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Capture of negative muons by hydrogen atoms at low collision energies
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A rigorous quantum mechanical calculation is carried out for negative muon capture by atomic hydrogen
(µ− + H → µ−p + e) by using the R-matrix method. The total and final-state selected capture cross sections
are calculated at low collision energies ranging from 0.001 to 1 eV. The total capture cross section can, on
average, be explained in terms of a previously obtained empirical formula [K. Sakimoto, Phys. Rev. A 66,
032506 (2002)]. However, the present result exhibits additional undulation and cusp structures, which stem from
quantum phenomena. The muons are predominantly captured into the highest energetically possible state of µ−p

in the present energy region. However, the µ−p products having high angular momenta cannot be formed unless
the collision energy becomes high.
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I. INTRODUCTION

The three-body problem of collisions between a point
charge and a H atom is of fundamental dynamical importance.
We can investigate the special case that the point charge is
negative and yet heavy by considering hadrons and leptons
such as antiprotons (p̄), kaons (K−), muons (µ−), and pions
(π−). Then, the most remarkable event in the slow collisions
is that the heavy negative particles (X−) are captured to form
exotic atoms X−p, which are a bound hydrogenic system.
This is also an important process for making the exotic atoms.
High-resolution spectroscopic experiments on the exotic atoms
provide some of the most precise tests of QED effects [1,2]
and the valuable information about strong interactions [3–6].
As a result of the large mass difference between X− and e,
very high-lying orbitals of X−p are mostly formed in the X−
capture by H. The energies and linewidths of X-ray radiation
emitted in the subsequent cascade process of the highly excited
exotic atoms are the important quantities to be measured
in these studies. Therefore, it is absolutely necessary to get
definite and reliable information on the level population of the
exotic atoms formed in the capture. So far, many researchers
introduced various kinds of collisional approximations to
understand the dynamics of the capture reaction [7]. However,
rigorous quantum mechanical (QM) calculations were carried
out rather recently by using a time-dependent wave packet
propagation method [8,9] and another type of time-dependent
approach [10,11].

Unfortunately, if resonance phenomena are significant or
collision energies are low, the time-dependent method requires
an extremely time-consuming computation and hence cannot
be regarded as appropriate. Very recently, time-independent
QM calculations were carried out for the p̄ and µ− captures
by He+ ions [12,13]. Because the calculation was based on an
R-matrix method [14], we were able to closely investigate a
huge number of resonances characteristic of these systems. In
the present article, we use the R-matrix method to investigate
the low-energy behavior of the µ− capture by H

µ− + H(1s) → µ−p(N,L) + e, (1)

where µ−p is called the muonic hydrogen and (N,L) are
the associated principal and angular momentum quantum

numbers. Although the muon is an unstable particle, its lifetime
(∼2.2 × 10−6 s) is much longer than a time scale of the
capture process. In contrast with hadrons, it is a very good
approximation to regard the muon as a structureless point
charge in the present study. The previous QM calculations
[9,11] were carried out for the µ− capture by H only if the
collision energy was E � 1 eV. Here, we calculate the total
and final-state selected capture cross sections further at lower
collision energies ranging from 1 down to 0.001 eV.

The capture channels N = 0 − 13 are energetically open
even in the limit as E → 0 and the channel N = 14 becomes
additionally open when E > 0.705 eV (Fig. 1). For slow µ−+
H collisions, the adiabatic (Born-Oppenheimer) approxima-
tion is the most suitable way to characterize the dynamical
features if the relative distance is much larger than the so-called
Fermi-Teller distance RFT = 0.639 au [8,9,15,16]. Figure 1
shows the effective potentials of the µ−+ H system in the
lowest (1σ ) adiabatic state for the total angular momentum
quantum numbers J = 0 − 15. Because the interaction range
is <2 au for the capture reaction [8,9], we can see that the total
angular momentum of J � 14 has a negligible contribution to
the reaction if the collision energy is E � 1 eV. In a previous
study [17], the R-matrix calculation was already performed
for the same µ−-p-e system although the object of concern
was the inverse process of Eq. (1) [i.e., e + µ−p → µ−+ H,
which may be called dissociative attachment (DA)]. Only a
restricted range of total angular momenta (i.e., J = 7 − 16)
were associated with the DA process for the high initial µ−p

states of N = 13, 14, and 15 and L � 9 [17]. To obtain the
capture cross sections here we need further to perform the
R-matrix calculation for J = 0 − 6.

The details of the R-matrix formulation and the numerical
method for the application to the capture of heavy negative
particles are described elsewhere [12,13]. Hence, in Sec. II
we give only a short summary of the R-matrix method.
In Sec. III A, the capture probability for each total angular
momentum J is presented and a discussion on some QM
effects (peak and cusp structures) is conducted. Section III B
gives the results of the total capture cross section obtained by
summing over all the final states. In Ref. [9], from the QM
results calculated at high collision energies (E � 5.5 eV), an
empirical law was derived for the relation between the total
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FIG. 1. The sum of the centrifugal and 1σ adiabatic potentials of
the µ−+ H system as a function of the relative distance R for the total
angular momentum quantum numbers J = 0 − 15. The µ−p energy
levels EN are indicated by horizontal dashed lines. The energies are
measured from the ground-state energy of H. The vertical line labeled
RFT represents the Fermi-Teller distance.

capture probability and the classical turning point associated
with the 1σ adiabatic potential. The applicability of this
empirical law is examined for the low-energy collisions. In
Sec. III C, the final-state selected capture cross sections are
presented.

II. THEORY AND CALCULATION

The time-independent Schrödinger equation for the total
system is

H̃�JMκ
τ = Etot�

JMκ
τ , (2)

where (J,M) are the total angular momentum quantum
numbers, κ is the total parity, Etot is the total energy, and τ

indicates an initial collision channel. The Hamiltonian operator
H̃ is given by

H̃ = − 1

2mRR

∂2

∂R2
R + L̃

2

2mRR2
− 1

2mrr

∂2

∂r2
r + l̃2

2mrr2
+ V,

(3)

where mR , R, and L̃ are, respectively, the reduced mass,
the relative position vector, and the angular momentum
vector (operator) of the µ− + p system; mr , r, and l̃ are
the corresponding quantities for the electron in µ−p + e, as
described by the Jacobi coordinates, and V is the sum of the
Coulomb potentials. Here and in the following, we use au
unless otherwise stated.

If the total energy is far below the excited-state energy
of H, the possible channel of the reactant µ−+ H is only
the 1σ adiabatic electronic state [8,9,17]. In this case, the
total parity must be κ = (−1)J . The collision energy of µ−+
H is given by E = Etot − ε1s , where ε1s = −0.5 au is the
ground-state energy of H. The capture (or electron emission)
channel µ−p + e is identified by the principal and angular

momentum quantum numbers (N,L) of the hydrogenic system
µ−p and the electronic angular momentum quantum number
l [17]. The energy of µ−p is given by

EN = − mR

2N2
. (4)

To solve the collision problem we employ the R-matrix method
[14,17]. We define the inner region by 0 � R � A and 0 �
r � a and consider there the R-matrix eigenvalue equation

[H̃ + L̃B]�JMκ
ρ (R, r) = EJκ

ρ �JMκ
ρ (R, r), (5)

where

L̃B = 1

2mRA
δ(R − A)

∂

∂R
R + 1

2mra
δ(r − a)

∂

∂r
r, (6)

is the Bloch operator [18] and ρ identifies the discrete
eigenvalues EJκ

ρ . For the solution of Eq. (5), the wave function
�JMκ

ρ is expanded in the form [17]

�JMκ
ρ (R, r) = (Rr)−1

∑
λ

DJκ
Mλ(R̂)φJκλ

ρ (R, r, θ ), (7)

where DJκ
Mλ(R̂) is the parity-specified Wigner D function

normalized to unity, θ is the angle between R and r, and
λ(�0) is the electronic magnetic quantum number projected
onto R̂. The wave function φJκλ

ρ (R, r, θ ) was calculated
using a direct numerical algorithm based on grid (discrete-
variable) representation [12,13,17]. The R-matrix calculation
was already completed for J � 7 in the previous DA study
[17]. Here, we further carried out the calculation for the low
angular momenta J = 0 − 6. As in the previous study [17],
we took the boundary values A = 3 and a = 10 au, included
the channels of λ � 1 and l � 4, and chose the numbers
of grid points (Nr,Nθ ) = (35, 10) in the (r, θ ) coordinates.
For the low J , however, the number of grid points NR

in the R coordinate must be taken to be larger than the
previous value (NR = 30): In the present calculation, we chose
NR = 100 for J = 0, NR = 70 for J = 1, NR = 60 for J = 2,
NR = 50 for J = 3, NR = 40 for J = 4 and 5, and NR = 30
for J = 6.

Once we solve Eq. (5) we can define the R matrix at the
boundary (R = A and r = a); its elements are identified by
the collision channel 1σ or (N,L, l) [17]. We must further
propagate the R matrix from r = a to a larger distance
rmax to eliminate the long-range coupling effects in the
electron emission channel. If E < EN=14 − ε1s = 0.705 eV,
the emitted electrons always have kinetic energies higher than
ε1s − EN=13 = 1.36 eV (Fig. 1). In this case, the value of
rmax = 20 au, smaller than those chosen in Ref. [17], was found
to be sufficient. To extract the S-matrix elements associated
with the reactant channel, the regular and irregular solutions for
the 1σ adiabatic potential must be known at R = A. These two
reference functions at low collision energies were determined
by the backward propagation of the corresponding Wentzel-
Kramers-Brillouin (WKB) solutions given at R = 40 au.
In these ways we can calculate the scattering S-matrix elements
SJκ

NLl,1σ for the capture reaction.
The probability of the capture into the (N,L, l) product

channel is given by

P Jκ (N,L, l) = ∣∣SJκ
NLl,1σ

∣∣2
. (8)
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We define the total capture probability summed over all the
final channels by

P Jκ =
∑
NLl

P Jκ (N,L, l), (9)

and the final-state selected capture probabilities by

P Jκ (N,L) =
∑

l

P Jκ (N,L, l), (10)

P Jκ (N ) =
∑
Ll

P Jκ (N,L, l), (11)

P Jκ (L) =
∑
Nl

P Jκ (N,L, l), (12)

P Jκ (l) =
∑
NL

P Jκ (N,L, l). (13)

The total capture cross section is

σ = π

2mRE

∑
Jκ

(2J + 1)P Jκ . (14)

In the same way, we can define the final-state selected capture
cross sections σ (N,L), σ (N ), σ (L), and σ (l).

III. RESULTS AND DISCUSSION

A. Capture probabilities

We show in Fig. 2 all the present results of the total capture
probabilities P Jκ that have nonnegligible values at collision
energies E � 1 eV. Because the probability is multiplied by
the weight factor 2J + 1, the importance of each partial wave
(J ) in the cross section [cf. Eq. (14)] can be evaluated directly
from the figure. One of the most remarkable results is that there
is a cusp structure at E � 0.7 eV. This anomaly is the threshold
effect: A new capture channel µ−p(N = 14) + e starts at the
collision energy E = EN=14 − ε1s = 0.705 eV. Because the
product µ−p has the hydrogenic degeneracy and furthermore

FIG. 2. Weighted capture probabilities (2J + 1)P Jκ as a function
of the collision energy E for the total angular momenta J = 0 − 13.

  = (

  = 1

FIG. 3. Capture probabilities P Jκ , P Jκ (N ), P Jκ (L), P Jκ (l), and
time delays Qτ,τ with τ = (N,L, l) = (13, 9, 0) and 1σ (see text) as
a function of the collision energy E for the total angular momentum
J = 9. The total capture probabilities obtained by the SC method [9]
are also shown in the uppermost graph.

the long-range dipole interaction works between µ−p and e,
there can be asymptotically an attractive effective potential,
which is proportional to −1/r2. In such a case, the threshold
anomaly becomes prominent [17,19,20] and hence we can see
a clear cusp structure. The appearance of the cusp is evidently
a QM effect.

Another interesting feature is that several partial waves
have a seemingly peak-like structure (e.g., at energies E �
0.0065 eV for J = 3, E � 0.056 eV for J = 6, E � 0.21 eV
for J = 9, . . . ,). Here, we specifically examine the J = 9
partial wave. Figure 3 shows the capture probabilities P Jκ ,
P Jκ (N ), P Jκ (L), and P Jκ (l) for J = 9 at energies 0.1 � E �
0.3 eV. It is found that the peak-like structure at E � 0.21 eV is
observed mainly in the capture channels of N = 13, L = J =
9, and l = 0. The total capture probabilities are compared with
those obtained by using the semiclassical (SC) method [9],
in which the relative radial motion is treated by classical
mechanics and the other motions are by quantum mechanics.
The J = 9 effective potential has a barrier height of 0.186 eV
at R = 4.06 au (Fig. 1). The barrier penetration is forbidden
in classical mechanics and hence the SC probabilities form
a step function of E. In contrast, the complete QM calcu-
lation shows a smooth variation with E in the vicinity of
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E = 0.186 eV. Because the SC probabilities are nearly con-
stant at E > 0.186 eV, the peak-like structure of the QM results
is emphasized by comparison with the SC results. It seems that
the peak originates from a QM effect (possibly a resonance).
As was discussed in Ref. [17], since the peak position is not just
below the N = 14 channel threshold (= 0.705 eV) it cannot
be a Feshbach-type resonance. Then, a likely candidate is the
resonance associated with the shape of the effective potential.
However, the resonance state cannot be a usual quasibound
motion because the peak position is above the barrier height.
A previous study of chemical reaction [21] shows that a
resonance can result from the presence of a reaction barrier
even if the energy is above the barrier height. To explore
this possibility in the present case we calculate the scattering
time-delay matrix Q = −i(dS/dE)S† [22], with S being the
S matrix. The diagonal element Qτ,τ has the meaning of the
average time delay of the collisions from the initial channel τ .
Figure 3 also includes the time delays for the incident channel
τ = 1σ and the capture channel τ = (N,L, l) = (13, 9, 0).
We can find no remarkable structure except for a vague one
near the energy corresponding to the barrier height. Therefore,
we must say that the peak at E � 0.21 eV is related to no
meaningful resonance. Also for the other peaks, their positions
are above the barrier heights and the same conclusion is
reached. In this study we cannot give a satisfactory explanation
for the peak-like structure.

B. Total capture cross sections

The present results of the total capture cross section σ

summed over all the final channels (N,L, l) are shown as
a function of the collision energy E in Fig. 4. The cusp
structure due to the N = 14 threshold effect is also still clearly
observed in the total cross section. The peak-like structures

FIG. 4. Total capture cross sections as a function of the collision
energy E obtained by the present QM calculation, by the QM
calculation of Tong et al. [11], and by using the empirical formula
(σem). The Langevin cross section σL is plotted for comparison.

FIG. 5. N -state selected capture cross sections σ (N ) as a function
of the collision energy E.

in several partial waves, together with the cusp structure,
show the appearance of undulation in the variation of the
total cross section with energy. The QM result calculated by
Tong et al. [11] is available at E = 1 eV, which is the lowest
energy in their study and is shown in the figure. The present
result is slightly smaller than their value. The collision energy
E = 1 eV is just above the N = 14 channel threshold 0.705 eV.
In such a case, as seen later (cf. Fig. 5), most of the emitted
electrons have very small kinetic energies. Therefore, the value
of rmax = 20 au chosen in the present calculation might not be
large enough for the elimination of the long-range coupling
effect [17]. It should be mentioned, furthermore, that Tong
et al. [11] used the Jacobi coordinates associated with the
µ−+ H arrangement throughout their whole calculation. Their
choice of Jacobi coordinates is evidently inappropriate for the
description of the capture channel µ−p + e, though the error
might not be so serious if the distance between p and e were
not too large [11]. These factors can cause some discrepancy
between the two QM results at E = 1 eV.

In Ref. [9], by examining the QM results obtained at
high energies (E � 5.5 eV), the present author proposed the
following empirical formula

Pem =
[

0.79 + 0.12 exp

(−0.0868

RTP

)]
exp[−0.236(RTP)5.2],

(15)

for the relation between the total capture probability Pem and
the classical turning point RTP in the R motion. The turning
point RTP is estimated from the 1σ adiabatic potential, which
is assumed to be a pure Coulomb form if R < RFT. Using this
formula, we can calculate the empirical capture cross section
in the form

σem = 2π

∫ ∞

0
Pembdb, (16)
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TABLE I. Ratios of the empirical (σem) and
Langevin (σL) cross sections.

E (eV) 0.001 0.01 0.1 1.0

σem/σL 0.79 0.79 0.82 0.74

where b is the impact parameter of µ−+ H. Figure 4 shows
that Eq. (16) provides values very close to the QM results
on the whole, but consistently fails to produce the cusp and
undulation structures.

In the ion-molecule reaction as in the present capture
process, the polarization potential may play a decisive role
[9]. We also plot in Fig. 4 the so-called Langevin cross
section σL = π (2α/E)1/2, with α being the polarizability of
the H atom. The empirical cross section σem seems to be
proportional to σL. In Table I, we can find that the ratio σem/σL

is mostly constant, especially at very low energies. Therefore,
the energy dependence of the total capture cross section can
be explained basically in terms of the polarization potential at
energies �1 eV.

C. Final-state selected capture cross sections

The results of the final-state selected capture cross section
σ (N ) plotted against E are shown in Fig. 5. If the collision
energy is below 0.705 eV, the µ−p products occupy predom-
inantly the highest energetically possible state (i.e., N = 13)
and the cross section σ (N ) is a monotonic function of N . This
means that the low-energy capture leads mainly to the emission
of slow electrons. This result is just the same as what we found
for the µ− capture by He+ though the latter case exhibits
complicated resonance features [13]. Around E = 0.705 eV,
we can see that the cross sections σ (N ) for N � 13 have a
stepwise structure. It is further found that the cross section
σ (N ) for the new channel N = 14 rises abruptly from zero
at energies just above E = 0.705 eV and becomes larger than
the others at E > 0.842 eV. We can understand that the cusp
structure seen in the total cross section σ originates from the
combination of the sharp drop in σ (N � 13) and the rapid
increase in σ (N = 14). The state selected cross sections σ (N )
for the µ− capture by H were calculated at E � 2 eV by Tong
et al. [11]. At E = 2 eV, they also obtained the same result that
most populated was the highest energetically possible state. If
E � 4 eV, however, they showed that the cross section σ (N )
reached the maximum value for some lower state N .

The final-state selected capture cross sections σ (L) are
shown in Fig. 6. Because the dominant channel of the electron
emission is l = 0 and the contribution of l � 2 to the capture
is always <∼1% (cf. Fig. 3), we have L � J . Accordingly,
if we regard L as J , we can see that the functional form
of σ (L) against E has a similarity to that of (2J + 1)P Jκ

except for the energy multiplier E−1 in Eq. (14). Every angular
momentum in the range of L � 12 is energetically allowed in
the capture at E < 0.705 eV. However, if the collision energy
is low, only low angular momenta J can contribute to the
collisions. Therefore, the µ−p products having high L ∼ 12
cannot be formed unless the energy becomes high. Figure 7
shows the angular momentum quantum number L = L0 for
which the cross section σ (L) becomes the largest at the same

FIG. 6. L-state selected capture cross sections σ (L) as a function
of the collision energy E.

energy E. The most populated L state of µ−p becomes higher
in incremental steps as the energy increases. To explain the
behavior of L0 in more detail, we also plot the critical total
angular momentum quantum number Jmax in Fig. 7: At each
collision energy E, the barrier height of the effective potential
is below E for J = Jmax and is above E for J = Jmax + 1
(cf. Fig. 1). The capture reaction is classically allowed only if
J � Jmax. We can see that L0 is roughly equal to Jmax. This
result is evidently related to the fact that the total capture cross
section is close to the Langevin value σL. These features are
quite different from those seen in the µ− capture by He+ [13].
In this case, as a result of the long-range Coulomb attraction
between µ− and He+, high angular momentum states of
µ−He2+ can be formed even at very low collision energies

FIG. 7. Angular momentum quantum numbers L0 and Jmax (see
text) as a function of the collision energy E.
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FIG. 8. (N,L)-state selected capture cross sections σ (N,L) for
N = 11, 12, and 13 as a function of the collision energy E.

and the most populated angular momentum state is always
∼10 regardless of the energy if the resonance process does
not take place.

The (N,L)-state selected capture cross sections σ (N,L)
are plotted against E in Fig. 8 for N = 11, 12, and 13. If

FIG. 9. (N,L)-state selected capture cross sections σ (N,L) for
N = 13 as a function of the angular momentum quantum number L

at several collision energies E.

we focus on the same L, the energy dependence of σ (N,L)
for every N looks very similar to that of σ (L) except for the
magnitude. We see that near circular states (L ∼ N − 1) of
µ−p can be formed only at high energies. The further details
about the L distribution specifically for the highest N = 13
state are shown at several energies in Fig. 9. As the energy
decreases, the angular momentum has a narrower distribution
centering around lower L. Even in the limit as E → 0, not only
the L = 0, but also the L = 1 state will be formed significantly.
This is because the emission of electrons having l = 0 and 1
is always important in the capture process.

IV. SUMMARY AND FURTHER DISCUSSION

Using the R-matrix method, we carried out the QM
calculations of the total and final-state selected cross sections
for the µ− capture by H in the region of collision energies
�1 eV.

The averaged total capture cross section is estimated to
be about 0.79 times the Langevin value at very low collision
energies. As the energy becomes high, the energy dependence
deviates from that of the Langevin cross section. In this case,
the empirical formula obtained in the previous study [9] is
very useful for an estimate of the total capture cross section.
The QM effect appears as an undulation around the value
obtained by the empirical formula. The muons are dominantly
captured into the highest energetically possible state of µ−p,
almost regardless of the collision energy. However, the angular
momentum distribution of µ−p differs largely depending on
the energy and only low angular momentum states can be
formed at very low energies.

The empirical formula is available also for the p̄ capture
by H [8] and is expected to be useful for a rough estimate as
well. However, it should be remembered that the s states of the
product p̄p are quite unstable owing to the pair annihilation
[5]. The annihilation energy width for the s state is estimated
to be 1.06N̄−3 keV [5], with N̄ being the principal quantum
number of p̄p. The feature of the product-state distribution in
the p̄ capture will be qualitatively the same as that in the present
case. Then, the most populated p̄p state in the p̄ capture
will be N̄ = 30 at low collision energies. For N̄ = 30, the
s-state lifetime against annihilation becomes ∼2 × 10−14 s,
which is shorter than a typical time scale of a low-energy
ion-molecule reaction. This means that the p̄p formation in the
s state should not be counted as the effective capture process.
The investigation of the low-energy collisions between p̄ and
H requires careful attention.

As was discussed in Ref. [17], the long-range dipole
interaction between µ−p and e and the hydrogenic degeneracy
of µ−p can support resonances just below the collision energy
corresponding to the µ−p excitation energy. Unfortunately,
no such resonances can be found in the present calculation. A
search for such resonances will require numerical computation
with much more effort [17] and remains for future work.
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