [18] due to the interaction with the external
uniform magnetic field. Corrections to the Hamiltonian, to
the bound-state energy and (in the velocity gauge) to the
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transition current have to be considered. The final results
for the low-energy parts in the velocity- and length-gauges
agree although the individual contributions differ (including
the coefficients of spurious logarithmic terms).

Adding the high-energy contribution to the g factor cor-
rection given in Eq. (10) and the low-energy effect given in
Eq. (29), we obtain the following results for the self-energy
correction of order α(Zα)2 to the bound-electron g factor of
2P states (b20 = b

(H )
20 + b

(L)
20 ):

b20(2P1/2) = 0.48429, (37a)

b20(2P3/2) = 0.59214, (37b)

where the b20 coefficient has been defined in Eq. (2). Both
above results compare favorably with recently obtained nu-
merical data for low-Z hydrogenlike ions [24] (see also
Appendix B). An obvious generalization of the formalism
outlined here to the 3P and 4P states yields the results

b20(3P1/2) = 0.40500, (37c)

b20(3P3/2) = 0.55250, (37d)

b20(4P1/2) = 0.31331, (37e)

b20(4P3/2) = 0.50665. (37f)

The two main results of the current investigation can
be summarized as follows. First, in Sec. III we formulate
a generalizable procedure for the calculation of low-energy
corrections to the Landé gj factors in one-electron ions,
applicable to P states and states with higher angular momenta.
This procedure is based on choosing a specific reference axis
for the external magnetic field. In the future, it might be applied
to include higher-order terms from the Hamiltonian (11) which
couple the orbital and spin degrees of freedom. Second, we
resolve the discrepancy reported in Ref. [24] regarding the
low-Z limit of the α(Zα)2 correction to the gj factor with
previous results reported in Ref. [5] for this correction [see
Eq. (37) and Appendix B]. In Appendix A, it is shown that
the discrepancy to the results of Ref. [5] can be traced to the
final evaluation of the logarithmic sums over virtual states,
while the angular momentum algebra is in agreement. That is
a further reason why the cross-check of our calculation in the
length and velocity gauges appeared to be useful.

Regarding the experimental usefulness of the obtained
results, we can say that recent proposals [25] concerning
measurements of the bound-electron g factor of low-Z
hydrogenlike ions are based on double-resonance schemes
that also involve transitions to 2P states in the presence of the
strong magnetic fields of Penning traps. In order to fine-tune
the double-resonance setup, the results obtained here might
be useful. Also, the results reported here serve as a general
verification for the analytic formalism used in the theoretical
treatment of α3 corrections to the g factor of 23P states in
helium, for which an interesting discrepancy of experimental
and theoretical results persists (see Ref. [12] and Sec. V of
Ref. [16]).

We conclude with the following remark. Our calculation
concerns the g factor of P states, and we confirm that
in the order α(Zα)2, low-energy virtual photons yield an
important contribution. From the treatment in Sec. III, we can
understand physically why there is no such low-energy effect

of order α(Zα)2 for S states. Namely, a Schrödinger-Pauli
S1/2 state happens to be an eigenstate of the Hamiltonian
hM,0. We have hM,0|nS1/2(µ = ± 1

2 )〉 = ±|nS1/2(µ = ± 1
2 )〉.

This property holds because an S state carries no orbital
angular momentum, and therefore is an eigenstate of the
third component of the spin operator σ0, and b20 therefore
vanishes for S states [26]. For P states and states with
higher orbital angular momenta, the situation is different: these
states are not eigenstate of hM,0 irrespective of their angular
momentum projection, even though hM,0 commutes with the
nonrelativistic Hamiltonian HNR. Therefore, there is a residual
effect of order α(Zα)2 due to low-energy virtual photons for
states with nonvanishing angular momenta.
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APPENDIX A: REMARKS ON THE LOW-ENERGY PART

First of all, let us remark that our results reported in Sec. III
can be expressed as logarithmic sums over the spectrum of
atomic hydrogen. After performing the angular algebra [17],
we can write the total low-energy correction δg(L)(nPj ) =
δgE (nPj ) + δgH(nPj ) as follows:

δg(L)(nP1/2) = 8α

9π

∑
m

(EmS − EnP )2〈mS||�r||nP 〉2

× ln

(
2|EmS−EnP |

(Zα)2m

)
− 8α

9π

∑
m

(EmD−EnP )2

×〈nP ||�r||nD〉2 ln

(
2|EmD − EnP |

(Zα)2m

)
(A1)

and

δg(L)(nP3/2) = 4α

9π

∑
m

(EmS − EnP )2〈mS||�r||nP 〉2

× ln

(
2|EmS−EnP |

(Zα)2m

)
− 4α

9π

∑
m

(EmD−EnP )2

×〈nP ||�r||nD〉2 ln

(
2|EmD − EnP |

(Zα)2m

)
. (A2)

Here, 〈mS||�r||nP 〉 and 〈mD||�r||nP 〉 are reduced matrix
elements in the notation of Ref. [27]. Because (EmS − EnP ) ∝
(Zα)2 and 〈mS||�r||nP 〉 ∝ (Zα)−1, the above corrections to
the g factor are manifestly of order α(Zα)2. The sums over
m extend over both the discrete as well as the continuous part
of the hydrogen spectrum and can conveniently be evaluated
using basis-set techniques [28].

Because it may not be completely evident from the
presentation in Ref. [5], we reemphasize here that the authors
of the cited article evaluate a correction δg� to the orbital g

factor according to the definition

Heff = gsµB
�S · �B + g� µB

�L · �B (A3)
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for the effective interaction of a bound electron with an
external magnetic field (�S = 1

2 �σ measures the electron spin,
and we have gS ≈ 2, g� ≈ 1). Here, an interesting analogy
to the description hyperfine splitting can be drawn, because
the interaction with the nuclear magnetic field can also be
separated into distinct components, namely the orbital, spin-
dipole, and Fermi contact terms given, e.g., in Eqs. (24)–(33)
of Ref. [29].

Returning to the discussion of the g factor, we see that as a
combination of gs and g�, the Landé g factor is obtained as

gj = g�

j (j + 1) + �(� + 1) − s(s + 1)

2j (j + 1)

+ gs

j (j + 1) + s(s + 1) − �(� + 1)

2j (j + 1)

≈ 3j (j + 1) − �(� + 1) + s(s + 1)

2j (j + 1)
. (A4)

In our notation, the analytic result given in Eq. (14) of Ref. [5]
for the correction to the orbital g factor reads

δg�(nP ) = α

3π

∑
m

(EmS − EnP )2〈mS||�r||nP 〉2

× ln

(
2|EmS − EnP |

(Zα)2m

)
− α

3π

∑
m

(EmD − EnP )2

×〈nP ||�r||nD〉2 ln

(
2|EmD − EnP |

(Zα)2m

)
. (A5)

The prefactors multiplying g� in Eq. (A4) read 4
3 for P1/2 and 2

3
for P3/2 states, and therefore the analytic formula obtained in
Eq. (14) of Ref. [5] is in agreement with our approach for both
P1/2 and P3/2 states, after the correction to g� is converted
into the corresponding modification of gj . However, their
numerical result δg� = −0.24α3 disagrees with our result both
in sign and in magnitude. Indeed, expressed in terms of our
b

(L)
20 coefficient, the results indicated in Ref. [5] would imply

that b
(L)
20 (2P1/2) = −4.02 and b

(L)
20 (2P3/2) = −8.04.

TABLE I. Higher-order remainder functions
i1/2(Zα) and i3/2(Zα) for the self-energy correction
to the g factor of 2P1/2 and 2P3/2 states, respectively,
as obtained recently in Ref. [24]. The value of α

employed in the calculation is α−1 = 137.036, and
the numerical uncertainty of the all-order (in Zα)
calculation due to the finite number of integration
points in the numerical calculation is indicated in
brackets.

Z g1/2(Zα) g3/2(Zα)

1 0.121258(21) 0.148104(21)
2 0.121715(22) 0.148294(24)
3 0.122414(19) 0.148567(24)
4 0.123280(14) 0.148851(22)
5 0.124305(10) 0.149338(18)
6 0.125473(7) 0.149816(14)
7 0.126803(5) 0.150350(11)
8 0.128186(4) 0.150933(7)
9 0.129711(2) 0.151561(4)

10 0.131336(2) 0.152231(4)

FIG. 1. (Color online) The higher-order remainder function
i1/2(Zα) is shown as a function of Z. Numerical values for i1/2(Zα)
are given in Table I. The point at Z = 0 is given by the coefficient
1
4 b20(2P1/2) and is approached smoothly.

Finally, let us note that the calculation of the orbital
correction to the gj factor is only applicable to order α(Zα)2,
not α(Zα)4, because the higher-order terms in the magnetic
interaction (II) couple the orbital and spin degrees of freedom.
The formalism outlined in Sec. III generalizes easily to the
calculation of higher-order corrections that couple spin and
orbital angular momentum, which might be needed in the
future, whereas the separation into spin and orbital g factors
only holds up to order α(Zα)2.

APPENDIX B: COMPARISON TO NUMERICAL DATA

We parametrize the one-loop self-energy correction δ(1)g to
the g factor of P states as

δ(1)g(2Pj ) = α

π
{b00 + (Zα)2ij (Zα)}, (B1)

where ij (Zα) is the nonperturbative (in Zα) remainder
function. The remainder functions i1/2(Zα) and i3/2(Zα) for
2P1/2 and 2P3/2, respectively, have recently been evaluated
in Ref. [24]. Numerical values of ij (Zα) for Z = 1, . . . , 10
are given in Table I. Note that these data imply a spin-
dependence of the higher-order correction term b20 beyond
the spin-dependence of the high-energy part given by Eq. (10).
The limit as Zα → 0 of the remainder function ij (Zα) is

lim
Zα→0

ij (Zα) = 1
4b20(2Pj ). (B2)

As shown in Figs. 1 and 2, this limit is being consistently
approached by the numerical data.

FIG. 2. (Color online) Same as Fig. 1, but for the 2P3/2 state. The
higher-order remainder function i3/2(Zα) is plotted as a function of
Z, with numerical values for i3/2(Zα) given in Table I. The point at
Z = 0 is limZα→0 i3/2(Zα) = 1

4 b20(2P3/2). The limit is approached
smoothly.
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