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We present a comprehensive investigation of nonideal continuous-variable quantum teleportation implemented
with entangled non-Gaussian resources. We discuss in a unified framework the main decoherence mechanisms,
including imperfect Bell measurements and propagation of optical fields in lossy fibers, applying the formalism of
the characteristic function. By exploiting appropriate displacement strategies, we compute analytically the success
probability of teleportation for input coherent states and two classes of non-Gaussian entangled resources: two-
mode squeezed Bell-like states (that include as particular cases photon-added and photon-subtracted de-Gaussified
states), and two-mode squeezed catlike states. We discuss the optimization procedure on the free parameters of
the non-Gaussian resources at fixed values of the squeezing and of the experimental quantities determining
the inefficiencies of the nonideal protocol. It is found that non-Gaussian resources enhance significantly the
efficiency of teleportation and are more robust against decoherence than the corresponding Gaussian ones. Partial
information on the alphabet of input states allows further significant improvement in the performance of the
nonideal teleportation protocol.
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I. INTRODUCTION

In recent years, theoretical and experimental investigation
has been focused on the engineering of highly nonclassical,
non-Gaussian states of the radiation field (for a review, see
e.g., Ref. [1]). Interest in the production of non-Gaussian
optical states is due to their strongly nonclassical properties,
such as entanglement and negativity of the quasiprobability
phase-space distributions, that are important for the efficient
implementation of quantum information and communication
protocols [1–5] and for quantum estimation tasks [6].

Several schemes for the generation of non-Gaussian states,
both single-mode and two-mode, have already been proposed
[7–13], and many successful and encouraging experimental
realizations have been reported recently [14–19]. In principle,
a very important result concerns the rigorous proof that various
nonclassical properties are minimized by Gaussian states [20].
Therefore, it is reasonable to expect that the use of non-
Gaussian resources may improve significantly the performance
of quantum information protocols. In particular, concerning
quantum teleportation with continuous variables (CV), it
has been shown that the success probability of teleportation
can be greatly increased by using entangled non-Gaussian
resources in the framework of the ideal Braunstein-Kimble
(BK) protocol [3,21–25].

Indeed, it has been shown that some specific two-mode
non-Gaussian states, dubbed squeezed Bell-like states (that
include as subcases photon-added and photon-subtracted de-
Gaussified states [24]), when used as entangled resources
provide a significant increase in the teleportation fidelity of
single-mode input states under the ideal protocol [24]. Such
an enhancement is due to a balancing of three different
features [24]: the entanglement content of the resources, their
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(appropriately defined) degree of affinity with the two-mode
squeezed vacuum, and their (suitably measured) amount of
non-Gaussianity. (For the precise definition of the last two
quantities, see Refs. [24,26].) It has been suggested [24]
that such states can be produced by combining simultane-
ous phase-matched multiphoton processes and conditional
measurements.

The analysis of Ref. [24] has been extended to consider
other classes of non-Gaussian resources, such as two-mode
squeezed symmetric superpositions of Fock states and of
squeezed catlike states, that allow high levels of performance
in the teleportation of single-mode input states [27]. A partial
preliminary analysis of nonideal cases has also been performed
[27] by considering simple superpositions of independently
generated fields converging on a common spatial volume, such
as superpositions of a two-mode pure non-Gaussian resource
and a two-mode thermal state [28]. In this elementary instance,
mixed non-Gaussian entangled states remain preferred re-
sources for teleportation when compared to mixed twin-beam
Gaussian states [27].

In this work, using the formalism of the characteristic
function, we study in full generality the BK protocol for CV
teleportation in realistic conditions and with non-Gaussian
entangled resources. We include in our investigation the
main sources of decoherence that lead to the degradation of
the transferred quantum information, such as losses due to
imperfect homodyne measurements and damping due to the
propagation of the optical fields in lossy fibers. The effects
of these inefficiencies have already been considered, among
others, in Refs. [29,30]. In particular Ref. [29] is concerned
with the study of imperfect Bell measurements, whereas
in Ref. [30] the authors investigate the limits of quantum
teleportation due to photon absorption during propagation in
fibers. Besides considering each problem separately, these and
related works are always restricted to the use of Gaussian
resources. The main object of the present work is to investigate
the effect of the simultaneous presence of all sources of
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imperfection on the performance of CV teleportation protocols
with non-Gaussian resources and their robustness against
decoherence.

A general and exhaustive analysis turns out to be possible
in the framework of the characteristic function representation.
This method has been discussed in full generality for the
description of ideal CV teleportation [31] and applied first
to the case of Gaussian [31] and non-Gaussian resources
[24,27]. We then extend the formalism to include the de-
scription of nonideal CV teleportation, including realistic
Bell measurements and decoherence due to propagation in
noisy channels. In order to investigate different optimization
strategies of the nonideal protocol, we discuss optimization
over the free parameters of the non-Gaussian resources as well
as over the gain factor associated with the transmitted classical
information [32] (for various strategies of gain tuning and of
optimal gain, see also Refs. [30,33,34]). Indeed, in the instance
of non-Gaussian resources, the gain can be considered as a
further free parameter suitable for optimization.

The article is organized as follows. In Sec. II we extend the
characteristic function formalism to include the case of real-
istic CV quantum teleportation. In Sec. III we introduce and
discuss the main properties of some classes of non-Gaussian
entangled resources. In Sec. IV we study the efficiency of the
quantum teleportation protocol in the instance of fixed given
values of the gain. In Sec. V we carry out an optimization
procedure of the protocol over the entangled resources and the
gain parameter. Finally, in Sec. VI we draw our conclusions
and discuss some outlook on current and future research.

II. NONIDEAL CV TELEPORTATION PROTOCOL IN THE
CHARACTERISTIC FUNCTION FORMALISM

In this section, we describe the realistic BK CV tele-
portation protocol in the formalism of the characteristic
function. Although several alternative formalisms are available
for the description of the BK CV teleportation protocol
[35–40], the characteristic function representation proves to
be particularly convenient when considering the nonideal
case and non-Gaussian resources. The description of nonideal
teleportation requires the introduction of mechanisms of loss
and inefficiency in the main steps of the protocol. Indeed, a
schematic description of the nonideal protocol is depicted in
Fig. 1.

The input state and the entangled resource states are
assumed to be initially pure. This is not a serious limitation
because one can always map the case of a nonideal telepor-
tation protocol with noisy (mixed) inputs and resources to an
equivalent protocol with pure inputs and resources but with a
correspondingly larger amount of noise affecting the protocol.
A simple illustrative example of this equivalence is discussed
later on in the present work.

The single-mode input state (in) is mixed to mode 1
of the entangled resource at a beam splitter. At the first
user’s (Alice) location, a Bell measurement, consisting in
homodyne detections, is performed on the obtained state
of mode “in” and mode 1. In order to describe a nonideal
measurement, one needs to model/simulate the inefficiencies
of the photodetectors. A realistic detector can be modeled by
placing a fictitious beam splitter, that is, a partly transmitting
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FIG. 1. (Color online) Pictorial representation of the nonideal
BK CV quantum teleportation protocol. In the first step, the input
mode is mixed by Alice with one of the two beams (modes) of the
entangled resource; the ensuing state is then subject to a realistic
Bell measurement. The result of the measure is communicated to
Bob through a classical channel. In the second step, a unitary
transformation, determined by the previous measurement, is applied
to the second mode of the entangled resource, which is affected by
decoherence during the propagation in a noisy channel, for example,
a lossy fiber. The ensuing output state is the final teleported state.

mirror, in front of an ideal detector [41]. Based on such a
prescription, a scheme describing a realistic Bell measurement
is shown in Fig. 2.

After a realistic Bell measurement, the result is transmitted
to the receiver (Bob) through a classical channel. The mode 2
of the entangled resource propagates in a noisy channel, as
a lossy fiber, to Bob’s location, where it undergoes a unitary
displacement according to the result of the Bell measurement.
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FIG. 2. (Color online) Model scheme of a realistic Bell measure-
ment. The model takes into account the non-unity efficiency of the
detectors D performing the homodyne measurement. In the depicted
scheme, such inefficiency is simulated by the introduction of two
fictitious beam splitters, BS2 and BS3, with equal transmissivity η.
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It is important to note that the generation of the entangled
resource can take place close to the sender, and typically very
far away from the receiver, as one of the main tasks of quantum
teleportation is the transfer of quantum information across long
distances. It is then legitimate to assume that the radiation
field associated with mode 1 is not affected by losses due to
propagation, while the field associated with mode 2, which
usually has to propagate over much longer distances, can be
strongly affected by decoherence. The degradation of quantum
information is caused by the propagation of field mode 2 in a
noisy channel. Therefore, the output teleported state depends
both on the inefficiency of the homodyne detectors and on the
decoherence rate of the noisy channel.

We can formalize the effects of the previously described dy-
namics as follows. Let us denote by ρin = |φ〉in in〈φ| and ρres =
|ψ〉12 12〈ψ | the density matrices associated, respectively, with
the single-mode pure input state and with the two-mode pure
entangled resource. The single-mode input state is initially
disentangled from the two-mode entangled resource, so that
the the initial three-mode field is ρ0 = ρin ⊗ ρres, and the initial
global characteristic function reads

χ0(αin; α1; α2) = Tr[ρ0 Din(αin) D1(α1) D2(α2)]

= χin(αin) χres(α1; α2), (1)

where Tr denotes the trace operation, Dj (αj ) denotes the
displacement operator for the mode j (j = in, 1, 2), χin is
the characteristic function of the input state, and χres is
the characteristic function of the entangled resource. By
defining the quadrature operators Xj = 1√

2
(aj + a

†
j ) and Pj =

i√
2
(a†

j − aj ) (j = in, 1, 2) and the associated phase-space

real variables xj = 1√
2
(αj + α∗

j ) and pj = i√
2
(α∗

j − αj ), the
characteristic function can be written in terms of xj , pj ; that
is, χ0(αin; α1; α2) ≡ χ0(xin, pin; x1, p1; x2, p2).

The first step of the protocol consists of the Bell measure-
ment at Alice’s location, that is, the homodyne measurements
of the first quadrature of the mode 1 and of the second quadra-
ture of the mode in, with results x̃ and p̃, respectively. After
such nonideal Bell measurement (BM), the remaining mode 2
is left in a mixed state described by the corresponding single-
mode characteristic function χBm(x2, p2). In Appendix A
we prove in detail how to compute it in full generality for
arbitrary single-mode inputs and arbitrary two-mode entangled
resources. Here we report only the final expression:

χBm(x2, p2) = P−1(p̃, x̃)

(2π )2

∫
dξdυ eiξp̃−ix̃υ

×χin

(
T ξ√

2
,
T υ√

2

)
χres

(
T ξ√

2
,−T υ√

2
; x2, p2

)

× exp

[
−R2

4
(ξ 2 + υ2)

]
, (2)

where T 2 and R2 = (1 − T 2) denote, respectively, the trans-
missivity and reflectivity of the beam splitters that model
the losses. The function P(p̃, x̃) is the distribution of the
measurement outcomes p̃ and x̃ (see Appendix A). Note that
the Gaussian exponential in Eq. (2) is related to the vacua
entering the input ports of the fictitious beam splitters.

Afterwards, mode 2 propagates in a damping channel,
like, e.g., a lossy fiber, before it reaches Bob’s location.
The Markovian dynamics of a system subject to damping is
described, in the interaction picture, by the following master
equation for the density operator ρ [42,43]:

∂tρ = ϒ

2
{nthL[a†

2]ρ + (nth + 1)L[a2]ρ}, (3)

where the Lindblad superoperators are defined as L[O]ρ ≡
2OρO† − O†Oρ − ρO†O, ϒ is the mode damping rate, and
nth is the number of thermal photons. Finally, at Bob’s location,
a displacement λ = g(x̃ + ip̃) is performed on mode 2.
The real parameter g is the so-called gain factor [40]. The
combined effect of propagation in a damping channel and
unitary displacement determines the characteristic function
χout(x2, p2) of the final output state of the teleportation
protocol (see Appendix A for details):

χout(x2, p2) = χin (gT x2 , gTp2)

×χres(gT x2 ,−gTp2; e− τ
2 x2, e

− τ
2 p2)

× exp
[− 1

2�τ,R

(
x2

2 + p2
2

)]
, (4)

where τ = ϒt , and the thermal “renormalized” phase-space
covariance �τ,R is defined as

�τ,R = (1 − e−τ )
(

1
2 + nth

) + g2R2. (5)

The form of Eq. (4) highlights the different roles played
by the two sources of noise introduced in the teleportation
protocol, associated, respectively, with the damping rate ϒ

and the reflectivity R2. The two decoherence mechanisms
act separately but also in combination, as one can see from
the Gaussian exponential factor in Eq. (4), which in fact
is nonvanishing for R �= 0 and/or τ �= 0. The effect of the
imperfect Bell measurement is expressed also by the presence
of the scale factor T in the arguments of the input and
resource characteristic functions χin and χres. Vice versa,
decoherence due to noisy propagation affects obviously only
mode 2 by means of the exponentially decreasing weight e− τ

2

in the arguments of χres. The factorized form of the output
characteristic function, holding for the ideal protocol [31],

χout(x2, p2) = χin(x2, p2) χres(x2,−p2; x2, p2), (6)

is recovered, as expected, from Eq. (4) when R = 0 (T = 1),
ϒ = 0 (τ = 0), and g = 1.

III. ENTANGLED RESOURCES: TWO CLASSES OF
OPTIMIZED NON-GAUSSIAN STATES

Given the general description of the nonideal protocol
in terms of the characteristic functions, in this section we
analyze the performance of two classes of non-Gaussian
entangled resources for the teleportation of input coherent
states, respectively, the two-mode squeezed Bell-like states
|ψ〉SB and the two-mode squeezed catlike states |ψ〉SC:

|ψ〉SB = S12(ζ ){cos δ|0, 0〉 + eiθ sin δ|1, 1〉}, (7)

ψ〉SC = NSCS12(ζ ){cos δ|0, 0〉 + eiθ sin δ|γ, γ 〉}, (8)

where S12(ζ ) = e−ζa
†
1a

†
2+ζa1a2 is the two-mode squeezing

operator, ζ = reiφ , |m, n〉 ≡ |m〉1 ⊗ |n〉2 is a two-mode Fock
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state (of modes 1 and 2), |γ, γ 〉 ≡ |γ 〉1 ⊗ |γ 〉2 is a sym-
metric two-mode coherent state with complex amplitude
γ = |γ |eiϕ , and the normalization factor NSC is NSC = {1 +
e−|γ |2 sin 2δ cos θ}−1/2. In order to obtain a maximization of the
teleportation fidelity, it is necessary to perform a simultaneous
balanced optimization, on the free parameters (δ, θ , γ ), of
some partially competing properties [24,27]. These include
the entanglement content, the amount of non-Gaussianity of
the state [26], and a squeezed vacuum affinity G. For a generic
pure state |ψ〉, the latter is defined as [24,27]

G = sup
r

|〈−r|ψ〉|2, (9)

with |− r〉 = S12(−r)|0, 0〉. Indeed, the optimal non-Gaussian
resources (7) and (8) exhibit a sufficient squeezed vacuum
affinity, which then appears to be a crucially needed property
in order to select efficient and highly performing non-Gaussian
resources. For instance, one could as well consider a different
form of the squeezed Bell-like state, the so-called “Buridan
donkey” or “Hamlet” state |ψ〉SB2, that is obtained from the
singlet Bell state as follows:

|ψ〉SB2 = S12(ζ ){cos δ|0, 1〉 + eiθ sin δ|1, 0〉}. (10)

It is indeed simple to verify that, although such a state, at fixed
squeezing, is more entangled than a Gaussian twin beam, it
performs less efficiently both in the ideal and in the realistic
teleportation protocol. This fact can be understood if one looks
at the behavior of the squeezed vacuum affinity [24]. Namely,
the Buridan donkey state, Eq. (10), does not contain the
fundamental Gaussian contribution coming from the squeezed
vacuum. Therefore, it is “unbalanced,” in the sense that
it is less affine to the squeezed vacuum, and excessively
non-Gaussian compared to the optimized Bell-like state |ψ〉SB.
Therefore, the fine interplay among these three quantities, that
is, the entanglement, the degree of non-Gaussianity, and, in
particular, the squeezed vacuum affinity, cannot be realized in
the non-Gaussian resource (10) [24]. The crucial role played by
the squeezed vacuum affinity for the performance of different
non-Gaussian resources has been studied in Ref. [27]. In
particular, it has been shown that, in the ideal teleportation
protocol, the two-mode squeezed symmetric superposition of
Fock states, that is, S12(ζ )

∑2
k=0 ck|k, k〉, when optimized for

the teleportation of both input coherent states and single-
photon states, reduces to a squeezed truncated twin beam,
that is, S12(−r)

∑2
k=0 tanhk s|k, k〉. In the same article, it has

been also shown that, in the ideal teleportation protocol, the
optimized two-mode squeezed catlike states, that is, Eq. (8),
possess a high amount of squeezed vacuum affinity. Therefore,
besides a certain amount of entanglement, also a sufficient
degree of squeezed vacuum affinity appears to be necessary for
a non-Gaussian resource to be optimal for a BK teleportation
protocol.

Clearly, the performance of BK teleportation protocols
depends strongly on the structure of the second-order cor-
relations in the entangled resources. In this sense the BK
protocol, with its structure of homodyne measurements,
is particularly tailored to the use of Gaussian resources.
Therefore, a non-Gaussian resource may improve on the
performance of a corresponding Gaussian one only if the
fundamental Gaussian contribution coming from the squeezed

vacuum is subject to a not too drastic modification. A large
value of the affinity assures that the non-Gaussian resource
satisfies such a requirement. The interplay of the affinity with
the non-Gaussianity and the degree of entanglement allows
one to single out those non-Gaussian resources possessing
higher-order correlations that add to the leading Gaussian
structure of the two-mode entangled resource, thus enhancing
further the protocol efficiency, and lacking those non-Gaussian
contributions that are incompatible with the structure of the BK
protocol.

Indeed, a very interesting question open for future investiga-
tion is the inverse of the one studied in the present article. Here
we are analyzing the problem of optimizing non-Gaussian
resources given the BK protocol. The inverse question would
be that of adapting the protocol to the resources. Namely, given
a certain class of non-Gaussian squeezed resources with some
given properties, one asks how the BK protocol would have to
be modified in order to optimize the fidelity of teleportation.

We now proceed to determine the general expression of
the fidelity of teleportation in terms of the characteristic
function for the three different non-Gaussian entangled re-
sources |ψ〉SB, |ψ〉SC, and |ψ〉SB2. For instance, the two-mode
characteristic function χSB of the entangled resource (7) reads

χSB(α1, α2) = Tr[|ψ〉SB SB〈ψ | D1(α1)D2(α2)], (11)

and analogous expressions hold for χSC and χSB2. The corre-
sponding explicit expression is obtained using the two-mode
Bogoliubov transformations

S
†
12(ζ ) ai S12(ζ ) = (cosh r)ai − eiφ(sinh r)a†

j ,
(12)

(i �= j = 1, 2),

and the relation

〈m|D(α)|n〉 =
(

n!

m!

)1/2

αm−ne− 1
2 |α|2L(m−n)

n (|α|2), (13)

where L(m−n)
n (·) denotes the associated Laguerre polynomial

of order n.
The quantity measuring the success probability of a telepor-

tation protocol is the fidelity of teleportation F = Tr[ρinρout].
In the formalism of the characteristic function, the fidelity
reads

F = 1

π

∫
d2α χin(α)χout(−α),

= 1

2π

∫
dx2dp2 χin(x2, p2)χout(−x2,−p2), (14)

where α = 1√
2
(x2 + ip2), d2α = 1

2dx2dp2, and χout(α) ≡
χout(x2, p2) is given by Eq. (4). In the case of input coherent
states ρin = |β〉in in〈β| with complex amplitude β, which
we will always consider in the following, the characteristic
function of the input χin(α) reads

χin(α) = e− 1
2 |α|2+(αβ∗−α∗β). (15)

Eq. (14) is the fundamental quantity that measures the
efficiency of a CV teleportation protocol (ideal or nonideal).
At fixed squeezing, the optimization procedure consists of
the maximization of the teleportation fidelity (14) over the
free parameters of the non-Gaussian entangled resources,
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Eqs. (7), (8), and (10). Since it can be verified explicitly
that the optimal choice for the phases φ, θ , and ϕ are φ = π

and θ = ϕ = 0, the squeezed Bell-like state |ψSB〉 and the
Buridan donkey state |ψSB2〉 have a unique available free
parameter δ. On the other hand, the squeezed catlike state
|ψSC〉 has two free parameters, the angle δ and the modulus
|γ |. The analytical expressions of the teleportation fidelities
of input coherent states corresponding to the three different
classes of non-Gaussian resources, respectively, F (g)

SB (r, δ),
F (g)

SC (r, δ, |γ |), and F (g)
SB2(r, δ), are reported in Appendix C,

Eqs. (C1), (C4), and (C6). Let us notice that we have introduced
the superscript (g) to explicitly indicate the dependence on
the gain g. It is simple to verify that, for arbitrary g, the
fidelities are explicitly dependent on the amplitude β of the
input coherent states. In the next sections, the (numerical)
optimization procedures of the fidelity F are implemented
following two different routes. In Sec. IV we operate at a
specific value of the gain g = 1/T , for a fixed value of the
transmissivity T 2. This is the only choice that makes the
fidelity independent of β. In Sec. V we adopt a more general
approach by letting g be a fully free parameter and performing
appropriate optimization procedures.

In both cases, the maximization is carried out at fixed (finite)
squeezing r and at fixed τ , nth, and R. From an operational
point of view, fixing these parameters is equivalent to assuming
control of the characteristics of the experimental apparatus,
including the inefficiency of the photodetectors and the length
and damping rate of the noisy channel. Finally, concerning
the experimental realization of the two-mode non-Gaussian
resources, Eqs. (7) and (8), a detailed theoretical proposal is
put forward in Ref. [24]. The experimental realization of the
single-mode version of the state |ψ〉SC has been reported in
Ref. [19].

IV. β-INDEPENDENT OPTIMAL FIDELITY

In this section, we analyze the success probability of
quantum teleportation for the gain g fixed to be g = 1/T .
It is immediate to verify that with this choice, the fidelity
becomes β independent (see Appendix C). This choice allows
us to assume no knowledge about the alphabet of input
coherent states, whereas in the next section we assume a partial
knowledge of the input states over an interval of values of
β. For g = 1/T , the expressions for the fidelities FSB(r, δ),
FSC(r, δ, |γ |), and FSB2(r, δ) (where the superscript (g) has
been removed) greatly simplify. At fixed r , τ , nth, and R, the
optimal fidelities of teleportation are defined as

F (SB)
opt = max

δ
FSB(r, δ), (16)

F (SB2)
opt = max

δ
FSB2(r, δ), (17)

F (SC)
opt = max

δ,|γ |
FSC(r, δ, |γ |). (18)

In Fig. 3 we plot the optimal fidelities, corresponding to
the three classes of non-Gaussian resources, as functions of
the squeezing r at different values of the parameters τ , nth,
and R = √

1 − T 2. For comparison, the fidelity associated
with the Gaussian squeezed vacuum (twin beam) is reported
as well. In order to understand the separate effects of the
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FIG. 3. (Color online) Optimal fidelities of teleportation Fopt

as functions of the squeezing parameter r , for different values
of the parameters τ , nth, and R. The fidelities correspond to the
teleportation of single-mode input coherent states |β〉 using two-mode
squeezed Bell-like states (solid line) or two-mode squeezed catlike
states (dashed line) as entangled resources. The fidelities associated
with the two-mode squeezed vacuum (dotted line) and with the
Buridan donkey states (wide-spaced dotted line) are reported for
comparison. In panel I, τ = 0, nth = 0, and the reflectivity is fixed
at the values R2 = 0, 0.05, 0.1, 0.15. For each entangled resource
(associated with a specific plot style), the corresponding curves are
ordered from top to bottom with increasing R2. In panel II, nth = 0,
R = 0, and the reduced time is fixed at the values τ = 0, 0.1, 0.2,
0.3. For each entangled resource (associated with a specific plot
style) the corresponding curves are ordered from top to bottom with
increasing τ .

two different sources of decoherence on the degradation of
the fidelity, we consider two cases: (i) decoherence due to
imperfect Bell measurements alone, that is, R > 0 and τ = 0
(see Fig. 3, panel I); and (ii) decoherence due to propagation
in noisy channels alone, that is, R = 0 and τ > 0 (see Fig. 3,
panel II).

In the first case, the fidelities grow monotonically, with
increasing r , tending toward an asymptotic saturation value.
This behavior is equivalent to that observed in the instance
of an ideal protocol with noisy resources [27]. Indeed, the
case of a nonideal teleportation protocol with noisy (mixed)
resources is equivalent to the case of a nonideal protocol with
pure resources but with a larger amount of noise.
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In the second case, as r increases, the fidelity first increases
up to a τ -dependent maximum, rmax(τ ), and then decreases for
larger values of r . This behavior can be explained observing
that there are two competing effects associated to increasing
the degree of squeezing. The first effect is constructive and
is due to the enhanced affinity of the entangled resource
with an Einstein-Podolsky-Rosen (EPR) state for increasing
r . This constructive effect is contrasted by a disruptive one
due to the optical photons generated by the squeezing that
add to the thermal photons of the channel (initially set to
zero). For not too large values of r , the first effect dominates,
until a maximum is reached at r = rmax(τ ). For r > rmax(τ )
the disruptive effect becomes dominant, and the increasingly
large number of optical photons amplifies the decoherence,
leading to a strong suppression of the fidelity. The interplay
between squeezing r and channel decay rate τ can be
understood quantitatively by investigating the structure of the
output characteristic function χout, Eq. (4), that enters in the
expression of the fidelity (14). For gT = 1, χout takes the form

χout(x2, p2) = e− 1
2 �τ,R (x2

2+p2
2) χin(x2, p2)

×χres(x2,−p2; e− τ
2 x2, e

− τ
2 p2),

where �τ,R is given by Eq. (5). We see that, if τ �= 0, the
exponential weights e−τ/2 introduce an asymmetry between
the two modes of the resource in the expression of the
characteristic function χres. This asymmetry is responsible
for the decrease of the fidelity for r > rmax(τ ) at τ �= 0. The
important ensuing conclusion is that it is in fact detrimental
to increase the squeezing too much when the losses cannot be
reduced strongly. Therefore, the primary experimental goal
should always be that of reducing the losses rather than
incrementing the squeezing.

Moreover, Fig. 3 (panel II) shows that indeed at current
experimentally attainable values of the squeezing, that is,
r <∼ 1.5, the nonideal teleportation protocol operates already in
the regime of best efficiency, and both the squeezed Bell-like
resources (7) and the squeezed catlike resources (8) perform
much better than the corresponding (that is, at the same
squeezing) Gaussian resources. This result generalizes and
confirms the analogous behavior observed in the instance of
ideal protocols [24,27]. On the contrary, as already anticipated
in the previous section, the Buridan donkey resources allow for
teleportation fidelities even worse than those associated with
the Gaussian twin beam. Indeed, from Eq. (C6) it follows that
the optimal β-independent fidelity F (SB2)

opt is obtained (with
g = 1/T ) by letting δ = 0. In this case, the Buridan donkey
state trivially reduces to a two-mode squeezed Fock state.

It is worth noting that, at gT = 1 and any fixed value of
τ , all the non-Gaussian resources share with the Gaussian one
the same maximum value of the fidelity, obtained at the same
value rmax(τ ) of the squeezing parameter. This implies that, at
given τ , one can determine the value rmax(τ ) for all the various
resources by just considering the simple Gaussian instance. A
straightforward computation then yields

exp{2rmax} =
√

cosh(τ/2) + 1

cosh(τ/2) − 1
. (19)
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FIG. 4. (Color online) Optimal fidelities of teleportation Fopt as
functions of the squeezing parameter r , with τ = 0.3, nth = 0, and
R2 = 0.05. The different lines represent the fidelity of teleportation of
input coherent states |β〉, corresponding, respectively, to the following
entangled resources: squeezed Bell-like state (solid line), squeezed
catlike state (dashed line), squeezed vacuum (dotted line), Buri-
dan donkey state (wide-spaced dotted line), and photon-subtracted
squeezed state (dot-dashed line).

We see that, for increasing τ , the range [0, rmax(τ )] of best
efficiency reduces.

Finally, we consider the combined effect of the two
decoherence mechanisms. In Fig. 4 we plot the optimal
fidelities associated with the different classes of non-Gaussian
resources with the experimental parameters fixed at the values
τ = 0.3, nth = 0, and R2 = 0.05. In this case, the simultaneous
presence of the two effects leads to a strong suppression of the
fidelity both with respect to the ideal case and to each of the two
nonideal cases taken separately. A regime of best efficiency is
still present, but significantly reduced.

In Fig. 4, we also report the fidelity of teleportation
associated with the two-mode photon-subtracted squeezed
states:

ψ〉PSS = Na1a2S12(ζ )|0, 0〉
= N eiφS12(ζ ){−|0, 0〉 + eiφ tanh r|1, 1〉}, (20)

where N = (1 + tanh2 r)−1/2 is the normalization [24]. This
non-Gaussian resource belongs, as a particular subcase, to
the class of the squeezed Bell-like resources. Indeed, Eq. (7)
reduces to Eq. (20) for δ = arctan(tanh r) (with φ = π and
θ = 0). The interest in the resources (20) is due to the fact
that such states have already been produced in the laboratory
[16,17]. Furthermore, the corresponding de-Gaussification
scheme can be easily integrated in the BK teleportation
protocol [21]. As in the ideal instance [24], and also in the
realistic case, see Fig. 4, the performance of the non-Gaussian
resource (20) is intermediate between that of the Gaussian twin
beam and that of the squeezed Bell-like states for 0 � r <∼ 1,
whereas for r >∼ 1 it degrades much faster. The affinity to
the two-mode squeezed vacuum of state (20) decreases for
growing r; correspondingly, the resource becomes more and
more non-Gaussian. Moreover, for some intervals of values
of the squeezing parameter the photon-subtracted squeezed
states behave better than the squeezed catlike states. It is
worth noticing that there exists a “crossing” value of r at
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which the optimal squeezed Bell-like state reduces to the
photon-subtracted squeezed state and thus the corresponding
fidelities of teleportation coincide (see Fig. 4).

In this section we have considered always the case gT = 1.
The scenario changes dramatically if gT �= 1. Indeed, in this
case the analytical expressions of the fidelities (C1), (C4), (C5),
and (C6) depend on the coherent amplitude β. This dependence
affects quite significantly the behavior of the fidelities as we
will see in the next section.

V. AVERAGE OPTIMAL FIDELITY AND
ONE-SHOT FIDELITY

In order to investigate possible improvements in the
efficiency of the teleportation protocol, in this section we aim at
optimizing the success probability of teleportation assuming
g as a further free optimization parameter. The fidelity of
teleportation as a function of the gain is studied for several
input states in Ref. [33], while displacement strategies are
considered in Ref. [34], in order to improve the output quality
for a reduced alphabet of possible input states. These two
important works are concerned with the study of the ideal
protocol implemented using Gaussian resources. The effect of
absorption due to propagation in fibers is studied in Ref. [30],
where, for the case of Gaussian resources, it is shown that the
gain-optimized fidelity of teleportation is strongly suppressed.

Let us now describe the optimization procedure applied
to the instance of non-Gaussian resources. Following the
approach of Refs. [30,34], we define the average fidelity F
by averaging the β-dependent fidelity F(β) over the set of
input coherent states |β〉 as follows:

F =
∫

d2βF(β)p(β), (21)

p(β) = (πσ )−1 exp{−σ−1 |β|2}, (22)

where the function p(β) (22) is a Gaussian distribution
centered at β = 0. The variance parameter σ determines the
cutoff of the amplitude β and thus the reduced alphabet that
one considers. We compare our results with the quantum
benchmark for the storage and transmission of coherent states
distributed according to Eq. (22) [44]. This benchmark is
equivalent to the upper bound Fclass achievable with any
classical strategy and satisfying the inequality [44]

Fclass � σ + 1

2σ + 1
. (23)

The first step of our optimization procedure, employing
Eqs. (C1) and (C4), is to determine the average fidelities

F (g)
SB(r, δ) and F (g)

SC(r, δ, |γ |), whose expressions we do not
report because their long and cumbersome structure is not
particularly illuminating. Further, we do not apply the opti-
mization procedure to the teleportation fidelity associated with
the Buridan donkey resource as we have already showed that
no enhancement can be obtained compared to the Gaussian
twin beam resource. At fixed squeezing r and experimental
parameters τ , nth, and R, we define the optimal values gopt,
δopt, and |γopt| of the free parameters as those that maximize
the fidelities averaged over the values of β weighted according

to the normal distribution p(β) (22):

F (gopt)
SB (r, δopt)

.= max
{g,δ}

F (g)
SB(r, δ), (24)

F (gopt)
SC (r, δopt, |γopt|) .= max

{g,δ,|γ |}
F (g)

SC(r, δ, |γ |). (25)

The optimal values of the parameters are determined numer-
ically. Next, we introduce the one-shot fidelities F1s as the
nonaveraged fidelities evaluated at the optimal values of the
parameters and a fixed value of β:

F (SB)
1s (β, r)

.= F (gopt)
SB (β, r, δopt), (26)

F (SC)
1s (β, r)

.= F (gopt)
SC (β, r, δopt, |γopt|). (27)

For each possible value of β one can estimate the success
probability of teleportation associated with a specific event.
The functions F1s(β, r) yield the teleportation fidelities at
given squeezing r and for an input coherent state with specific
amplitude β. Partial information about the alphabet of input
states, quantified by the choice of the variance σ in the
distribution (22), can be exploited to obtain a refinement of the
optimization procedure. Indeed, we expect that smaller values
of σ , corresponding to a better knowledge of the alphabet of
input states, will lead to higher values of the one-shot fidelities.

A. Fidelities: Variable r , fixed τ

In Fig. 5, at the same fixed parameters of Fig. 4, τ = 0.3,
nth ≈ 0, R2 = 0.05, we plot the one-shot fidelity F1s as a
function of r , both for the non-Gaussian resources and for the
Gaussian twin beam. In panel I we plot the one-shot fidelities
for σ = 10 and β = 1, 2, 3; in panel II we plot the one-shot
fidelities for σ = 100 and β = 3, 5, 10 (obviously |β|2 must
fall in the interval [0, σ ]). Let us notice that according to
Eq. (23), the quantum benchmarks for the two choices of σ

are Fclass(σ = 10) ≈ 0.523 and Fclass(σ = 100) ≈ 0.502.
Panel I of Fig. 5, corresponding to σ = 10 and small values

of |β|, shows that, as soon as r is different from zero, all
the resources yield fidelities above the quantum benchmark.
Moreover, one observes a significant enhancement of the
fidelities with respect to the β-independent ones of Fig. 4
(corresponding to g = 1/T ). Indeed, while the β-independent
fidelities in Fig. 4 are well below the value 0.8, all the one-shot
fidelities of panel I of Fig. 5 lie above this value for squeezing r

ranging from about 0.8 to about 1.2, depending on the resource
being considered. Also in this case the non-Gaussian resources
exhibit better performances with respect to the Gaussian ones.
Panel II of Fig. 5 shows that for σ = 100 and larger values of
|β|, the enhancement of the fidelity is quite modest compared
to the β-independent fidelity, reported in Fig. 4. This result is
not surprising because a variance σ = 100 obviously allows
less knowledge of the alphabet of input states with respect
to the case σ = 10. It is important to remark that the curves
corresponding to the same entangled resource but different
values of β become effectively distinguishable only when
r >∼ 1.

B. Fidelities: Variable τ , fixed r

We now study the fidelities as functions of the reduced time,
or effective length of the fiber τ , at fixed squeezing r . To this
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FIG. 5. (Color online) One-shot fidelity of teleportation F1s , for
input coherent states |β〉, as a function of the squeezing parameter
r , with τ = 0.3, nth = 0, R2 = 0.05, for the following resources:
squeezed Bell-like state (solid line), squeezed catlike state (dashed
line), and a squeezed vacuum (dotted line). In panel I, β = 1, 2, 3 and
σ = 10. In panel II, β = 3, 5, 10 and σ = 100. For each entangled
resource (associated with a specific plot style), the corresponding
curves are ordered from top to bottom with increasing β.

aim, fixing the squeezing parameter at the intermediate value
r = 0.8, with nth = 0, R2 = 0.05, we investigate the behavior
of the one-shot fidelities. In Fig. 6, choosing the same values
of β and σ as in Fig. 5, we plot F1s as a function of τ .

Figure 6 shows that the teleportation fidelity remains above
the classical threshold up to significantly large values of τ .
At σ = 10 and for small values of the coherent amplitude β

(see panel I), the one-shot fidelities associated with the same
resource but with different values of β are distinguishable.
Vice versa, at σ = 100 and for larger values of β (see
panel II), the fidelities associated with the same resource but
different values of β are virtually indistinguishable, and thus
effectively β independent. Comparing the performance of the
different resources in the time domain, one can distinguish
three regimes: For short and long times the one-shot fidelities
associated with non-Gaussian resources exhibit a significant
enhancement compared to the Gaussian instance, whereas for
intermediate times there is a substantial equivalence in the
performance of Gaussian and non-Gaussian resources.
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FIG. 6. (Color online) One-shot fidelity of teleportation F1s , for
input coherent states |β〉, as a function of the reduced time τ , with
r = 0.8, nth = 0, R2 = 0.05, for the following entangled resources:
squeezed Bell-like state (solid line), squeezed catlike state (dashed
line), and squeezed vacuum (dotted line). In panel I, β = 1, 2, 3 and
σ = 10. In panel II, β = 3, 5, 10 and σ = 100. For each entangled
resource (associated with a specific plot style), the corresponding
curves are ordered from top to bottom with increasing β.

VI. CONCLUSIONS

In this article we have investigated the performance of
non-Gaussian entangled resources in nonideal protocols of
quantum teleportation of input coherent states. We have
resorted to the characteristic function formalism for the
description of protocols affected by decoherence. We have
discussed how the effects of decoherence stemming from
photon losses in fiber and imperfect Bell measurements affect
the success probability of teleportation. In particular, we have
established that, while the fidelities associated with different
resources remain above the classical benchmark for quite long
times, the non-Gaussian resources always perform better than
the Gaussian ones, in the ideal as well as in the nonideal
quantum teleportation protocol.

The present analysis should be extended to include tele-
portation of two-mode states using multimode non-Gaussian
resources [45]. It would be also interesting to consider the
optimization of teleportation protocols with non-Gaussian
entangled resources with respect to local properties (such as
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single-mode squeezing), by extending the existing schemes
for the local optimization of Gaussian resources [46].
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APPENDIX A: REALISTIC TELEPORTATION PROTOCOL
IN THE CHARACTERISTIC FUNCTION

REPRESENTATION

Here we outline in some detail the description of the non-
ideal BK teleportation protocol in terms of the characteristic
function formalism. Let us consider the Bell measurement
shown in Fig. 2. The 50-50 beam splitter BS1 acts on the initial
density operator ρ0 through a SU(2) transformation UBS1 (π

4 ),
consisting of a balanced mixing of the modes “in” and 1:

ρ ′
0 = UBS1

(π

4

)
ρ0 U

†
BS1

(π

4

)
. (A1)

This transformation yields the following relation among the
phase-space variables corresponding to the input and output
modes of the beam splitter:

x ′
in = 1√

2
(xin + x1), p′

in = 1√
2

(pin + p1),

x ′
1 = 1√

2
(xin − x1), p′

1 = 1√
2

(pin − p1),

(A2)

where the canonical variables x ′
j and p′

j correspond to
the primed modes j ′ (j ′ = in′, 1′). Using Eq. (A2), the
characteristic function χ ′

0 associated with the density operator
ρ ′

0 reads

χ ′
0(x ′

in, p
′
in; x ′

1, p
′
1; x2, p2)

= χin

[
1√
2

(x ′
in + x ′

1) ,
1√
2

(p′
in + p′

1)

]

×χres

[
1√
2

(x ′
in − x ′

1) ,
1√
2

(p′
in − p′

1), x2 , p2

]
. (A3)

The fields 1′ and in′ at the output of the beam splitter BS1

feed the input ports of the two beam splitters BS2 and BS3,
respectively, with equal transmissivity η (see Fig. 2). The
remaining input ports of the beam splitters are fed with the
field modes 3′ and 4′, initially in the vacuum states |0〉4′ and
|0〉3′ , corresponding to the characteristic functions

χk(x ′
k, p

′
k) = e− 1

4 (x
′2
k +p

′2
k ), k = 3, 4. (A4)

The beam splitters BS2 and BS3, associated with the SU(2)
transformations UBSj

(η) (j = 2, 3), transform the variables x ′
j

and p′
j (j = in, 1, 3, 4) according to the following relations:

x ′′
1 = T x ′

1 − Rx ′
4, p′′

1 = Tp′
1 − Rp′

4,
(A5)

x ′′
4 = T x ′

4 + Rx ′
1, p′′

4 = Tp′
4 + Rp′

1,

x ′′
in = T x ′

in − Rx ′
3, p′′

in = Tp′
in − Rp′

3,
(A6)

x ′′
3 = T x ′

3 + Rx ′
in, p′′

3 = Tp′
3 + Rp′

in,

where T 2 = η and R2 = 1 − η denote, respectively, trans-
missivity and reflectivity of the beam splitters, and double
primes denote output modes. At the output of BS2 and BS3,
the transformed five-mode density operator reads

ρBS = UBS3 (η)UBS2 (η)ρ ′
0 × |0〉3′ 3′ 〈0|

⊗ |0〉4′ 4′ 〈0|U †
BS2

(η)U †
BS3

(η), (A7)

where ρ ′
0 is given by Eq. (A1). By exploiting the aforemen-

tioned transformations, a simple formal manipulation yields
the characteristic function χBS corresponding to ρBS:

χBS(x ′′
in, p

′′
in; x ′′

1 , p′′
1 ; x2, p2; x ′′

3 , p′′
3 ; x ′′

4 , p′′
4 )

= χin

(
1√
2

[T x ′′
in + Rx ′′

3 + T x ′′
1 + Rx ′′

4 ],

1√
2

[Tp′′
in + Rp′′

3 + Tp′′
1 + Rp′′

4 ]

)

×χres

(
1√
2

[T x ′′
in + Rx ′′

3 − T x ′′
1 − Rx ′′

4 ],

1√
2

[Tp′′
in + Rp′′

3 − Tp′′
1 − Rp′′

4 ]; x2, p2

)

×χ3(T x ′′
3 − Rx ′′

in , Tp′′
3 − Rp′′

in)

×χ4(T x ′′
4 − Rx ′′

1 , Tp′′
4 − Rp′′

1 ), (A8)

where the functions χk , with k = 3, 4, are given by Eq. (A4).
The Bell measurement, which consists of the two homodyne
measurements of the variables p′′

in and x ′′
1 , yields the results

p′′
in = p̃ and x ′′

1 = x̃ and transforms the characteristic function
χBS to (see appendix B for details)

χBm(x2, p2) = P−1(p̃, x̃)

(2π )2

∫
dx ′′

indp
′′
1 eix′′

inp̃−ix̃p′′
1

×χBS(x ′′
in, 0; 0, p′′

1 ; x2, p2; 0, 0; 0, 0). (A9)

Here P(p̃, x̃) is the distribution function of the outcomes p̃

and x̃. It reads

P(p̃, x̃) = Tr[|p̃〉in′′ in′′ 〈p̃| ⊗ |x̃〉1′′ 1′′ 〈x̃| ρBS]

= 1

(2π )2

∫
dx ′′

indp
′′
1 exp{ix ′′

inp̃ − ix̃p′′
1}

×χBS(x ′′
in, 0; 0, p′′

1 ; 0, 0; 0, 0; 0, 0). (A10)

Let us notice that in Eq. (A9) the modes 3′′ and 4′′, associated
with the unused output ports of the two fictitious beam splitters,
have been traced out. This is equivalent to setting to zero
in the function χBS the variables x ′′

j and p′′
j with j = 3, 4.

Meanwhile, mode 2 propagates in a noisy channel toward
Bob’s location. The dynamics of this mode is described by the
master equation (3), and the corresponding diffusion equation
for the characteristic function χt (x2, p2) is [42,43]

∂tχt (x2, p2) = −ϒ

2

[ (
1

2
+ nth

) (
x2

2 + p2
2

)
+ x2∂x2 + y2∂y2

]
χt (x2, p2). (A11)
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Given the initial characteristic function χBm(x2, p2), Eq. (A9),
the global characteristic function χt (x2, p2) following the Bell
measurement is given by the solution of Eq. (A11):

χt (x2, p2) = χBm(e− 1
2 ϒtx2, e

− 1
2 ϒtp2)

× exp

{
−1

2
(1 − e−ϒt )

(
1

2
+ nth

) (
x2

2 + p2
2

)}
.

(A12)

After recovering the classical information, Bob performs on
mode 2 the displacement λ = g(x̃ + ip̃), where g is the gain
factor. One easily verifies that, given a state ρt described
by the characteristic function χt (x2, p2), the displaced state
D2(λ)ρtD

†
2(λ) is described by the characteristic function

χD(x2, p2) = χt (x2, p2) ei
√

2Re[λ]p2−i
√

2Im[λ]x2 . (A13)

In order to obtain the density operator ρout [or, equivalently,
the characteristic function χout(x2, p2)] of the final output state
of the teleportation protocol, one must take the average of all
the possible outcomes x̃, p̃ of the Bell measurement:

χout(x2, p2)

=
∫

dx̃dp̃ P(p̃, x̃) χD(x2, p2)

= 1

(2π )2

∫
dx̃ dp̃ dx ′′

in dp′′
1

× exp{ix̃(
√

2gp2 − p′′
1 ) − ip̃(

√
2gx2 − x ′′

in)}
×χBS(x ′′

in, 0; 0, p′′
1 ; e− 1

2 ϒtx2, e
− 1

2 ϒtp2; 0, 0; 0, 0)

× exp

{
−1

2
(1 − e−ϒt )

(
1

2
+ nth

)
(x2

2 + p2
2)

}
.

(A14)

Finally, by exploiting the relation (2π )−1
∫

dk exp{ikx} =
δ(x), and recalling the expression Eq. (A8) of χBS, we find
that Eq. (A14) reduces to Eq. (4).

APPENDIX B: HOMODYNE MEASUREMENT IN THE
CHARACTERISTIC FUNCTION REPRESENTATION

In this appendix we describe the homodyne measure-
ment for a multimode state in the characteristic func-
tion representation. In particular, we determine the ex-
pression for the density operator and for its characteristic
function of the reduced state after postselection, that is,
of the output state resulting from the homodyne mea-
surements on appropriately selected modes. Let us con-
sider a three-mode quantum state ρ123, with characteristic
function χ123(α1, α2, α3) = Tr[ρ123 D1(α1)D2(α2)D3(α3)] ≡
χ123(x1, p1; x2, p2; x3, p3), with αj = 2−1/2(xj + ipj ) (j =
1, 2, 3). Let us recall that ρ123 can be written in terms of the
Weyl expansion:

ρ123 = 1

π3

∫
d2α1d

2α2d
2α3 χ123(α1, α2, α3)

×D1(−α1)D2(−α2)D3(−α3). (B1)

Homodyne measurements performed on two modes, acting as
two conditional measurements, reduce the three-mode state to
a single-mode one. Let p1 = p̃ and x2 = x̃ be the results of the

homodyne measurements of the quadratures p1 and x2. The
homodyne measurements are expressed by projections on the
quadrature eigenstates |p̃〉1 and |x̃〉2. Thus the output state ρ̃3

subsequent to the conditional measurements is

ρ̃3 = P−1(p̃, x̃) Tr12[|p̃〉1 1〈p̃| ⊗ |x̃〉2 2〈x̃| ρ123]. (B2)

Here the normalization factor P(p̃, x̃) = Tr3[ρ̃3] represents
the distribution function of the outcomes p̃ and x̃. By using
the relations

1〈p̃|D1(−α1)|p̃〉1 = e− i
2 x1p1+ix1p̃δ(p1), (B3)

2〈x̃|D2(−α2)|x̃〉2 = e− i
2 x2p2−ix̃p2δ(x2), (B4)

Eq. (B2) writes

ρ̃3 = P−1(p̃, x̃)

(2π )3

∫
dx1dp2dx3dp3e

ix1p̃−ix̃p2

×χ123(x1, 0; 0, p2; x3, p3)D3

(
−x3 + ip3√

2

)
. (B5)

Denoting by χ3(x3, p3) the characteristic function of the state
ρ̃3, we have

ρ̃3 = 1

2π

∫
dx3dp3χ3(x3, p3)D3

(
−x3 + ip3√

2

)
. (B6)

Comparing Eqs. (B5) and (B6), we obtain

χ3(x3, p3) = P−1(p̃, x̃)

(2π )2

∫
dx1dp2e

ix1p̃−ix̃p2

×χ123(x1, 0; 0, p2; x3, p3). (B7)

Moreover, it is easy to verify that

P(p̃, x̃) = 1

(2π )2

∫
dx1dp2e

ix1p̃−ix̃p2

×χ123(x1, 0; 0, p2; 0, 0). (B8)

APPENDIX C: ANALYTICAL EXPRESSIONS FOR
THE FIDELITIES

In this appendix we report the analytical expressions for
the fidelities of teleportation of input coherent states using two
classes of non-Gaussian entangled resources: the squeezed
Bell-like states (7) and the squeezed catlike states (8). For
comparison we include also the expressions of the fidelities
associated with the Gaussian twin beam and of the Buridan
donkey state (10). The fidelity F (g)

SB (r, δ) for the squeezed
Bell-like state ((7) reads

F (g)
SB (r, δ) = 4

�
e− 4

�
(g̃−1)2|β|2

(
1 + 2e−4r−2τ

�4

× [(1 + e
τ
2 g̃)2 − e4r (1 − e

τ
2 g̃)2]2

× [�2 − 8�(g̃ − 1)2|β|2 + 8(g̃ − 1)4|β|4] sin2 δ

+ 2e−2r−τ

�2
[4(g̃ − 1)2|β|2 − �] sin δ{cos δ

× [−(1 + e
τ
2 g̃)2 + e4r (1 − e

τ
2 g̃)2] + sin δ

× [(1 + e
τ
2 g̃)2 + e4r (1 − e

τ
2 g̃)2]}

)
, (C1)
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where

�
.= e−2r−τ [(1 + e

τ
2 g̃)2 + e4r (1 − e

τ
2 g̃)2

+ 2e2r+τ (1 + g̃2 + 2�τ,R)], (C2)

g̃ = g T , (C3)

and �τ,R is defined in Eq. (5). The fidelity F (g)
SC (r, δ, |γ |) for

the squeezed catlike state (8) reads

F (g)
SC (r, δ, |γ |) = 4

�(1 + e−|γ |2 sin 2δ)
(cos2 δ

× e− 4
�

(g̃−1)2|β|2 + e−|γ |2− 1
�

[(g̃−1)(β+β∗)−er g̃|γ |]2

× sin δ cos δ{e 1
�

[(g̃−1)(β−β∗)+e−r g̃|γ |]2 + c.c.}
+ sin2 δ e− 4

�
|(g̃−1)β−er |γ |(g̃−e

τ
2 )|2 ). (C4)

For g̃ = 1 and τ = R = nth = 0, Eqs. (C1) and (C4) reduce
to the expressions of the fidelities associated with the ideal
protocol with unit gain, which had been originally determined
in Ref. [27]. By letting δ = 0 in Eqs. (C1) and (C4), we recover

the fidelity F (g)
TwB(r) associated with the Gaussian twin-beam

resource:

F (g)
TwB(r) = 4

�
e− 4

�
(g̃−1)2|β|2 . (C5)

Let us notice that such a result can also be obtained by putting
|γ | = 0 in Eq. (C4). For completeness, we also report the
expression of the teleportation fidelity associated with the
Buridan donkey entangled resource (10):

F (g)
SB2(r, δ) = 4

�
e− 4

�
(g̃−1)2|β|2

(
1 + e−2r−τ

�2

×{[(1 + e
τ
2 g̃)2 + e4r (1 − e

τ
2 g̃)2]

× [4(g̃ − 1)2|β|2 − �] + 2 cos 2δ e2r (eτ g̃2 − 1)

× [� − 4(g̃ − 1)2|β|2] − 2 sin 2δ (g̃ − 1)2

× (β2 + β∗2)[(1 + e
τ
2 g̃)2 − e4r (1 − e

τ
2 g̃)2]}

)
.

(C6)
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[30] A. V. Chizhov, L. Knöll, and D.-G. Welsch, Phys. Rev. A 65,

022310 (2002); A. V. Chizhov, JETP Lett. 80, 711 (2004).
[31] P. Marian and T. A. Marian, Phys. Rev. A 74, 042306 (2006).
[32] W. P. Bowen, N. Treps, B. C. Buchler, R. Schnabel, T. C. Ralph,

T. Symul, and P. K. Lam, IEEE J. Sel. Top. Quant. 9, 1519
(2003).

[33] T. Ide, H. F. Hofmann, A. Furusawa, and T. Kobayashi, Phys.
Rev. A 65, 062303 (2002).

[34] P. T. Cochrane and T. C. Ralph, Phys. Rev. A 67, 022313 (2003).
[35] S. L. Braunstein and H. J. Kimble, Phys. Rev. Lett. 80, 869

(1998).
[36] S. J. van Enk, Phys. Rev. A 60, 5095 (1999).
[37] A. Vukics, J. Janszky, and T. Kobayashi, Phys. Rev. A 66, 023809

(2002).
[38] H. F. Hofmann, T. Ide, T. Kobayashi, and A. Furusawa, Phys.

Rev. A 62, 062304 (2000).
[39] A. Furusawa and N. Takei, Phys. Rep. 443, 97 (2007).
[40] P. van Loock, Fortschr. Phys. 50, 12 (2002).

012333-11



F. DELL’ANNO, S. DE SIENA, AND F. ILLUMINATI PHYSICAL REVIEW A 81, 012333 (2010)

[41] U. Leonhardt and H. Paul, Phys. Rev. A 48, 4598
(1993).

[42] D. Walls and G. Milburn, Quantum Optics (Springer, Berlin,
1994).

[43] A. Serafini, M. G. A. Paris, F. Illuminati, and S. De Siena,
J. Opt. B: Quantum Semiclass. Opt. 7, R19
(2005).

[44] S. L. Braunstein, C. A. Fuchs, and H. J. Kimble, J. Mod. Opt.
47, 267 (2000); K. Hammerer, M. M. Wolf, E. S. Polzik, and
J. I. Cirac, Phys. Rev. Lett. 94, 150503 (2005).

[45] S. Adhikari, A. S. Majumdar, and N. Nayak, Phys. Rev. A 77,
012337 (2008).

[46] G. Adesso and F. Illuminati, Phys. Rev. Lett. 95, 150503 (2005);
A. Mari and D. Vitali, Phys. Rev. A 78, 062340 (2008).

012333-12


