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Casimir-Polder interaction between an atom and a small magnetodielectric sphere
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On the basis of macroscopic quantum electrodynamics and point-scattering techniques, we derive a closed
expression for the Casimir-Polder force between a ground-state atom and a small magnetodielectric sphere in
an arbitrary environment. To allow for the presence of both bodies and media, local-field corrections are taken
into account. Our results are compared with the known van der Waals force between two ground-state atoms.
To continuously interpolate between the two extreme cases of a single atom and a macroscopic sphere, we also
derive the force between an atom and a sphere of variable radius that is embedded in an Onsager local-field
cavity. Numerical examples illustrate the theory.
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I. INTRODUCTION

Van der Waals (vdW) dispersion forces are effective
electromagnetic forces that arise between polarizable objects
as a consequence of correlated quantum fluctuations [1–10].
Postulated as early as 1873 to account for deviations from
the ideal gas law [11], they were theoretically understood
only much later in 1930, when London derived them from
the electrostatic Coulomb interaction of charge fluctua-
tions [12]. London found that two atoms of polarizabilities
αA(ω) and αB(ω) at a distance rAB are subject to a vdW
potential

U (rAB) = − 3h̄

16π3ε2
0r

6
AB

∫ ∞

0
dξαA(iξ )αB(iξ ). (1)

Important progress was made in 1948 by Casimir and Polder,
who included fluctuations of the transverse electromagnetic
field and obtained a full quantum electrodynamic description
of dispersion forces [13]. Their result reduces to the London
formula in the electrostatic limit but is given by

U (rAB) = −23h̄cαA(0)αB(0)

64π3ε2
0r

7
AB

(2)

for distances much larger than the relevant atomic transition
wavelengths.

Casimir arrived at his famous results while studying the
properties of colloidal solutions [14]. These results illustrate
the importance of dispersion forces to colloid science, which
deals with the (inter alia vdW) interactions between small
clusters of particles in free space [15] and, more often, with
the different forces in colloidal suspensions. For example,
(attractive) dispersion forces between spherical micro- and
macro-objects embedded in a liquid [16] usually diminish the
stability of such suspensions and may even cause clustering
or flocculation [17]. The introduction of small amounts of
highly charged nanoparticles gives rise to competing repulsive
forces, thus balancing the stability of the suspension [18].
Stable mechanical suspensions might also be created with

fluid-separated macro-objects such as eccentric cylinders
by means of repulsive dispersion forces [19]. Note that in
addition to dispersion and electrostatic forces, critical Casimir
forces due to concentration fluctuations [20], chemical effects
such as hydration and solvation, hydrophobic forces, and
steric repulsion [21,22] and depletion [23] also influence the
interaction of the colloidal particles.

Dispersion forces play a similar role in biology, where
they contribute to the organization of molecules [24–26], cell
adhesion [24,25,27,28], and the interaction of molecules with
cell membranes [25,27]. They are also of interest in atomic
force microscopy [29].

A large variety of models has been used in the past to
study vdW forces between small polarizable objects [16].
Interacting atoms have been studied on a microscopic level
as neutral arrangements of point charges [12,13], as sketched
in Fig. 1(i). Larger systems can be treated by considering
collections of such polarizable point objects [Fig. 1(ii)],
in which a pairwise-sum method is often employed [30].
Investigations of the polarizability of N -atom nanoclusters
of various sizes and shapes have shown that an additive
relation, αclust = NαA, does not hold in general but is valid
for spherical clusters [31]. Microscopic approaches have
to be contrasted with macroscopic descriptions in which
continuous objects of polarizable matter are characterized by
their permittivity [Fig. 1(iii)], and an intervening medium
can be accounted for in the same spirit. One commonly
distinguishes the additive Hamaker method [32] from the
more elaborate Lifshitz theory, which includes many-body
interactions [33,34].

A hybrid approach consists of a microscopic
treatment of interacting atoms, combined with a
macroscopic description of an intervening medium. To
reconcile the microscopic and macroscopic pictures,
local-field effects are included by assuming the atoms to be
surrounded by small free-space cavities, an approach known
as the Onsager real-cavity model [35]; see Fig. 1(iv). As found
by studying the behavior of the classical Green tensor G for
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FIG. 1. Models of polarizable systems: (i) neutral arrangement
of point charges (atom), (ii) cluster of atoms, (iii) dielectric sphere
inside medium, (iv) atom in empty cavity surrounded by medium
(Onsager real-cavity model), and (v) dielectric sphere in empty cavity
surrounded by medium.

the electromagnetic field in conjunction with the real-cavity
model [36], the vdW potential of two atoms at positions rA

and rB in an arbitrary environment can be given as [37]

U (rA, rB ) = −h̄µ2
0

2π

∫ ∞

0
dξ ξ 4αA(iξ )αB(iξ )

×
[

3εA(iξ )

2εA(iξ ) + 1

]2[ 3εB(iξ )

2εB(iξ ) + 1

]2

× Tr[G(rA, rB, iξ ) · G(rB, rA, iξ )], (3)

where local-field correction factors explicitly appear.
To compare the microscopic, local-field corrected approach

of Fig. 1(iv) with the macroscopic one shown in Fig. 1(iii), in
this work we study the Casimir-Polder (CP) interaction of a
ground-state atom with a magnetodielectric sphere of variable
size in the presence of arbitrary magnetoelectric background
media on basis of macroscopic quantum electrodynamics
(QED). Our considerations are related to free-space results
obtained earlier for the interaction of an atom with curved
surfaces [38] and dielectric [39] and perfectly conducting
spheres [40]; compare with the nonretarded vdW potential of
a ground-state atom inside and outside a dielectric or metallic
spherical shell as calculated in Ref. [41]. In addition, we
consider the interaction of an atom with a magnetodielectric
sphere inside an Onsager cavity [Fig. 1(v)]. By changing the
radius of the sphere, this construction allows us to study
the transition between a microscopic pointlike object and a
macroscopic one.

The article is organized as follows. In Sec. II, we recall
the basic equations concerning ground-state CP potentials. In
Sec. II A, we show how the Green tensors of a magnetodielec-
tric full sphere or a sphere within an Onsager cavity can be
written as functions of the Green tensors of the environment
without the sphere. The results are then used to study the
atom-sphere potentials, which are compared with the vdW

interaction between two ground-state atoms (Sec. II B). As
an example, we evaluate the interaction between an atom and
molecules of different sizes in a bulk medium. A summary is
given in Sec. III.

II. ATOM-SPHERE INTERACTION

In order to derive an expression for the CP interaction
between a (ground-state) atom and a magnetodielectric sphere
in the presence of an arbitrary medium environment, we
start from the familiar formulas for the electric (Ue) and
magnetic (Um) CP potentials of a ground-state atom of
polarizability

αA(ω) = lim
ε→0

2

3h̄

∑
k

ωk0|d0k|2
ω2

k0 − ω2 − iωε
(4)

(where ωk0 are transition frequencies and d0k are electric dipole
matrix elements) and magnetizability

βA(ω) = lim
ε→0

2

3h̄

∑
k

ωk0|m0k|2
ω2

k0 − ω2 − iωε
(5)

(where m0k are magnetic dipole matrix elements) that are
placed at an arbitrary position rA within an environment
of locally and linearly responding magnetoelectric bodies
or media [characterized by their permittivity ε(rA, ω) and
permeability µ(rA, ω)] [7,37,42]:

Ue(rA) = h̄µ0

2π

∫ ∞

0
dξ ξ 2αA(iξ )

[
3εA(iξ )

2εA(iξ ) + 1

]2

× TrG(1)(rA, rA, iξ ) (6)

and

Um(rA) = h̄µ0

2π

∫ ∞

0
dξβA(iξ )

[
3

2µA(iξ ) + 1

]2

× Tr[∇ × G(1)(rA, rA, iξ ) × ←−∇ ′], (7)

with εA(ω) ≡ ε(rA, ω), µA(ω) ≡ µ(rA, ω). These expressions
explicitly allow for the atom to be embedded in a medium
environment where the relevant local-field corrections have
been accounted for via the Onsager real-cavity model [35,36].
The scattering Green tensor G(1)(r, r′, ω) fully accounts for the
position, size, and shape of all bodies and media as well as their
magnetoelectric properties and is defined by the differential
equation[

∇ × 1

µ(r, ω)
∇ × −ω2

c2
ε(r, ω)

]
G(r, r′, ω) = δ(r − r′),

(8)

with the condition G(r, r′, ω) → 0 for |r − r′| → ∞. In this
work, the body interacting with the atom is a magnetodielectric
sphere whose Green tensor we analyze in the following.

A. Decomposition of the Green tensor

Two methods may be envisaged to study the CP potential
of an atom in the presence of a magnetodielectric sphere and
an arbitrary environment of additional bodies and media. First,
one could work with the Green tensor of the combined sphere-
environment system [Fig. 2(i)] directly, which may be very
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FIG. 2. (i) Green tensor of the combined system of magnetodi-
electric sphere and arbitrary background environment and (ii) Green
tensor of the same system without the sphere.

complicated; even if an analytical expression of the Green
tensor is known, the resulting expressions for the potentials
are hard to evaluate and do not allow for an explicit discussion
of the influence of the sphere. In this work, we therefore follow
a second, alternative approach: We show how the Green tensor
of the full arrangement including the sphere, G(1)

S (r, r, ω), can
be related to the Green tensor without the sphere [Fig. 2(ii)];
G(1)(r, r, ω) describes only the background environment. To
establish such a relation, we use methods similar to those
developed for studying local-field corrections [36,37,42]. The
crucial assumption for using these point-scattering techniques
is that the effective radius of the sphere is small compared with
the relevant wavelengths of the electromagnetic field.

1. Full sphere

Assuming that the functions ε(r, ω) and µ(r, ω) describe
the magnetoelectric properties of the environment, the in-
troduction of a homogeneous magnetodielectric sphere with
radius R centered at rS , permittivity εS(ω), and permeability
µS(ω) leads to the new functions

εS(r, ω), µS(r, ω)

=
{

εS(ω), µS(ω) for |r − rS | � R,

ε(r, ω), µ(r, ω) elsewhere.
(9)

The Green tensor G(1)
S (r, r, ω) of sphere plus environment is

hence the solution to the differential equation (8) with εS(r, ω)
and µS(r, ω) in place of ε(r, ω) and µ(r, ω).

As discussed in Refs. [36,37], for a small sphere it is
sufficient to consider first the special case of a homogeneous,
bulk environment, which is then generalized to arbitrary
environments at the end of the section. The required scattering
Green tensor of the sphere with center rS = 0 inside a bulk
medium of permittivity ε(ω) and permeability µ(ω) can be
written in the form [43]

G(1)
S (r, r′, ω) = iµk

4π

∑
p=±

∞∑
l=1

n∑
m=0

(2 − δm0)

× 2l + 1

l(l + 1)

(l − m)!

(l + m)!

× [
BM

l Mlmp(k, r)Mlmp(k, r′)

+BN
l Nlmp(k, r)Nlmp(k, r′)

]
, (10)

where k = √
εµω/c, Mlmp, Nlmp denote even (+) and odd (−)

spherical vector wave functions with total angular momentum
l and z projection m, and B

M,N
l are the associated coefficients

for reflection at the surface of the sphere. Explicit forms for
Mlmp, Nlmp, and B

M,N
l can be found in Refs. [43,44].

In the limit of a small sphere with |kSR|, |kR| � 1 (kS =√
εSµSω/c), we have

B
M,N
l = O

(
ωR

c

)2l+1

, (11)

and so the dominant contribution to the Green tensor is due
to the l = 1 terms. The respective vector wave functions are
given by

M1m±(k, r) = ∓ m

sin θ
h

(1)
1 (kr)P m

1 (cos θ )

{
sin mφ

cos mφ

}
eθ

− h
(1)
1 (kr)

dP m
1 (cos θ )

dθ

{
cos mφ

sin mφ

}
eφ (12)

and

N1m±(r) = 2
h

(1)
1 (kr)

kr
P m

1 (cos θ )

{
cos mφ

sin mφ

}
er

+ 1

kr

d
[
krh

(1)
1 (kr)

]
d(kr)

dP m
1 (cos θ )

dθ

{
cos mφ

sin mφ

}
eθ

∓ m

sin θ
P m

1 (cos θ )
1

kr

d
[
krh

(1)
1 (kr)

]
d(kr)

{
sin mφ

cos mφ

}
eφ,

(13)

where the P m
1 (x) are associated Legendre polynomials and

h
(1)
1 (x) is a spherical Hankel function of the first kind.

The l = 1 reflection coefficients in the small-sphere limit
|kSR|, |kR| � 1 are given by

BM
1 = 2i

3

(√
εµ

ωR

c

)3
µS − µ

µS + 2µ
, (14)

BN
1 = 2i

3

(√
εµ

ωR

c

)3
εS − ε

εS + 2ε
. (15)
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We can further evaluate the p and m sums for l = 1 using
P 0

1 (cos θ ) = cos θ and P 1
1 (cos θ ) = − sin θ to obtain

∑
p=±1

1∑
m=0

(2 − δm0)
(1 − m)!

(1 + m)!
M1mp(r)M1mp(r) = h2[I − erer ]

(16)

and

∑
p=±1

1∑
m=0

(2 − δm0)
(1 − m)!

(1 + m)!
N1mp(r)N1mp(r)

= h′2

(kr)2
I + 4h2 − h′2

(kr)2
erer , (17)

with the notation h ≡ h
(1)
1 (kr) = −i(1 − ikr)eikr/(kr)2 and

h′ ≡ d[krh
(1)
1 (kr)]/d(kr). By substituting these expressions

into Eq. (10), the (equal-position) scattering Green tensor of a
small sphere becomes

G(1)
S (r, r, ω) = µe2ikr

4πk2r6
{[1−2ikr−3(kr)2+2i(kr)3+(kr)4]I

+ [3−6ikr−(kr)2−2i(kr)3−(kr)4]erer}
× εS − ε

εS + 2ε
R3 + µe2ikr

4πr4
[1−2ikr−(kr)2]

× (I − erer )
µS − µ

µS + 2µ
R3. (18)

Next, we relate our result to the Green tensor of the bulk
medium without the sphere (cf., e.g., Ref. [44]),

G(r, r′, ω) = − µeikρ

4πk2ρ3
{[1 − ikρ − (kρ)2)]I

− [3 − 3ikρ − (kρ)2]eρeρ}, (19)

which is valid for r 	= r′, where ρ = r − r′, ρ = |ρ|, and
eρ = ρ/ρ. The Green tensor G(1)

S (r, r, ω) of the small sphere
describes the propagation of the electric field from a source at
r to the sphere, its scattering from the sphere (a polarizable and
magnetizable point scatterer) at rS = 0, and its return to r. It is
therefore natural to try and compose G(1)

S from products of G,
which describes the propagation of the electric field through
the bulk medium to an electric scatterer, and G × ←−∇ , which
describes its propagation to a magnetic scatterer. Indeed, from
Eq. (19), we find that

G(r, 0, ω) · G(0, r, ω)

= µ2e2ikr

16π2k4r6
{[1−2ikr−3(kr)2+2i(kr)3+(kr)4]I

+ [3−6ikr−(kr)2−2i(kr)3−(kr)4] erer} (20)

and

G(r, rS, ω) × ←∇S · ∇S × G(rS, r, ω)|rS=0

= −µ2e2ikr

16π2r4
[1−2ikr−(kr)2](I − erer ). (21)

A comparison with Eq. (18) shows that

G(1)
S (r, r, ω) = 4πεR3 εS − ε

εS + 2ε

ω2

c2
G(r, 0, ω) · G(0, r, ω)

− 4πR3

µ

µS − µ

µS + 2µ
G(r, rS, ω) × ←∇S

·∇S × G(rS, r, ω)|rS=0. (22)

Let us next consider a general background environment,
which can involve different media or bodies, as sketched
in Fig. 2. With the permittivity ε(r, ω) and permeability
µ(r, ω) of the environment now being functions of position,
it is useful to introduce a notation for their values at the
position of the sphere, ε
(ω) ≡ ε(rS, ω), µ
(ω) ≡ µ(rS, ω).
In addition to the small-sphere limit |kSR| � 1, we assume
the effective sphere radius

√
εSµSR to be much smaller than

the distance from the sphere to any of the environment bodies.
As demonstrated in Refs. [36,37], multiple scattering between
sphere and environment can then be safely neglected to within
a leading order of kSR, and a result of the type (22) can be
generalized from the bulk case to an arbitrary environment by
adding the scattering Green tensor and replacing ε �→ ε
 and
µ �→ µ
. This can be formally proven by treating both the
sphere and the environment bodies using a Born expansion
of the Green tensor [45] and discarding those terms in the
Born series that involve multiple scattering between atom and
environment. We obtain

G(1)
S (r, r, ω) = G(1)(r, r, ω) + ε


ε0
α�

S

ω2

c2
G(r, rS, ω)

· G(rS, r, ω) − µ0

µ

β�

SG(r, rS, ω) × ←−∇ S

·∇S × G(rS, r, ω), (23)

where we have introduced the polarizability

α�
S = 4πε0R

3 εS − ε

εS + 2ε


(24)

and the magnetizability

β�
S = 4πR3

µ0

µS − µ

µS + 2µ


(25)

of the sphere [46]. Note that α�
S is an excess or effective

polarizability [47,48] and describes the electric response of
the sphere with respect to that of the surrounding medium.
It can take positive or negative values, depending on whether
the sphere’s permittivity is larger or smaller than that of the
medium.

The relation (23) for G(1)
S can be used to calculate the electric

CP potential (6). In order to find the magnetic CP potential,
Eq. (7), we also require the analogous relation for the magnetic
Green tensor ∇ × G(1)

S × ←−∇ ′, which can be obtained by duality
arguments. An electric/magnetic duality transformation [·]◦∗
corresponds to a global exchange of electric and magnetic
properties, ε◦∗ = µ and µ◦∗ = ε. As shown in Refs. [49,50],
this results in the following changes to the Green tensor
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for r 	= r′:

ω2

c2
G◦∗(r, r′, ω) = −∇ × G(r, r′, ω) × ←−∇ ′

µ(r, ω)µ(r′, ω)
, (26)

∇ × G◦∗(r, r′, ω) × ←−∇ ′ = −ε(r, ω)
ω2

c2
G(r, r′, ω)ε(r′, ω),

(27)

∇ × G◦∗(r, r′, ω) = −ε(r, ω)
G(r, r′, ω) × ←−∇ ′

µ(r′, ω)
, (28)

G◦∗(r, r′, ω) × ←−∇ ′ = −∇ × G(r, r′, ω)

µ(r, ω)
ε(r′, ω). (29)

In addition, Eqs. (24) and (25) imply that α
�◦∗
S = β�

S/c
2 and

β
�◦∗
S = c2α�

S . By applying the duality transformation to both
sides of Eq. (23), one obtains the required relation

∇×G(1)
S (r, r′, ω)×←−∇ ′|r′=r

= ∇×G(1)(r, r′, ω)×←−∇ ′|r′=r− µ0

µ

β�

S∇×G(r, rS, ω) × ←∇S

·∇S ×G(rS, r′, ω)×←−∇ ′|r′=r + ε

ε0

α�
S

ω2

c2

×∇ × G(r, rS, ω) · G(rS, r′, ω)×←−∇ ′|r′=r. (30)

2. Sphere inside an Onsager cavity

Next, we consider a homogeneous magnetodielectric
sphere with radius R centered around rS , with permittivity
εS(ω) and permeability µS(ω), which is not in immediate
contact with the surrounding medium but is placed inside a
small spherical cavity of radius RC , also centered around rS

[Fig. 1(v)]. This enables us to compare and interpolate between
the homogeneous sphere placed inside a medium (as consid-
ered in the previous section) and a local-field-corrected atom
(i.e., a pointlike polarizable system surrounded by a cavity).
The scattering Green tensor G(1)

S+C of the sphere-plus-cavity
system in a homogeneous bulk medium is again given by an
equation of the form (10), in which the reflection coefficients
take a more complex form. In particular, in the limit of a
small effective cavity and sphere sizes |kSR|, |kRC | � 1, one
has [44]

BM
1 = 2i

3

(√
εµ

ω

c

)3[
R3

C

1−µ

1+2µ

+ 9µR3(µS −1)/(2µ+1)

(µS + 2)(2µ+1) + 2(µS −1)(1−µ)R3/R3
C

]
,

(31)

BN
1 = 2i

3

(√
εµ

ω

c

)3[
R3

C

1−ε

1+2ε

+ 9εR3(εS −1)/(2ε+1)

(εS +2)(2ε+1) + 2(εS −1)(1−ε)R3/R3
C

]
. (32)

We can then follow exactly the same steps as in Sec. II A1.
We again arrive at Eqs. (23) and (30) with S + C in place
of S. A comparison of Eqs. (14) and (15) with Eqs. (31)
and (32) shows that the relevant excess polarizability and

magnetizability of the sphere-plus-cavity system are given by

α�
S+C = 4πε0

[
R3

C

1−ε

1 + 2ε


+ 9ε
R3(εS −1)/(2ε
+1)

(εS +2)(2ε
+1) + 2(εS −1)(1−ε
)R3/R3
C

]
(33)

and

β�
S+C = 4π

µ0

[
R3

C

1−µ

1+2µ


+ 9µ
R3(µS −1)/(2µ
+1)

(µS +2)(2µ
+1) + 2(µS −1)(1−µ
)R3/R3
C

]
.

(34)

One can easily verify that for R = RC , Eqs. (33) and (34)
reduce to the results (24) and (25) for the full sphere, as
expected.

By introducing the free-space polarizability and magnetiz-
ability of the sphere,

αS = 4πε0R
3 εS − 1

εS + 2
(35)

and

βS = 4πR3

µ0

µS − 1

µS + 2
, (36)

as well as the excess polarizability and magnetizability of the
cavity,

α�
C = 4πε0R

3
C

1 − ε

1 + 2ε


(37)

and

β�
C = 4πR3

C

µ0

1 − µ

1 + 2µ


, (38)

we can write Eqs. (33) and (34) more transparently as

α�
S+C = α�

C + αS

ε


(
3ε


2ε
+1

)2

× 1

1 + α�
CαS

/(
8π2ε2

0R
6
C

) , (39)

β�
S+C = β�

C + βSµ


(
3

2µ
+1

)2

× 1

1 + β�
CβSµ

2
0

/(
8π2R6

C

) . (40)

As we see, the response of the sphere-plus-cavity system
to an electromagnetic field is due to reflection at the cavity
surface from the outside (α�

C ,β�
C) plus reflections at the

sphere (α�
S ,β�

S), in which the local-field correction factors
in large round brackets account for the transmission of
the field into and out of the cavity and the denominators
account for multiple reflections between the cavity and sphere
surfaces.

Note that in our leading-order approximation in terms of
the cavity and sphere radii, the reflective properties of the
cavity and the sphere as encoded via their dipole polariz-
abilities and magnetizabilities are proportional to the third
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power of these radii. In contrast, the transmission properties
of the cavity as described by the local-field correction
factors become independent of RC within leading order
of kRC .

B. Casimir-Polder potential

Consider a polarizable and magnetizable ground-state
atom that interacts with a small magnetodielectric sphere
in an arbitrary environment. We assume the atom-sphere
separation rAS to be much greater than the effective sphere and
cavity radii,

√
εSµSR,

√
ε
µ
RC � rAS . For the frequency

integral in Eq. (6), typically limited to values ξ � c/rAS ,
the assumptions |kSR|, |kRC | � 1 made in Sec. II A hold.
Hence, we can use our results for the electric and magnetic
Green tensors G(1)

S and ∇ × G(1)
S × ←−∇ ′ in the presence of a

small magnetodielectric sphere to calculate the atom-sphere
potential.

1. Full sphere

By substituting Eq. (23) into Eq. (6), the interaction of an
electric atom with a magnetodielectric sphere is described by
the potential

Ue(rA, rS) = Uee(rA, rS) + Uem(rA, rS), (41)

with

Uee(rA, rS) = −h̄µ2
0

2π

∫ ∞

0
dξ ξ 4αA(iξ )

[
3εA(iξ )

2εA(iξ ) + 1

]2

×αS(iξ )ε
(iξ )Tr[G(rA, rS, iξ ) · G(rS, rA, iξ )]

(42)

and

Uem(rA, rS) = −h̄µ2
0

2π

∫ ∞

0
dξ ξ 2αA(iξ )

[
3εA(iξ )

2εA(iξ ) + 1

]2

× βS(iξ )

µ
(iξ )
Tr[G(rA, rS, iξ )×←∇S ·∇S

× G(rS, rA, iξ )] (43)

being associated with the electric and magnetic properties
of the sphere, respectively. Similarly, combining Eqs. (30)
and (7) gives the CP interaction of a magnetic atom and a
magnetodielectric sphere,

Um(rA, rS) = Ume(rA, rS) + Umm(rA, rS), (44)

with

Ume(rA, rS) = −h̄µ2
0

2π

∫ ∞

0
dξ ξ 2βA(iξ )

[
3

2µA(iξ ) + 1

]2

×αS(iξ )ε
(iξ )Tr{[∇A × G(rA, rS, iξ )]

· [G(rS, rA, iξ ) × ←∇A]} (45)

and

Umm(rA, rS) = −h̄µ2
0

2π

∫ ∞

0
dξβA(iξ )

[
3

2µA(iξ ) + 1

]2

× βS(iξ )

µ
(iξ )
Tr{[∇A × G(rA, rS, iξ )×←∇S]

· [∇S × G(rS, rA, iξ ) ×←∇A]}. (46)

Note that the electric and magnetic properties of the sphere
completely decouple and give rise to the separate potentials
Uee, Ume and Uem, Umm, respectively. However, this is only
true in the small-sphere limit considered here.

As proven in Refs. [49,50], the local-field-corrected total
CP potential of a magnetodielectric ground-state atom in
the presence of an arbitrary arrangement of bodies as given
by Eqs. (6) and (7) is always duality invariant. By using
the transformation rules (26)–(29) for the Green tensor,
together with α

�◦∗ = β�/c2, β
�◦∗ = c2α�, one sees that duality

invariance also holds for the special case of a sphere, where
Uee(rA, rS)◦∗ = Umm(rA, rS) and Uem(rA, rS)◦∗ = Ume(rA, rS).
This property is ensured by the presence of the factors ε
 and
1/µ
 in Eqs. (42), (43), (45), and (46).

It is instructive to compare our findings with the vdW
interaction between two magnetodielectric ground-state atoms
A and B in the presence of an arbitrary magnetodielectric
environment [37,42]. In order to reproduce those results, one
has to perform the substitutions

αSε
 → αB

(
3εB

2εB + 1

)2

(47)

and

βS

µ

→ βB

(
3

2µB + 1

)2

. (48)

The differences between the cases of a sphere [left-hand sides
of Eqs. (47) and (48)] and an atom [right-hand sides] are
due to the microscopic and macroscopic nature of the two
objects. The sphere consists of a large number of atoms whose
magnetoelectric response can be described by an average
permittivity and permeability. In this macroscopic picture, the
sphere is in immediate contact with the surrounding medium
(also characterized by permittivity and permeability), which
leads to the factors ε
 and 1/µ
. In contrast, an atom is a
microscopic object. In the microscopic picture, the interspace
between the atom and the neighboring medium atoms needs to
be taken into account; it gives rise to the local-field correction
factors on the right-hand sides of Eqs. (47) and (48).

The second difference between the two cases is in the
different explicit forms of polarizability and magnetizability.
For a sphere, they are given in terms of the permeability
and permittivity of the sphere in comparison to those of
the surrounding medium [cf. Eqs. (24) and (25)]; they can
be either positive or negative. For an atom, polarizability
and magnetizability depend on the transition frequencies and
dipole matrix elements [recall Eqs. (4) and (5)]; they are strictly
positive on the positive imaginary frequency axis.

2. Sphere inside an Onsager cavity

In order to interpolate between the two extreme cases of a
single atom and a sphere consisting of a very large number of
atoms, we now consider the CP interaction of an atom with
a sphere of radius R that is separated from the surrounding
medium by a spherical free-space cavity of radius RC , as
introduced in Sec. II A2. Since expressions of the type (23)
and (30) remain valid, their substitution into Eqs. (6) and (7)
again leads to Eqs. (41)–(46), where now α�

S+C and β�
S+C as

given by Eqs. (33) and (34) appear in place of α�
S and β�

S .
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In our model, the sphere may consist of an arbitrary
number of atoms, whereas the cavity implements the interspace
between the sphere’s atoms and the surrounding medium
atoms. As seen from Eqs. (39) and (40) for the polarizability
and magnetizability of the sphere-plus-cavity system, the
sphere is represented by its free-space polarizability and
magnetizability, whereas the interspace gives rise to the cavity
excess polarizability and magnetizability. In the purely electric
case, the sphere gives rise to attractive forces and the cavity
leads to a reduction of these forces.

For a sphere that consists of a very large number of atoms,
the interspace between the sphere and medium atoms becomes
irrelevant. In this case, which is implemented by the limit R →
RC , the system’s polarizability and magnetizability become
equal to the excess polarizability and magnetizability of a full
sphere (recall Sec. II A2), for which we recover Eqs. (41)–(46)
in their original form.

In the opposite extreme case of a sphere that consists of very
few atoms, the interspace becomes very large in comparison
to the sphere, R � RC . In this limit, the effect of multiple
scattering between the surfaces of sphere and cavity becomes
negligible, and the polarizability (39) and magnetizability (40)
reduce to

α�
S+C = α�

C + αS

ε


(
3ε


2ε
 + 1

)2

(49)

and

β�
S+C = β�

C + βSµ


(
3

2µ
 + 1

)2

. (50)

When the sphere consists of only a single atom B, the Clausius-
Mossotti laws [51]

εS − 1

εS + 2
= αB

3ε0V
,

µS − 1

µS + 2
= µ0βB

3V
, (51)

where V = (4π/3)R3, together with Eqs. (35) and (36), show
that αS = αB and βS = βB . When neglecting the backscatter-
ing from the outside surface of the cavity, we obtain

αS+Cε
 = αB

(
3εB

2εB + 1

)2

(52)

and
βS+C

µ

= βB

(
3

2µB + 1

)2

, (53)

where ε
 = εB , µ
 = µB , and substitution into Eqs. (41)–(46)
leads to the local-field-corrected two-atom potentials [37,42].
It is in this limit R � RC ,

√
ε
µ
RC � rAS that the potential

depends on the cavity radius only via its transmission prop-
erties and therefore becomes independent of RC . Recall the
discussion following Eq. (40).

For intermediate radii R, our sphere-plus-cavity model
gives a good description of the interaction of a single atom with
molecules or intermediate-size spherical clusters of atoms.
Note that in this case the potential explicitly depends on both
the sphere and cavity radii. The theory could be applied (e.g.,
in cell biology) to study the vdW-force-induced transfer of an
atom or a very small molecule from one cell into another, where
it is attracted to another bigger (spherical) cell component
or molecule. Note that local-field effects are automatically
included.
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FIG. 3. CP potential U (rAS) of a nonmagnetic atom in front of
a dielectric sphere in an empty cavity embedded in bulk material
vs. q = R/RC for different atom-sphere separations, rASω10/c.
Other parameters are ωT /ω10 = 1.03, ωT S/ω10 = 1.0, ωPS/ω10 =
6.0, ωP /ω10 = 0.1, and γ(S)/ω10 = 0.001.

As an example, let us consider the CP interaction of a
nonmagnetic atom with a purely electric sphere (Uee) in a bulk
medium (ε
 = εA = ε). By substituting the required Green
tensor (19) into Eq. (42), one easily finds

U (rA, rS) = − h̄

16π3ε2
0r

6
AS

∫ ∞

0
dξ

[
3ε(iξ )

2ε(iξ ) + 1

]2

×αA(iξ )ε(iξ )α�
S+C(iξ )g[

√
ε(iξ )ξrAS/c]

(54)

(rAS = |rA − rS |) with

g(x) = e−2x(3 + 6x + 5x2 + 2x3 + x4). (55)

Figure 3 shows this potential for a two-level atom as a function
of the relative sphere radius q = R/RC for various atom-
sphere separations. We have used single-resonance models
for the permittivities of the sphere and the medium:

ε(S)(ω) = 1 + ω2
P (S)

ω2
T (S) − ω2 − iωγ(S)

. (56)

In Fig. 4, we show the potential Uee as a function of the atom-
sphere separation for different relative sphere radii q = R/RC .
Both figures show that for the constant εS considered here,
larger spheres with their corresponding larger polarizabilities
lead to stronger vdW attraction between the atom and the
sphere.

III. SUMMARY AND CONCLUSIONS

We have studied the CP interaction of an atom with a
small magnetodielectric sphere in an arbitrary magnetoelectric
environment. By employing a point-scattering technique, we
were able to express the Green tensor in the presence of
the sphere as a simple function of the Green tensor of the
environment. Using this result, we have found closed general
expressions for the CP potential of a magnetoelectric atom
interacting with a small magnetodielectric sphere, which
depend on the sphere’s polarizability and magnetizability.
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FIG. 4. U (rAS) vs. rASω10/c for different ratios q. Other
parameters are the same as in Fig. 3.

A comparison with the vdW potential between two ground-
state atoms in the presence of the background medium has
revealed how the different macroscopic and microscopic
natures of atom versus sphere manifest themselves in the
dispersion potentials: the immediate contact of a macroscopic
sphere with the surrounding medium leads to the appearance
of the permittivity and inverse permeability of the medium,
whereas the coupling of the local electromagnetic field to
the microscopic atom gives rise to local-field correction
factors.

In order to interpolate between these two limiting cases, we
have studied the potential of an atom with a sphere of variable
radius located inside an Onsager cavity. The cavity represents
the interspace between the particles contained in the sphere
and those constituting the surrounding medium, so that our
model can be used to study molecular systems of arbitrary size.
Using similar techniques, we have derived the potential of an
atom interacting with the sphere-plus-cavity system. We have
shown that our result reduces to the atom-sphere or atom-atom
potentials in the two limiting cases, in which the sphere radius
is either much smaller than or equal to the cavity radius. As
an example, we have considered the CP interaction between
an electric atom and such a sphere-plus-cavity system, finding
that the attractive potential diminishes as the sphere becomes
smaller at a fixed cavity radius.

Our point-scattering method can also be used to calculate
the Casimir force on a small sphere in an arbitrary environment
and, in particular, the Casimir force between two small spheres.
This problem will be subject of future work. A similar
approach could be applied to dispersion interactions involving
thin cylinders.
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