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Universal dynamical decoupling: Two-qubit states and beyond
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Uhrig’s dynamical decoupling pulse sequence has emerged as a universal and highly promising approach
to decoherence suppression. So far, both the theoretical and experimental studies have examined single-qubit
decoherence only. This work extends Uhrig’s universal dynamical decoupling from one-qubit to two-qubit systems
and even to general multilevel quantum systems. In particular, we show that by designing appropriate control
Hamiltonians for a two-qubit or a multilevel system, Uhrig’s pulse sequence can also preserve a generalized
quantum coherence measure to the order of 1 + O(T N+1) with only N pulses. Our results lead to a very useful
scheme for efficiently locking two-qubit entangled states. Future important applications of Uhrig’s pulse sequence
in preserving the quantum coherence of multilevel quantum systems can also be anticipated.

DOI: 10.1103/PhysRevA.81.012331 PACS number(s): 03.67.Pp, 03.65.Yz, 07.05.Dz, 33.25.+k

I. INTRODUCTION

Decoherence, which is the loss of quantum coherence
due to system-environment coupling, is a major obstacle
for a variety of fascinating quantum-information tasks. Even
with the assistance of error corrections, decoherence must
be suppressed below an acceptable level to realize a useful
quantum operation. Analogous to refocusing techniques in
nuclear magnetic resonance (NMR) studies, the dynamical
decoupling (DD) approach to decoherence suppression has
attracted tremendous interest. The central idea of DD is to use
a control-pulse sequence to effectively decouple a quantum
system from its environment.

During the past years, several DD pulse sequences have
been proposed. The so-called “bang-bang” control has proved
to be very useful [1–3] with a variety of extensions. However, it
is not optimized for a given period T of coherence preservation.
The Carr-Purcell-Meiboom-Gill (CPMG) sequence from the
NMR context can suppress decoherence up to O(T 3) [4]. In an
approach called “concatenated dynamical decoupling” [5,6],
the decoherence can be suppressed to the order of O(T N+1)
with 2N pulses. Remarkably, in considering a single qubit
subject to decoherence without population relaxation, Uhrig’s
(optimal) dynamical decoupling (UDD) pulse sequence pro-
posed in 2007 can suppress decoherence up to O(T N+1) with
only N pulses [4,7,8]. In a UDD sequence, the j th control
pulse is applied at the time

Tj = T sin2

(
jπ

2N + 2

)
; j = 1, 2, . . . , N. (1)

In most cases UDD outperforms all other known DD control
sequences, a fact already confirmed in two beautiful experi-
ments [9–11]. In a dramatic theoretical development, Yang and
Liu proved that UDD is universal for suppressing single-qubit
decoherence [12]. That is, for a single qubit coupled with
an arbitrary bath, UDD works regardless of how the qubit is
coupled to its bath.
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Given the universality of UDD for suppression of single-
qubit decoherence, it becomes urgent to examine whether
UDD is useful for preserving the quantum coherence of
two-qubit states. This extension is necessary and important
because many quantum operations involve at least two qubits.
Conceptually, there is also a big difference between single-
qubit coherence and two-qubit coherence: preserving the
latter often means the storage of quantum entanglement.
Furthermore, because quantum entanglement is a nonlocal
property and cannot be affected by local operations, preserving
quantum entanglement between two qubits by a control
pulse sequence will require the use of nonlocal control
Hamiltonians.

In this work, by exploiting a central result in Yang and Liu’s
universality proof [12] for UDD in single-qubit systems and by
adopting a generalized coherence measure for two-qubit states,
we show that the UDD pulse sequence applies to two-qubit
systems, at least for preserving one predetermined type of
quantum coherence. The associated control Hamiltonian is
also explicitly constructed. This significant extension from
single-qubit to two-qubit systems opens up an exciting avenue
of dynamical protection of quantum entanglement. Indeed, it
is now possible to efficiently lock a two-qubit system in a
desired entangled state, without any knowledge of the bath.
Encouraged by our results for two-qubit systems, we then
show that, in general, the coherence of an arbitrary M-level
quantum system, which is characterized by our generalized
coherence measure, can also be preserved by UDD to the
order of 1 + O(T N+1) with only N pulses, irrespective of
how this system is coupled with its environment. Hence,
in principle, an arbitrary (but known) quantum state of
an m-qubit system with M = 2m levels can be locked by
UDD, provided that the required control Hamiltonian can
be implemented experimentally. To establish an interesting
connection with a kicked multilevel system recently realized
in a cold-atom laboratory [13], we also explicitly construct
the UDD control Hamiltonian for decoherence suppression in
three-level quantum systems.

This article is organized as follows. In Sec. II, we first
briefly outline an important result proved by Yang and Liu [12];
we then present our theory for UDD in two-qubit systems,
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followed by an extension to multilevel quantum systems.
In Sec. III, we present supporting results from some simple
numerical experiments. Section IV discusses the implications
of our results and then concludes this article.

II. UDD THEORY FOR TWO-QUBIT AND GENERAL
MULTILEVEL SYSTEMS

A. On Yang-Liu’s universality proof for single-qubit systems

For later use we first briefly describe one central result in
Yang and Liu’s work [12] for proving the universality of the
UDD control sequence applied to single-qubit systems. Let C

and Z be two time-independent Hermitian operators. Define
two unitary operators U

(N)
± as follows:

U
(N)
± (T ) = e−i[C±(−1)N Z](T −TN )e−i[C±(−1)(N−1)Z](TN −TN−1) · · ·

× e−i[C∓Z](T2−T1)e−i(C±Z)T1 . (2)

Yang and Liu proved that for Tj satisfying Eq. (1), we must
have

(U (N)
− )†U (N)

+ = 1 + O(T N+1); (3)

that is, the product of (U (N)
− )† and U

(N)
+ differs from unity

only by O(T N+1) for sufficiently small T . In the interaction
representation,

ZI (t) ≡ eiCtZe−iCt

=
∞∑

p=0

(it)p

p!
[C, [C, . . . , [C,Z]]]︸ ︷︷ ︸

p folds

, (4)

hence the above expression for U
(N)
± can be rewritten in the

following compact form:

U
(N)
± (T ) = e−iCT J

[
e−i

∫ T

0 ±FN (t)ZI (t)dt
]
, (5)

where T is the final time, J denotes the time-ordering operator,
and

FN (t) = (−1)j for t ∈ (Tj , Tj+1). (6)

As an important observation, we note that although Ref. [12]
focused on single-qubit decoherence in a bath, Eq. (3) was
proved therein for arbitrary Hermitian operators C and Z.
This motivated us to investigate under what conditions can the
unitary evolution operator of a controlled two-qubit system
plus bath assume the same form as Eq. (2).

B. Decoherence suppression in two-qubit systems

Quantum coherence is often characterized by the magnitude
of the off-diagonal matrix elements of the system density
operator after tracing over the bath. In single-qubit cases, the
transverse polarization then measures the coherence and the
longitudinal polarization measures the population difference.
Such a perspective is often helpful so long as its representation-
dependent nature is well understood. In two-qubit systems or
general multilevel systems, the concept of quantum coherence
becomes more ambiguous because there are many off-diagonal
matrix elements of the system density operator. Clearly then,
to have a general and convenient coherence measure will

be important for extending decoherence suppression studies
beyond single-qubit systems.

Here we define a generalized polarization operator to char-
acterize a certain type of coherence. Specifically, associated
with an arbitrary pure state |�〉 of our quantum system, we
define the polarization operator

P|�〉 ≡ 2|�〉〈�| − I, (7)

where I is the identity operator. This polarization operator has
the following properties:

P2
|�〉 = I,

P|�〉|�〉 = �〉, (8)

P|�〉|�⊥〉 = −|�⊥〉,
where |�⊥〉 represents all other possible states of the system
that are orthogonal to |�〉. Hence, if the expectation value
of P|�〉 is unity, then the system must be in the state |�〉.
In this sense, the expectation value of P|�〉 measures how
much coherence of the type |�〉 is contained in a given
system. For example, in the single-qubit case, P|�〉 measures
the longitudinal coherence if |�〉 is chosen as the spin-up state,
but measures the transverse coherence along a certain direction
if |�〉 is chosen as a superposition of spin-up and spin-down
states. Most important of all, as seen in the following, the
generalized polarization operator P|�〉 can directly give the
required control Hamiltonian in order to preserve the quantum
coherence thus defined.

We now consider a two-qubit system interacting with an
arbitrary bath whose self-Hamiltonian is given by HE = c0.
The qubits interact with the environment via the interaction
Hamiltonian HjE = σ

j
x cx,j + σ

j
y cy,j + σ

j
z cz,j for j = 1, 2,

where σ
j
x , σ

j
y , and σ

j
z are the standard Pauli matrices, and

cα,j are bath operators. We further assume that the qubit-qubit
interaction is given by H12 = ∑

k,l={x,y,z} cklσ
1
k σ 2

l , where the
coefficients ckl may also depend on arbitrary bath operators.
A general total Hamiltonian describing a two-qubit system in
a bath hence becomes

H = HE + H1E + H2E + H12

= c0 + σ 1
x cx,1 + σ 1

y cy,1 + σ 1
z cz,1 + σ 2

x cx,2

+ σ 2
y cy,2 + σ 2

z cz,2 + σ 1
x σ 2

x cxx + σ 1
x σ 2

y cxy

+ σ 1
x σ 2

z cxz + σ 1
y σ 2

x cyx + σ 1
y σ 2

y cyy + σ 1
y σ 2

z cyz

+ σ 1
z σ 2

x czx + σ 1
z σ 2

y czy + σ 1
z σ 2

z czz. (9)

For convenience each term in the above total Hamiltonian is
assumed to be time independent (an assumption that will be
lifted in the end).

Focusing on the two-qubit subspace, the above total
Hamiltonian is seen to consist of 16 linearly independent
terms that span a natural set of basis operators for all possible
Hermitian operators acting on the two-qubit system. This set
of basis operators can be summarized as

{Xi}i=1,2,...,16 = {σk ⊗ σl}, (10)

where σk, σl ∈ {I, σx, σy, σz}, with the orthogonality condi-
tion Tr(XjXk) = 4δjk . However, this choice of basis operators
is rather arbitrary. We find that this operator basis set should
be changed to new ones to facilitate operator manipulations.
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In the following we examine the suppression of two types of
coherence, one is associated with nonentangled states and the
other is associated with a Bell state.

1. Preserving coherence associated with nonentangled states

Let the four basis states of a two-qubit system be |0〉 =
|↑↑〉, |1〉 = |↑↓〉, |2〉 = |↓↑〉, and |3〉 = |↓↓〉. The projector
associated with each of the four basis states is given by

|0〉〈0| = P0 = 1
4

(
1 + σ 1

z

)(
1 + σ 2

z

)
,

|1〉〈1| = P1 = 1
4

(
1 + σ 1

z

)(
1 − σ 2

z

)
,

(11)
|2〉〈2| = P2 = 1

4

(
1 − σ 1

z

)(
1 + σ 2

z

)
,

|3〉〈3| = P3 = 1
4

(
1 − σ 1

z

)(
1 − σ 2

z

)
.

As a simple example, the quantum coherence to be protected
here is assumed to be P|0〉 = 2|0〉〈0| − I .

We now switch to the following new set of 16 basis
operators (a general procedure for such a construction of new
basis operators will be given in Sec. II-C):

Y1 = P|0〉 = 2P0 − I

= 1
2

(−I + σ 1
z + σ 2

z + σ 1
z σ 2

z

)
,

Y2 = P0 + P1 = 1
2

(
I + σ 1

z

)
,

Y3 = P0 − P1 + 2P2 = 1
2

(
I − σ 1

z + 2σ 2
z

)
,

Y4 = P0 − P1 − P2 + 3P3

= 1
2

(
I − σ 1

z − σ 2
z + 3σ 1

z σ 2
z

)
,

Y5 = |1〉〈3| + |3〉〈1| = 1
2

(
σ 1

x − σ 1
x σ 2

z

)
,

Y6 = −i|1〉〈3| + i|3〉〈1| = 1
2

(
σ 1

y − σ 1
y σ 2

z

)
,

Y7 = |2〉〈3| + |3〉〈2| = 1
2

(
σ 2

x − σ 1
z σ 2

x

)
,

Y8 = −i|2〉〈3| + i|3〉〈2| = 1
2

(
σ 2

y − σ 1
z σ 2

y

)
,

(12)
Y9 = |1〉〈2| + |2〉〈1| = 1

2

(
σ 1

x σ 2
x + σ 1

y σ 2
y

)
,

Y10 = −i|1〉〈2| + i|2〉〈1| = 1
2

(
σ 1

y σ 2
x − σ 1

x σ 2
y

)
,

Y11 = |0〉〈1| + |1〉〈0| = 1
2

(
σ 2

x + σ 1
z σ 2

x

)
,

Y12 = −i|0〉〈1| + i|1〉〈0| = 1
2

(
σ 2

y + σ 1
z σ 2

y

)
,

Y13 = |0〉〈2| + |2〉〈0| = 1
2

(
σ 1

x + σ 1
x σ 2

z

)
,

Y14 = −i|0〉〈2| + i|2〉〈0| = 1
2

(
σ 1

y + σ 1
y σ 2

z

)
,

Y15 = |0〉〈3| + |3〉〈0| = 1
2

(
σ 1

x σ 2
x − σ 1

y σ 2
y

)
,

Y16 = −i|0〉〈3| + i|3〉〈0| = 1
2

(
σ 1

x σ 2
y + σ 1

y σ 2
x

)
.

Using this new set of basis operators for a two-qubit sys-
tem, the total Hamiltonian becomes a linear combination
of the Yj (j = 1, 2, . . . , 16) operators previously defined.
Specifically,

H =
16∑

j=1

WjYj , (13)

where Wj are the expansion coefficients that can contain
arbitrary bath operators. The above new set of basis operators
have the following properties. First, the operator Y1 in this set
are identical with P|0〉 and hence also satisfies the interesting

properties described by Eq. (8). Second,

[Yj , Y1] = 0 for j = 1, 2, . . . , 10;
(14){Yj , Y1}+ = 0 for j = 11, 12, . . . , 16,

where [·] represents the commutator and {·}+ represents the
anticommutator. Third,⎡

⎣ 10∑
i=1

AiYi,

16∑
j=11

BjYj

⎤
⎦ =

16∑
j=11

CjYj ,

(
10∑
i=1

AiYi

)⎛
⎝ 10∑

j=1

BjYj

⎞
⎠ =

10∑
j=1

CjYj , (15)

(
16∑

i=11

AiYi

) ⎛
⎝ 16∑

j=11

BjYj

⎞
⎠ =

10∑
j=1

CjYj ,

where Ai , Bj , and Cj represent arbitrary coefficients that may
contain bath operators. With these observations, we next split
the total uncontrolled Hamiltonian into two terms; that is,
H = H0 + H ′, where

H0 = W1Y1 + W2Y2 + · · · + W10Y10 (16)

and

H ′ = W11Y11 + · · · + W16Y16. (17)

Evidently, we have the anticommuting relation

{Y1,H
′}+ = 0, (18)

which is an important fact for our proof to follow.
Consider now the following control Hamiltonian describing

a sequence of extended UDD π pulses:

Hc =
N∑

j=1

πδ(t − Tj )
Y1

2
. (19)

After the N control pulses, the unitary evolution operator for
the whole system of the two qubits plus bath is given by (h̄ = 1
throughout)

U (T ) = e−i[H0+H ′](T −TN )(−iY1)e−i[H0+H ′](TN −TN−1)(−iY1)
...

× e−i[H0+H ′](T3−T2)(−iY1)e−i[H0+H ′](T2−T1)(−iY1)

× e−i[H0+H ′]T1 . (20)

We can then take advantage of the anticommuting relation
of Eq. (18) to exchange the order between (−iY1) and the
exponentials in the above equation, leading to

U (T ) = (−iY1)Ne−i[H0+(−1)N H ′](T −TN )

× e−i[H0+(−1)N−1H ′](TN −TN−1)

...

× e−i[H0+H ′](T3−T2)e−i[H0−H ′](T2−T1)e−i[H0+H ′]T1

= (−iY1)Ne−iH0T J
[
e−i

∫ T

0 FN (t)H ′
I (t)dt

]
≡ (−iY1)NU (N)

+ (T ). (21)

Here FN (t) is already defined in Eq. (6), the second equality
is obtained by using the interaction representation with
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H ′
I (t) ≡ eiH0tHI e

−iH0t , and the last line defines the operator
U (N)

+ (T ). Clearly, U (N)
+ is exactly in the form of U

(N)
+ defined

in Eqs. (2) and (5), with H0 replacing C and H ′ replacing Z.
This observation motivates us to define

U (N)
− (T ) ≡ e−iH0T J

[
e−i

∫ T

0 −FN (t)H ′
I (t)dt

]
, (22)

which is completely parallel to U
(N)
− defined in Eq. (5). As

such, Eq. (3) directly leads to

(U (N)
− )†U (N)

+ = 1 + O(T N+1). (23)

With Eq. (23) obtained, we can now evaluate the coherence
measure. In particular, for an arbitrary initial state given by the
density operator ρi , the expectation value of P|0〉 at time T is
given by

Tr{U (T )ρiU
†(T )P|0〉}

= Tr{(−iY1)NU (N)
+ ρi(U (N)

+ )†(iY1)NP|0〉}
= Tr{(−iY1)NU (N)

+ ρiP|0〉(U (N)
− )†(iY1)N }

= Tr{(U (N)
− )†U (N)

+ ρiP|0〉}
= Tr{ρiP|0〉}[1 + O(T N+1)], (24)

where we have usedP|0〉 = Y1, Y 2
1 = I , and the anticommuting

relation between P|0〉 and H ′. Equation (24) clearly demon-
strates that, as a result of the UDD sequence of N pulses, the
expectation value of P|0〉 is preserved to order 1 + O(T N+1)
for an arbitrary initial state. If the initial state is set to |0〉 (i.e.,
Tr{ρiP|0〉} = 1), then the expectation value of P|0〉 remains
1 + O(T N+1) at time T , indicating that the UDD sequence
has locked the system in the state |0〉 = |↑↑〉.

In our proof of the UDD applicability in preserving the
coherence P|�〉 associated with a nonentangled state, the first
important step is to construct the control operator Y1 = P|�〉
and then the control Hamiltonian Hc. As is clear from Eq. (8),
each application of the control operator Y1 = P|0〉 leaves the
state |0〉 intact but induces a negative sign for all other two-
qubit states. It is interesting to compare the control operator
Y1 with what can be intuitively expected from early single-
qubit UDD results. Suppose that the two qubits are completely
unrelated; then in order to suppress the spin flip of the first qubit
(second qubit), we need a control operator σ 1

z (σ 2
z ). Thus, an

intuitive single-qubit-based control Hamiltonian would be

Hc,single = π

2

N∑
j=1

δ(t − Tj )
(
σ 1

z + σ 2
z

)
. (25)

This intuitive control Hamiltonian differs from Eq. (19),
hinting at an important difference between two-qubit and
single-qubit cases. Indeed, here the qubit-qubit interaction or
the system-environment coupling may directly cause a double-
flipping error |↑↑〉 → |↓↓〉, which cannot be suppressed by
Hc,single. The second key step is to split the Hamiltonian H

into two parts H0 and H ′, with the former commuting with
Y1 and the latter anticommuting with Y1. Once these two
steps are achieved, the remaining part of our proof becomes
straightforward by exploiting Eq. (23). These understandings
suggest that it should be equally possible to preserve the
coherence associated with entangled two-qubit states.

2. Preserving coherence associated with entangled states

Consider a different coherence property as defined by our
generalized polarization operator P|�〉, with |�〉 taken as the
Bell state

|0̃〉 = 1√
2

[|↑↓〉 + |↓↑〉]. (26)

The other three orthogonal basis states for the two-qubit system
are now denoted as |1̃〉, |2̃〉, and |3̃〉. For example, they can
be assumed to be |1̃〉 = 1√

2
[|↑↑〉 + |↓↓〉], |2̃〉 = 1√

2
[|↑↑〉 −

|↓↓〉], and |3̃〉 = 1√
2
[|↑↓〉 − |↓↑〉]. To preserve such a new

type of coherence, we follow our earlier procedure to first
construct a control operator Ỹ1 and then a new set of basis
operators. In particular, we require

Ỹ1 = P|0̃〉 = 2|0̃〉〈0̃| − I

= 1
2

(−I + σ 1
x σ 2

x + σ 1
y σ 2

y − σ 1
z σ 2

z

)
. (27)

We then construct 9 other basis operators that all commute
with Ỹ1 as follows:

Ỹ2 = 1
2

(
I + σ 1

x σ 2
x

)
,

Ỹ3 = 1
2

(
I − σ 1

x σ 2
x + 2σ 1

y σ 2
y

)
,

Ỹ4 = 1
2

(
I − σ 1

x σ 2
x − σ 1

y σ 2
y − 3σ 1

z σ 2
z

)
,

Ỹ5 = 1
2

(
σ 1

z σ 2
x − σ 1

x σ 2
z

)
,

(28)
Ỹ6 = 1

2

(
σ 2

y − σ 1
y

)
,

Ỹ7 = 1
2

(
σ 2

x − σ 1
x

)
,

Ỹ8 = − 1
2

(
σ 1

y σ 2
z − σ 1

z σ 2
y

)
,

Ỹ9 = 1
2

(
σ 1

z + σ 2
z

)
,

Ỹ10 = − 1
2

(
σ 1

x σ 2
y + σ 1

y σ 2
x

)
.

The remaining 6 linearly independent basis operators are found
to be anticommuting with Ỹ1. They can be written as

Ỹ11 = 1
2

(
σ 1

x + σ 2
x

)
,

Ỹ12 = − 1
2

(
σ 1

y σ 2
z + σ 1

z σ 2
y

)
,

Ỹ13 = 1
2

(
σ 1

x σ 2
z + σ 1

z σ 2
x

)
,

(29)
Ỹ14 = − 1

2

(
σ 1

y + σ 2
y

)
,

Ỹ15 = 1
2

(
σ 1

z − σ 2
z

)
,

Ỹ16 = 1
2

(
σ 1

x σ 2
y − σ 1

y σ 2
x

)
.

The total Hamiltonian can now be rewritten as H = H̃0 + H̃ ′,
in which

H̃0 = W̃1Ỹ1 + W̃2Ỹ2 + · · · + W̃10Ỹ10 (30)

and

H̃ ′ = W̃11Ỹ11 + · · · + W̃16Ỹ16. (31)
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It is then evident that if we apply the control Hamiltonian

H̃c =
N∑

j=1

πδ(t − Tj )
Ỹ1

2

=
N∑

j=1

π

4
δ(t − Tj )

(−I + σ 1
x σ 2

x + σ 1
y σ 2

y − σ 1
z σ 2

z

)
,

(32)

the time evolution operator of the controlled total system
becomes entirely parallel to Eqs. (20) and (21) (with arbitrary
operators O replaced by Õ). Hence, using the N -control pulse
described by Eq. (32), the quantum coherence defined by the
expectation value of P|0̃〉 can be preserved up to 1 + O(T N+1)
for an arbitrary initial state. If the initial state is already the
Bell state |0̃〉 (i.e., coincides with the |�〉 that defines our
coherence measure P|�〉), then our UDD control sequence
locks the system in this Bell state with a fidelity 1 + O(T N+1),
no matter how the system is coupled to its environment.

The constant term in the control Hamiltonian H̃c can be
dropped because it only induces an overall phase of the
evolving state. All other terms in H̃c represent two-body and
hence nonlocal control. This confirms our initial expectation
that suppressing the decoherence of entangled two-qubit states
is more involved than for single-qubit cases.

We have also considered the preservation of another Bell
state 1√

2
[|↑↓〉 − |↓↑〉]. Following the same procedure as just

outlined, one finds that the required UDD control Hamiltonian
should be given by

H̃c = −
N∑

j=1

π

4
δ(t − Tj )

(
I + σ 1

x σ 2
x + σ 1

y σ 2
y + σ 1

z σ 2
z

)
, (33)

which is a pulsed Heisenberg interaction Hamiltonian. Such
an isotropic control Hamiltonian is consistent with the fact that
the singlet Bell state defining our quantum-coherence measure
is also isotropic.

C. UDD in M-level systems

Our early consideration for two-qubit systems suggests a
general strategy for establishing UDD in an arbitrary M-level
system. Let |0〉, |1〉, . . . , |M − 1〉 be the M orthogonal basis
states for an M-level system. Their associated projectors are
defined as Pj ≡ |j 〉〈j |, with j = 0, 1, . . . , M − 1. Without
loss of generality we consider that the quantum coherence to be
preserved is of type |0〉, as characterized byP|0〉 = 2|0〉〈0| − I .
As learned from Sec. II-B, the important control operator is
then

V1 = P|0〉 = 2P0 − I, (34)

with V 2
1 = I . A UDD sequence of this control operator can be

achieved by the control Hamiltonian

H̃c =
N∑

j=1

πδ(t − Tj )
V1

2
. (35)

In the M-dimensional Hilbert space, there are a total of M2

linearly independent Hermitian operators. We now divide the
M2 operators into two groups; one commutes with V1 and the

other anticommutes with V1. Specifically, the following M − 1
operators

V2 = P0 + P1,

V3 = P0 − P1 + 2P2,

... (36)

VM = P0 − P1 − · · · − PM−2 + (M − 1)PM−1

evidently commute with V1. In addition, other (M − 2)(M −
1) basis operators, denoted VM+1, VM+2, . . . , VM+(M−2)(M−1),
also commute with V1. This is the case because
we can construct the following 1

2 (M − 2)(M − 1) basis
operators

|k〉〈l| + |l〉〈k| (37)

with 0 < k < M and k < l < M . The other 1
2 (M − 2)(M − 1)

basis operators that commute with V1 are constructed as

−i|k〉〈l| + i|l〉〈k|, (38)

also with 0 < k < M and k < l < M . All the remaining
2(M − 1) basis operators are found to anticommute with V1.
Specifically, they can be written as

VM+(M−1)(M−2)+2l−1 = |0〉〈l| + |l〉〈0|,
(39)

VM+(M−1)(M−2)+2l = −i|0〉〈l| + i|l〉〈0|,
where 1 � l � M − 1.

The total Hamiltonian for an uncontrolled M-level system
interacting with a bath can now be written as

HM = H0 + H ′,

H0 =
M2−2M+2∑

j=1

WjVj , (40)

H ′ =
M2∑

j=M2−2M+3

WjVj ,

where Wj are the expansion coefficients that may contain
arbitrary bath operators.

With the UDD control sequence described in Eq. (35) tuned
on, the unitary evolution operator can be easily investigated
using [V1,H0] = 0 and {V1,H

′}+ = 0. Indeed, it takes exactly
the same form (with Y1 → V1) as in Eq. (21). We can then
conclude that the quantum-coherence propertyP|�〉 associated
with an arbitrarily preselected state |�〉 in an M-level system
can be preserved with a fidelity 1 + O(T N+1) with only N

pulses. For an m-qubit system, M = 2m. In such a multi-qubit
case, our result here indicates the following: if the initial state
of an m-qubit system is known, then by (i) setting |�〉 the
same as this initial state, and then (ii) setting P|�〉 as the
control operator, the known initial state will be efficiently
locked by UDD. Certainly, realizing the required control
Hamiltonian for a multi-qubit system may be experimentally
challenging.

Recently, a multilevel system subject to pulsed external
fields was experimentally realized in a cold-atom laboratory
[13]. To motivate possible experiments of UDD using an
analogous setup, in the following we consider the case of
M = 3 in detail. To gain more insights into the control operator
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V1, here we use angular momentum operators in the J = 1
subspace to express all nine basis operators. Specifically, using
the eigenstates of the jz operator as our representation, we have

jx = 1√
2

⎛
⎝ 1

1 1
1

⎞
⎠ ,

jy = 1√
2

⎛
⎝ −i

i −i

i

⎞
⎠ , (41)

jz =
⎛
⎝ 1

0
−1

⎞
⎠ .

As an example, we use the state (1, 0, 0)T to define our
coherence measure. The associated control operator V1 is then
found to be

V1 = jz + j 2
z − I. (42)

Interestingly, this control operator involves a nonlinear func-
tion of the angular momentum operator jz. This requirement
can be experimentally fulfilled, because realizing such kind
of operators in a pulsed fashion is one main achievement
of Ref. [13], where a “kicked-top” system is realized for
the first time. The two different contexts (i.e., UDD by
instantaneous pulses and the delta-kicked-top model for un-
derstanding quantum-classical correspondence and quantum
chaos [13–15]) can thus be connected to each other.

For the sake of completeness, we also present below those
operators that commute with V1, namely

V2 = I + 1

2
jz − 1

2
j 2
z ,

V3 = −I − 1

2
jz + 5

2
j 2
z ,

V4 = − 1√
2

(j+jz + jzj−), (43)

V5 = i√
2

(j+jz − jzj−),

where j± = jx ± ijy , and those operators that anticommute
with V1, namely

V6 = 1√
2

(jzj+ + j−jz),

V7 = i√
2

(j−jz − jzj+),
(44)

V8 = 1

2
(j 2

+ + j 2
−),

V9 = i

2
(j 2

− − j 2
+).

Some linear combinations of these operators will be required
to construct the control Hamiltonian to preserve the coherence
associated with other states.

III. SIMPLE NUMERICAL EXPERIMENTS

To further confirm the UDD control sequences we explicitly
constructed above, we have performed some simple numerical

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.8

0.85

0.9

0.95

1

1.05

t

F
(t

)

Without pulses
Extended UDD, N=8
Intuitive pulse, N=8

FIG. 1. (Color online) Expectation value of the coherence mea-
sure P|�〉, denoted F (t), as a function of time, with |�〉 being the
nonentangled state |↑↑〉 of a two-qubit system. The bath responsible
for the decoherence is modeled by the three-spin system detailed in the
text. The bottom curve is without any control and the decoherence is
significant. The middle curve is calculated from a control Hamiltonian
intuitively based on two independent qubits. The top solid curve
represents significant decoherence suppression due to our two-qubit
UDD control Hamiltonian described by Eq. (19). All variables are in
dimensionless units.

experiments. We first consider a model of a two-spin system
coupled to a bath of three spins. The total Hamiltonian in
dimensionless units is hence given by

H =
5∑

m=3

∑
j={x,y,z}

bj,mσm
j

+
5∑

n=1

∑
k={x,y,z}

5∑
m>n

∑
j={x,y,z}

cjkσ
m
j σ n

k + Hc, (45)

where the first two spins constitute the two-qubit system in the
absence of any external field, Hc represents the UDD control
Hamiltonian, and the coefficients bj,m and cjk take randomly
chosen values in [0, 1] in dimensionless units. In addition,
to be more realistic, we replace the instantaneous δ(t − Tj )
function in our control Hamiltonians by a Gaussian pulse
(i.e., c−1π−1/2e−[(t−Tj )2/c2]), with c = T/100 unless specified
otherwise. Further, we set T = 0.1 because this scale is
comparable to the decoherence time scale.

Figure 1 depicts the time dependence of the expectation
value of the coherence measure P|�〉, denoted F (t), with |�〉
being the nonentangled state |↑↑〉 of the two-qubit system.
The initial state of the system is also taken as the nonentangled
state |↑↑〉. As is evident from the uncontrolled case (bottom
curve), the decoherence time scale without any decoherence
suppression is of the order 0.1 in dimensionless units. Turning
on the two-qubit UDD control sequence described by Eq. (19)
for N = 8, the decoherence (top solid curve) is seen to be
greatly suppressed. We have also examined the decoherence
suppression using a UDD sequence based on the single-
qubit-based intuitive control Hamiltonian Hc,single described
by Eq. (25). As shown in Fig. 1, Hc,single can only produce
unsatisfactory decoherence suppression.
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FIG. 2. (Color online) Same as in Fig. 1, but for P|�〉 associated
with the Bell state defined in Eq. (26). The smooth dashed curve
represents significant decoherence without control. The drastically
oscillating dashed curve is calculated from an intuitive single-qubit-
based control Hamiltonian, showing strong population transfer from
the initial state to other two-qubit states. The top, solid curve
represents significant decoherence suppression due to our two-qubit
UDD control sequence in Eq. (32). All variables are in dimensionless
units.

Similar results are obtained in Fig. 2, where we aim to
preserve the coherence measure P|�〉 associated with the Bell
state defined in Eq. (26). Apparently, with the assistance of
our two-qubit UDD control sequence, the system is seen to
be locked in the Bell state with a fidelity close to unity at all
times. Figure 2 also presents the parallel result if the control
Hamiltonian is given by Hc,single shown in Eq. (25). The drastic
oscillation of F (t) in this case indicates that strong population
oscillation occurs, thereby demonstrating again the difference
between single-qubit decoherence suppression and two-qubit
decoherence suppression.

Using the same initial state as in Fig. 2, Fig. 3 depicts
D ≡ 1

2T

∫ T

0 ||ρ(t) − ρi ||dt , which is the time-averaged dis-

0 2 4 6 8 10 12 14 16 18 20

10−2

10−1

N

D

c=1/10000
c=1/1000

FIG. 3. (Color online) The time-averaged distance D between the
actual density matrix from that of a completely locked Bell state, for
c = T/100 and c = T/1000, versus the number of UDD pulses. The
initial state is the same as in Fig. 2. All variables are in dimensionless
units.
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FIG. 4. (Color online) Expectation value of the coherence mea-
sureP|�〉, denoted F (t), as a function of time, with |�〉 being one basis
state of a three-level system. The central system is coupled with a
bath modeled by four other three-level subsystems. The bottom curve
represents significant decoherence without decoherence control. The
top two curves represent decoherence suppression based on the
control operator constructed in Eq. (42), for N = 2 and N = 10.
All variables are in dimensionless units.

tance between the actual time-evolving density matrix and a
completely locked Bell state, for c = T/100 and c = T/1000,
with different numbers of UDD pulses. It is seen that, at
least for the number of UDD pulses considered here, c =
T/100 = 1/1000 (about one hundredth of the decoherence
time scale) already suffices to preserve a Bell state. That is,
there seems to be no need to use much shorter pulses such
as c = T/1000 = 1/10000, because the case of c = T/1000
(dashed line) in Fig. 3 shows little improvement as compared
with the case of c = T/100 (solid line). This should be
of practical interest for experimental studies of two-qubit
decoherence suppression.

Finally, we show in Fig. 4 the decoherence suppression of
a three-level quantum system, with the control operator given
by Eq. (42). Here the bath is modeled by four other three-level
subsystems, and the total Hamiltonian is

H =
5∑

m=2

∑
α={x,y,z}

bj,mjα,m

+
5∑

n=1

∑
α={x,y,z}

5∑
m>n

∑
β={x,y,z}

cαβjα,mjβ,n + Hc, (46)

where jα,m represents the jx , jy , or jz operator associated
with the mth three-level subsystem, with the first being
the central system and the other four being the bath. The
coupling coefficients are again randomly chosen from [0, 1]
with dimensionless units. The results are analogous to those
seen in Figs. 1 and 2, confirming the general applicability of
our UDD control sequence in multilevel quantum systems.
Note also that even for the N = 2 case (middle curve in
Fig. 4), decoherence suppression already shows up clearly.
The results here may motivate experimental UDD studies
using systems analogous to the kicked-top system realized in
Ref. [13].
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IV. DISCUSSION AND CONCLUSION

So far we have assumed that the system-bath coupling,
the bath self-Hamiltonian, and the system Hamiltonian in
the absence of the control sequence are all time-independent.
This assumption can be easily lifted. Indeed, as shown in a
recent study by Pasini and Uhrig for single-qubit systems [16],
the UDD result holds even after introducing a smooth time
dependence to these terms. The proof in Ref. [16] is also
based on Yang and Liu’s work [12]. A similar proof can be
done for our extension here. Take the two-qubit case with the
control operator Y1 as an example. If H0 and H ′ are time-
dependent, then the unitary evolution operator in Eq. (20) is
changed to

U (T ) = (−iY1)NJ
[
e
−i

∫ T

TN
[H0+(−1)N H ′]dt]

× J
[
e
−i

∫ TN
TN−1

[H0+(−1)N−1H ′]dt]
...

× J
[
e
−i

∫ T3
T2

[H0+H ′]dt
]
J
[
e−i

∫ T 2
T 1 [H0−H ′]dt

]
× J

[
e−i

∫ T1
0 [H0+H ′]dt

]
= (−iY1)NJ

[
e−i

∫ T

0 H0dt
]
J
[
e−i

∫ T

0 FN (t)H ′
I (t)dt

]
, (47)

with

H ′
I (t) = J

[
ei

∫ T

0 H0dt
]
H ′J

[
e−i

∫ T

0 H0dt
]
. (48)

Because the term J[e−i
∫ T

0 H0dt ] in Eq. (47) does not affect
the expectation value of our coherence measure, the final
expression for the coherence measure is essentially the same as
before and is hence again given by its initial value multiplied
by 1 + O(T N+1).

Our construction of the UDD control sequence is based
on a predetermined coherence measure P|�〉 that characterizes
a certain type of quantum coherence. This implies that our
two-qubit UDD relies on which type of decoherence we wish
to suppress. Indeed, this is a feature shared by Uhrig’s work [7]
and the Yang-Liu universality proof [12] for single-qubit
systems (i.e., suppressing either transverse decoherence or
longitudinal population relaxation). Can we also efficiently
suppress decoherence of different types at the same time, or can
we simultaneously preserve the quantum coherence associated
with entangled states as well as nonentangled states? This is
a significant issue because the ultimate goal of decoherence
suppression is to suppress the decoherence of a completely
unknown state and hence to preserve the quantum coherence of
any type at the same time. Fortunately, for single-qubit cases:
(i) there are already good insights into the difference between
decoherence suppression for a known state and decoherence

suppression for an unknown state [17,18] (with nonoptimized
DD ); and (ii) a very recent study [19] showed that suppressing
the longitudinal decoherence and the transverse decoherence
of a single qubit at the same time in a “near-optimal” fashion
is possible, by arranging different control Hamiltonians in
a nested loop structure. Inspired by these studies, we are
now working on an extended scheme to achieve efficient
decoherence suppression in two-qubit systems, such that
two or even more types of coherence properties can be
preserved. Thanks to our explicit construction of the UDD
control sequence for nonentangled and entangled states, some
interesting progress toward this more ambitious goal is being
made. For example, we anticipate that it is possible to preserve
two types of quantum coherence of a two-qubit state at the
same time, if we have some partial knowledge of the initial
state.

It is well known that decoherence effects on two-qubit
entanglement can be much different from that on single-
qubit states. One current important topic is the so-called
“entanglement sudden death” [20], which is the question of
how two-qubit entanglement can completely disappear within
a finite duration. Since the efficient preservation of two-qubit
entangled states by UDD is already demonstrated here, it
becomes certain that the dynamics of entanglement death can
be strongly affected by applying just very few control pulses.
In this sense, our results on two-qubit systems are not only of
great experimental interest to quantum entanglement storage,
but also of fundamental interest to understanding some aspects
of entanglement dynamics in an environment.

To conclude, based on a generalized polarization operator
as a coherence measure, we have shown that UDD also
applies to two-qubit systems and even to arbitrary multilevel
quantum systems. The associated control fidelity is still given
by 1 + O(T N+1) if N instantaneous control pulses are applied.
This extension is completely general because no assumption on
the environment is made. We have also explicitly constructed
the control Hamiltonian for a few examples, including a
two-qubit system and a three-level system. Our results are
expected to advance both theoretical and experimental studies
of decoherence control.
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