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Entanglement and bistability in coupled quantum dots inside a driven cavity
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Generation and dissipation of entanglement between two coupled quantum dots (QDs) in a cavity driven by a
coherent field is studied. We find that it is possible to generate and sustain a large amount of entanglement between
the quantum dots in the steady state, even in the presence of strong decay in both the cavity and the dots. We
investigate the effect of different parameters (decay rates, coupling strengths, and detunings) on entanglement.
We find that the cavity field shows bistability and study the effect of relevant parameters on the existence of this
bistable behavior. We also study the correlation between the cavity field and the entanglement between the dots.
The experimental viability of the proposed scheme is discussed.
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I. INTRODUCTION

Several different schemes have been proposed for quan-
tum computation and information processing devices. Most
promising among them are schemes based on nuclear magnetic
resonance (NMR) [1], trapped ions [2], cavity QED [3],
Josephson junction [4], and solid-state-based [5–8] devices.
Although these schemes have their own advantages and
disadvantages, solid-state-based schemes continue to attract
a lot of research interest both theoretically and experimentally.
The reason is the tremendous progress that has been made
in the past few years in achieving coherent control and ma-
nipulation of quantum dots (QDs)—tiny solid-state structures
that can potentially act as qubits [9–17]. Now it is possible to
experimentally create and manipulate such entangled qubits—
the building block of quantum computers [9–12]. The fact that
present-day computers are solid-state-based devices also plays
an important role because engineering knowhow already exists
for such devices.

All of the proposed devices face a daunting challenge
in the form of decoherence. Although protocols like error
correction codes [18] have been suggested to find ways to
build fault-tolerant quantum computers, decoherence remains
one of the main obstacles in the process of implementation
of any quantum information or computation scheme. This
is even more important for quantum-dot-based solid-state
devices because quantum dots have a very short lifetime
(typically of the order of 1–100 ps). Several new approaches
to circumvent or at least minimize this problem have been
suggested. These include heat bath-induced entanglement
[19], reservoir engineering [20], quantum feedback control
[21], and decay-enhanced entanglement [22].

We had previously studied a system of two quantum dots
interacting with a coherent field inside a cavity and found
that in the absence of any loss mechanism, it is possible to
generate entanglement between the dots, although they can
never be fully entangled [23]. In this work, we show that
even in the presence of decay from both the quantum dots
and the cavity, the dots could remain significantly entangled
in the steady state. We also observe that the field inside
the cavity shows bistability, which is not surprising because
our system is similar in nature to a two-level atom inside a
cavity, which is known to show bistability [24–27]. Possible
correlation between the observed bistability and entanglement

is a subject of huge interest. We also investigate this problem.
The motivation is that if the field leaking outside the cavity
enables us to calculate the entanglement, then it should be
possible to manipulate it as well by changing the parameters
of the system.

This article is organized as follows. Section II summarizes
the model Hamiltonian of the system followed by a derivation
of the Fokker-Planck equation for the dot and field variables. In
Section III, we obtain the steady-state solution and investigate
the optical bistability shown by the cavity field. Section IV
describes the steady-state entanglement between the quantum
dots and explores the correlation referred to earlier in terms of
the cavity field statistics. We examine experimental feasibility
for the range of parameters used in this article. Based on recent
experiments on quantum dots [9–17], we conclude that these
results are experimentally achievable. Section V summarizes
the main results of this article.

II. HAMILTONIAN AND FOKKER-PLANCK EQUATION

We consider two identical quantum dots inside a cavity
driven by a coherent field. The dots interact with the quantized
field in the cavity via electric dipole interaction and are coupled
to each other via the Forster interaction process [28]. There
are two sources of decay—loss of cavity photons and the
deexcitation of the dots. The Hamiltonian for the system that
incorporate all these terms can be written as

Ĥ = ωcâ
†â + ωdĴz + ig(â†Ĵ− − âĴ+) + w(Ĵ1+Ĵ2−

+ Ĵ1−Ĵ2+) + iε(â†e−iω0t − âeiω0t ) + ĤLoss, (1)

where we have chosen h̄ = 1, so that the Hamiltonian has
the dimension of frequency. â(â†) is the annihilation(creation)
operator for the cavity photons characterized by resonance
frequency ωc; Ĵz is the dot excitation number operator, ωd is
the excitation energy of each dot, g is the coupling parameter
for the dots and the cavity field interaction (taken to be identical
for both dots), w represents the dot-dot interaction strength,
and ε is the parameter coupling the cavity photons and the
driving field of frequency ω0 and provides a measure of the
driving field amplitude. HLoss describes dot and cavity field
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losses. We can write the dot operators more explicitly as

Ĵ+ = 1√
2

2∑
n=1

ê†nĥ
†
n = 1√

2
(Ĵ1+ + Ĵ2+),

Ĵ− = 1√
2

2∑
n=1

ênĥn = 1√
2

(Ĵ1− + Ĵ2−), (2)

Ĵz = 1

2

2∑
n=1

(ê†nên + ĥ†
nĥn) − Î = Ĵ1z + Ĵ2z − Î .

The basis states for the dots are the ground state
|J = 1,M = −1〉 ≡ |0〉 ≡ |0〉1

⊗ |0〉2, symmetric single-
excitation state |J = 1,M = 0〉 ≡ |1〉 ≡ 1√

2
[|0〉1
⊗ |1〉2 +

|1〉1
⊗ |0〉2], biexcitation state |J = 1,M = 1〉 ≡ |2〉 ≡

|1〉1
⊗ |1〉2, and antisymmetric single exciton state |J =

0,M = 0〉 ≡ |1〉′ ≡ 1√
2
[|0〉1
⊗ |1〉2 − |1〉1

⊗ |0〉2].
The basis states are the eigenstates of the excitation number

operator Ĵz. For mathematical convenience, we have defined
Ĵz in such a way that the eigenvalues are symmetric with
Ĵz|0〉 = −|0〉, Ĵz|1〉 = 0, Ĵz|2〉 = |2〉, and Ĵz|1〉′ = 0.

The dot-dot interaction (Ĵ1+Ĵ2− + Ĵ1−Ĵ2+) is also redefined
as

T̂ = Ĵ1+Ĵ2− + Ĵ1−Ĵ2+ + Î . (3)

The eigenvectors and eigenvalues are given by T̂ |0〉 = |0〉,
T̂ |1〉 = 2|1〉, T̂ |2〉 = |2〉, and T̂ |1〉′ = 0.

We have already seen that Ĵz|1〉′ = 0 and T̂ |1〉′ = 0. One
can easily check that Ĵ+|1〉′ = 0 and Ĵ−|1〉′ = 0 as well.
Hence, the Hamiltonian has no effect on the antisymmetric
state. |1〉′ is what is known as the optically inactive state; it
does not interact with the other states. Physically it means that
a system initially prepared in state |1〉′ will remain in the same
state (or just pick up a phase) under the system Hamiltonian.
Hence, while calculating the time evolution of the system, we
can leave this state out and deal only with the other three.

In the |0〉, |1〉, |2〉 basis, the operators look like

Ĵz =
⎛⎝−1 0 0

0 0 0
0 0 1

⎞⎠ , Ĵ+ =
⎛⎝ 0 0 0

1 0 0
0 1 0

⎞⎠ ,

(4)

Ĵ− =
⎛⎝0 1 0

0 0 1
0 0 0

⎞⎠ , T̂ =
⎛⎝1 0 0

0 2 0
0 0 1

⎞⎠ .

We can then rewrite the Hamiltonian in Eq. (1) in the following
form:

Ĥ = Ĥ0 + Ĥ1,

Ĥ0 = ω0â
†â + ω0Ĵz, (5)

Ĥ1 = �câ
†â + �dĴz + ig(â†Ĵ− − âĴ+)

+ iε(â†e−iω0t − âeiω0t ) + wT̂ + ĤLoss,

where �c = ωc − ω0 and �d = ωd − ω0. We choose to work
in the interaction picture by introducing the density matrix

ρ̃ = eiĤ0t ρe−iĤ0t . (6)

The corresponding Hamiltonian is then

ˆ̃H 1 = eiĤ0t Ĥ1e
−iĤ0t

= �câ
†â + �dĴz + ig(â†Ĵ− − âĴ+)

+ iε(â† − â) + wT̂ + ˆ̃H Loss. (7)

We can write the equation of motion for the system density
matrix following standard techniques [29,30]. For notational
convenience, in what follows we write ρ for ρ̃. Then the master
equation for the complete system can be written as

ρ̇ = −i�c[â†â, ρ] − i�d [Ĵz, ρ] + g[â†Ĵ− − âĴ+, ρ]

+ ε[â† − â, ρ] − iw[T̂ , ρ] + γ

2
[2Ĵ−ρĴ+ − Ĵ+Ĵ−ρ

− ρĴ+Ĵ−] + κ[2âρâ† − â†âρ − ρâ†â]. (8)

Here we have introduced phenomenological constants γ and
κ for the dot and cavity decay, respectively, using the standard
procedure.

The usual method (see, for example, Refs. [29–32]) of
mapping the operator master equation into a corresponding
c-number equation using a normally ordered or symmetrically
ordered characteristic function leads to differential equations
containing derivatives of all orders that can then be truncated
at the second order using system size expansion, provided the
system contains a large number (N ) of particles interacting
with the field (N � 1). However, because our system consists
of only two quantum dots, we cannot use this approach.
Therefore, to derive a Fokker-Planck equation from Eq. (8),
we follow the procedure employed in Refs. [33–36].

Let |α〉〈α| be the coherent state projector for the field and
�̂ act as the generic density operator for the QDs. In the triplet
basis, �̂ can be written as

�̂ =
⎛⎝ 1

3 + x p q

p∗ 1
3 − x − y r

q∗ r∗ 1
3 + y

⎞⎠ . (9)

Here �̂ =∑2
i,j=0 �i,j |i〉〈j |, where |i〉 and |j 〉 could be |0〉,

|1〉, or |2〉. As in any density matrix, the diagonal elements
�i,i act as the population density for state |i〉 and the off-
diagonal elements �i,j (i �= j ) measure the coherence between
states |i〉 and |j 〉. Thus, �0,0 = (1/3 + x) is the probability
of finding the dots in the zero-exciton state |0〉. Similarly,
(1/3 − x − y), and (1/3 + y) correspond to probabilities of
finding the dots in states |1〉 and |2〉, respectively. The diagonal
elements have been chosen in such a way as to guarantee that
Tr(�̂) = 1. Off-diagonal element �0,1 = p is the coherence
between the ground state and the single-exciton state, �0,2 = q

is the coherence between the ground state and the biexciton
state, and �1,2 = r is the coherence between the single-exciton
and the biexciton state. p∗, q∗, and r∗ are simply the complex
conjugates of p, q, and r .

By using |α〉〈α| as a basis for the field, and �̂ as a basis for
the dots, we can expand the complete system density operator
ρ in the following form:

ρ̂ =
∫

P (α, α∗, x, y, p, p∗, q, q∗, r, r∗) |α〉〈α|

× �̂(x, y, p, p∗, q, q∗, r, r∗) d2α dx dy d2p d2q d2r,

(10)
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Together, |α〉〈α|�̂ acts as a projector for the com-
plete system including both the field and the dots; and
P (α, α∗, x, y, p, p∗, q, q∗, r, r∗) behaves as a quasiprobabil-
ity distribution for the field being in the state |α〉〈α| and the
dots being in �̂(x, y, p, p∗, q, q∗, r, r∗), for given values of
α, α∗x, y, p, p∗, q, q∗, r , and r∗.

In order to get a c-number equation from the operator
master equation, we express the operators in Eq. (8) in terms

of the projector |α〉〈α|�̂ and its derivatives as shown in
Appendix. After doing so, we obtain the Fokker-Planck
equation

∂P

∂t
= LP, (11)

where

L = − ∂

∂α
[ε − (κ + i�c)α + g(p∗ + r∗)] − ∂

∂α∗ [ε − (κ − i�c)α∗ + g(p + r)] + ∂

∂x

[
γ

(
x + y − 1

3

)
− gαp − gα∗p∗

]
+ ∂

∂y

[
γ

(
y + 1

3

)
+ gαr + gα∗r∗

]
+ ∂

∂p

[
γ
(p

2
− r
)

+ gα∗(2x + y) − gαq − i(w + �d )p
]

+ ∂

∂p∗

[
γ

(
p∗

2
− r∗
)

+ gα(2x + y) − gα∗q∗ + i(w + �d )p∗
]

+ ∂

∂q

[
γ

q

2
+ gα∗(p − r) − 2i�dq

]
+ ∂

∂q∗

[
γ

q∗

2
+ gα(p∗ − r∗) + 2i�dq

∗
]

+ ∂

∂r
[γ r − gα∗(x + 2y) + gαq + i(w − �d )r]

+ ∂

∂r∗ [γ r∗ − gα(x + 2y) + gα∗q∗ − i(w − �d )r∗] − ∂2

∂α∂x
g

[
x(p∗ + r∗) − 2p∗ − r∗

3

]
− ∂2

∂α∂y
g

[
y(p∗ + r∗) + p∗ + r∗

3

]
− ∂2

∂α∂p
g

[
p(p∗ + r∗) +

(
x + y − 1

3

)]
− ∂2

∂α∂p∗ g[p∗(p∗ + r∗) − q∗]

− ∂2

∂α∂q
g[q(p∗ + r∗) − r] − ∂2

∂α∂q∗ g[q∗(p∗ + r∗)] − ∂2

∂α∂r
g

[
r(p∗ + r∗) −

(
y + 1

3

)]
− ∂2

∂α∂r∗ g[r∗(p∗ + r∗)]

− ∂2

∂α∗∂x
g

[
x(p + r) − 2p − r

3

]
− ∂2

∂α∗∂y
g

[
y(p + r) + p + r

3

]
− ∂2

∂α∗∂p
g[p(p + r) − q]

− ∂2

∂α∗∂p∗ g

[
p∗(p + r) +

(
x + y − 1

3

)]
− ∂2

∂α∗∂q
g[q(p + r)] − ∂2

∂α∗∂q∗ g[q∗(p + r) − r]

− ∂2

∂α∗∂r
g[r(p + r)] − ∂2

∂α∗∂r∗ g

[
r∗(p + r) −

(
y + 1

3

)]
. (12)

This equation has been obtained without the approximation
of system size expansion and truncation of higher derivatives.
By using the first-order derivatives or the drift terms of the
Fokker-Planck equation, we can write the set of equations
which determine the evolution of the mean value of the
variables. The second-order derivatives lead to the diffusion
matrix, which can be studied to investigate the noise and
correlation among the variables. By using the drift terms, we
obtain the mean value equation,

〈α̇〉 = ε − (κ + i�c)〈α〉 + g(〈p∗〉 + 〈r∗〉) ,

〈ẋ〉 = −γ

(
〈x〉 + 〈y〉 − 1

3

)
+ g〈αp〉 + g〈α∗p∗〉 ,

〈ẏ〉 = −γ

(
〈y〉 + 1

3

)
− g〈αr〉 − g〈α∗r∗〉 ,

〈ṗ〉 = −γ

( 〈p〉
2

− 〈r〉
)

− g(2〈α∗x〉 + 〈α∗y〉)
+ g〈αq〉 + i(w + �d )〈p〉,

〈q̇〉 = −γ
〈q〉
2

− g(〈α∗p〉 − 〈α∗r〉) + 2i�d〈q〉,

〈ṙ〉 = −γ 〈r〉 + g(〈α∗x〉 + 2〈α∗y〉) − g〈αq〉
− i(w − �d )〈r〉. (13)

Corresponding equations for 〈α̇∗〉, 〈ṗ∗〉, 〈q̇∗〉, and 〈ṙ∗〉 can be
obtained by taking the complex conjugate of Eq. (13). These
equations are not closed as the mean values are coupled to
second-order correlations, which in turn are coupled to even
higher order correlations. Thus, we have an infinite hierarchy
of coupled equations that, in general, cannot be solved.
However, by writing the second-order average, say, 〈x p〉
as 〈x〉〈p〉 + 〈δxδp〉, where δx = x − 〈x〉 and δp = p − 〈p〉
represent noise in x and p, respectively, we see that if the noise
terms are small compared with the mean values (low noise),
we can use the approximation 〈x p〉 ≈ 〈x〉〈p〉 in the equations
for the means values. This is a valid approximation when the
correlation between the dots and field are small in the lowest
order. Previous works in similar systems have shown this to be
the case (see, for example, Ref. [27]). With this approximation
for the product terms in Eq. (13), we obtain a closed set of
equations for the mean values. This approximation (referred to
as factorization approximation) has been used extensively for
a system of atoms in a cavity [29–33], and detailed numerical
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solution of the corresponding Fokker-Planck equation shows
that this approximation is justified when noise terms are small
and gives fairly accurate results except near the turning points
where the field inside the cavity can make a discontinuous
jump (see, for example, Refs. [26,27]). It should be kept in
mind that this approximation neglects noise correlation only
in comparison to the mean values away from the turning points.
To calculate noise correlations, one can use Eq. (12) to derive
the equations for second-order correlations, and to solve them,
one can make similar factorization approximations to decouple
them from even higher order correlations. For our work, only
the mean values of QD and field parameters are needed and
diffusion terms [second-order differentials in Eq. (12)] do not
affect mean values in this approximation.

III. STEADY-STATE SOLUTION AND BISTABILITY

In the steady state, the time derivatives are equal to
zero. Although it is very cumbersome to write the analytical
solutions for each variable, we can express the dot variables in
terms of the field variable α and α∗. By doing so, we get

x =
2
(
1 + δ2

d

) (
1 + W 2 + αα∗

4ns
+ δdW + δ2

d

4

)
3K(α, α∗)

,

y = −
(
1 + δ2

d

) (
1 + W 2 + αα∗

ns
+ δdW + δ2

d

4

)
3K(α, α∗)

,

p = −
α∗(1 + iδd )

(
1 + iW + αα∗

2ns
− iδd

2 + δdW + δ2
d

2

)
√

2nsK(α, α∗)
,

q = α∗2(1 + iδd )
(
1 + iW + iδd

2

)
2nsK(α, α∗)

,

r = − αα∗2(1 + iδd )

(2ns)3/2K(α, α∗)
, (14)

where

K(α, α∗) = 3

4

α2α∗2

n2
s

+
[

αα∗

ns

+ 1 +
(

W + δd

2

)2
] (

1 + δ2
d

)
.

(15)

Equations for p∗, q∗, and r∗ can be obtained by taking the
complex conjugate of the corresponding equations for p, q, and
r . Here we have defined saturation photon number ns , scaled
dot-dot interaction W , scaled dot detuning δd , cooperativity
parameter C, and scaled cavity detuning δc, by

ns = γ 2

8g2
, W = 2w

γ
, δd = 4�d

γ
,

(16)

C = g2

γ κ
, δc = �c

κ
.

By substituting expressions given in Eq. (14) into Eq. (13),
and letting α̇ = 0 and α̇∗ = 0, we obtain

α

[
(1 + iδc) +

2C(1 − iδd )
(

1 − iW + αα∗
ns

+ iδd

2 + δdW + δ2
d

2

)
K(α, α∗)

⎤⎦− ε

κ
= 0,

α∗

⎡⎣(1 − iδc) +
2C(1 + iδd )

(
1 + iW + αα∗

ns
− iδd

2 + δdW + δ2
d

2

)
K(α, α∗)

⎤⎦− ε

κ
= 0. (17)

Introducing dimensionless driving field intensity Y 2 and
intracavity field intensity X2 as

X2 = αα∗

ns

, Y 2 = ε2

nsκ2
, (18)

we can express a deterministic steady-state solution given by
Eq. (17) as

Y 2 = X2

⎡⎣(1 + 2C
(
1 + X2 + δ2

d

)
K(X)

)2

+
(

δc − 2C
[
δdX

2 + (W + δd

2

) (
1 + δ2

d

)]
K(X)

)2
⎤⎦ , (19)

where

K(X) = 3

4
X4 +
[
X2 + 1 +

(
W + δd

2

)2
] (

1 + δ2
d

)
. (20)

Equation (19) indicates that the scaled intracavity intensity
(X2 = αα∗/ns) may show bistability as a function of the scaled
driving field intensity [Y 2 = ε2/(nsκ

2)], if C �= 0. Thus, for
optical bistability, cavity field-dot interaction must be present.
Figures 1(a)–1(d) show plots of the scaled cavity field intensity
X2 as a function of the driving field intensity Y 2 for different
values of parameters C, W , δd , and δc, respectively. For W and
δd , the bistablity graphs converge at higher Y 2, meaning the
cavity photon number does not depend on these parameters at
strong pumping. However, they do not converge as C and δc

are varied, in fact they diverge with changing δc at large field
intensity. The reason behind this can be seen from Eqs. (19)
and (20). When X is large, the inequalities X4 � X2 � 1 will
hold. Hence, K(X) can be approximated by just 3X4/4, which
means Y 2 behaves as

Y 2 ∼ X2

[(
1 + 8C

3X2

)2

+
(

δc − 8Cδd

3X2

)2
]

. (21)
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FIG. 1. Scaled cavity field intensity X2 as a function of the scaled pump parameter Y 2 [=ε2/(nsκ
2)] for different values of (a) cooperativity

parameter C, (b) scaled dot-dot interaction parameter W = 2w/γ , (c) scaled dot detuning δd = 4�d/γ , and (d) scaled cavity detuning
δc = �c/κ .

By neglecting terms proportional to 1/X2 and rearranging the
terms, we can write

X2 ≈ 1

1 + δ2
c

[
Y 2 − 16C

3
(1 − δcδd )

]
. (22)

We can see, at large X, the X2 − Y 2 curves should ap-
proach to straight lines with a slope (1 + δ2

c )−1 and inter-
cept [(−16C/3)(1 − δcδd )/(1 + δ2

c )]. This explains why they
should converge with varying W and δd , as X becomes
independent of W and of δd (if δc = 0). This trend is
clearly seen in Fig. 1(b). Figure 1(c) shows convergence of the
bistability plots at much larger values of X. With increasing
δc, the slope decreases and the lines diverge as in Fig. 1(d).
Changing C simply changes the intercepts that makes the
lines parallel (Fig. 1(a)). Physically, this linearity means that
at sufficiently strong pumping, the effect of dots on the cavity
field become negligible and the cavity field intensity becomes
simply proportional to the driving field intensity.

IV. ENTANGLEMENT BETWEEN THE DOTS

To calculate entanglement between the two quantum dots,
we obtain numerical solutions of Eq. (13), which give the
values of α and α∗ in the steady state. Out of many solutions,
the correct ones are chosen on the physical ground that mean
values of α and α∗ (without the noise terms) must be complex
conjugate of each other. By plugging back the values of α and

α∗ in Eq. (14), we get the matrix elements for the QDs. Matrix
� of Eq. (9) is expressed in terms of the basis vectors |00〉,

1√
2
(|01〉 + |10〉), and |11〉. When we reexpress � in the basis

|00〉, |01〉, |10〉, and |11〉, the complete 4 × 4 density matrix
of the two quantum dots takes the form

ρ =

⎛⎜⎜⎜⎜⎜⎝
1
3 + x

p√
2

p√
2

q

p∗√
2

1
3 −x−y

2

1
3 −x−y

2
r√
2

p∗√
2

1
3 −x−y

2

1
3 −x−y

2
r√
2

q∗ r∗√
2

r∗√
2

1
3 + y

⎞⎟⎟⎟⎟⎟⎠ . (23)

Once we have the complete density matrix of the two-dot
system, we can then calculate the concurrence as a measure
of the entanglement between the two dots in the steady
state. To calculate concurrence, we obtain the matrix ρ̃ =
(σy

⊗
σy)ρ∗(σy

⊗
σy), where σy is the Pauli spin matrix

( 0 −i
i 0 ) and ρ∗ is complex conjugate of ρ. If λ1, λ2, λ3, and

λ4 are the square roots of the eigenvalues of the matrix ρρ̃ in
descending order, then concurrence of the system is defined
as [37]

C(ρ) = max[0, λ1 − λ2 − λ3 − λ4], (24)

where max[0, x] is the larger number between 0 and x.
In Figs. 2(a)–2(f), we have plotted the steady-state entangle-

ment (concurrence) as a function of the driving field strength
ε along the x axis and one other parameter (κ, γ, W, δc, δd ,
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FIG. 2. Concurrence as a function of pump parameter ε (in units of g for figures a–e and in units of γ in figure f) along the x axis and
one other parameter along the y axis. The y axis represents (a) dimensionless cavity decay rate κ/g, (b) dimensionless dot decay rate γ /g,
(c) scaled dot-dot interaction parameter W = 2w/γ , (d) scaled cavity detuning δc = �c/κ , (e) scaled dot detuning δd = 4�d/γ , and (f) scaled
dot-field coupling g/γ .

and g, respectively) along the y axis. In all of these graphs,
the concurrence builds up with increasing driving field up to a
maximum value and then rapidly falls to zero. It stays at zero
with a further increase in driving field.

This phenomenon can be explained as follows: Starting
from an unentangled state (ground state), the two QDs become
more entangled with an increase in the cavity field intensity,
as the cavity field helps in coherent mixing among the

zero-exciton, single-exciton, and biexciton states. However,
as the driving field intensity increases further, the cavity field
increases rapidly, resulting in the dots in an equal mixture of the
three states (zero-, one-, and two-exciton states), with virtually
no coherence between them. This leads the entanglement to
fall sharply and eventually become zero. Further discussion of
this is presented later in connection with correlation between
concurrence and optical bistability.
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Several interesting features can be observed from these
graphs that tell us how the choice of dot and cavity parameters
affect entanglement. In Fig. 2(a), concurrence is plotted against
the scaled driving field strength ε/g and scaled cavity decay
rate κ/g. We find that for larger κ , maximum concurrence
is reached at larger value of ε. However, maximum possible
steady-state concurrence between the dots remains almost the
same for different values of κ . This means faster cavity decay
only requires a stronger driving field to produce the same
amount of entanglement.

This is in sharp contrast to Fig. 2(b), which shows the effect
of dot decay rate γ . Maximum concurrence is highest at γ = 0
and decreases with increasing γ . Hence, the potential to create
entanglement is maximum in the absence of any dot decay
mechanism and the faster the dot decay rate, the lower the
amount of entanglement that can be generated. Intuitively, this
makes sense that cavity decay does not but dot decay does
diminish the potential to create dot-dot entanglement. Also,
we can see from Eq. (14), the dot parameters x, y, p, q, and
r do not have explicit κ dependence, but they depend on the
value of γ . Interestingly, though, the concurrence is not 1 even
when γ = 0, and it is not always 0 at large values of γ ; in
fact it asymptotically attains a steady value. Hence, the dots
cannot be fully entangled even in the absence of decay, but it is
possible to create some entanglement even in the presence of
very large decay. Figure 2(c) shows that concurrence increases
with dot-dot coupling W . However, increasing W does not
increase concurrence indefinitely but takes it to an asymptotic
value.

Next we compare the effects of the two detuning parameters
δc and δd on the concurrence. Figure 2(d) shows that with
change in δc, the value of the pump parameter ε at which
the maximum concurrence is achieved also changes. We also
find that, similar to the cavity decay rate κ , the maximum
concurrence the dots can achieve is insensitive to the cavity
detuning δc. Moreover, the concurrence plot is not symmetric
about δc = 0 unless both W and δd are zero. This is expected
because the presence of dot-dot coupling shifts the energy
levels of the dots. Thus, for nonzero W and δd , the dots are
no longer in resonance with ω0 resulting in asymmetry in δc.
This asymmetry is evident from Eq. (19), which shows that
for nonzero W or δd , the field amplitudes are not the same
for ±δc. The asymmetry in field amplitude makes concurrence
also asymmetric in δc.

Things are very different with dot detuning δd as shown in
Fig. 2(e). With increasing δd , maximum concurrence decreases
rapidly, and at significant detuning, virtually no concurrence
can be generated. Hence, it is important to have the dot excita-
tion frequency close to resonance. But again, the concurrence
plot is not always symmetric about δd = 0 and maximum
concurrence may not be achieved at exact resonance. From
Eq. (19), the cavity field is an even function of δd only when
δc = 0 and W = 0 or (−δd/2).

In Fig. 2(f), we have plotted concurrence as a function
of g (in units of γ ) — which shows the effect of the
coupling parameter between the dot and the quantized field
on concurrence, for a fixed dot decay rate. As expected,
concurrence remains zero at g = 0 because this represents
no interaction between the dots and the field and, hence, no
chance for the dots to ever go to the excited state. But, for

a finite g, however small, concurrence exists. Not only that,
the maximum possible concurrence that can be generated is
the same at all values of g > 0 (all other parameters being
equal). However, at very small values of g (0 < g � 1),
it takes a very strong driving field to reach that maximum
concurrence (in the figure, we have not shown the gradual
increase of the concurrence to the maximum value and the
decrease to zero for small values of g). Another interesting
feature that we can observe is, starting from zero, initially
an increase in g lowers the driving field required to attain
the maximum concurrence. However, this trend reverses for
higher values of g where a stronger driving field is required
to produce the maximum possible concurrence at larger g.
Although apparently counterintuitive, this result is consistent
with the observation in Ref. [23] that large dot-field interaction
actually acts against formation of dot-dot entanglement.

Hence, we observe that to maximize concurrence, one
should maximize the dot-dot interaction W and minimize the
dot decay rate γ and the dot detuning δd . Dot-field interaction
strength g, cavity decay rate κ , and cavity detuning δc do
not change the value of the maximum possible concurrence,
although they affect at what driving field strength that
concurrence can be achieved. For the case of two coupled
dots inside a cavity driven by a field, the maximum value of
concurrence obtained in the limit (w � g, γ → 0, �d → 0)
is found to be 0.43.

Figure 3 shows steady-state concurrence and the scaled
cavity field intensity (X2/50) as a function of the driving field
ε for three values of g. We can see that, as the driving field
is increased, the cavity field starts to build up and so does the
concurrence. In the regime of bistability, the corresponding
concurrence curve reaches its maximum near the edge of the
lower branch of the bistability curve. With further increases
in the driving field, concurrence decreases very rapidly and
falls to zero just at the transition point of the bistability curve.
With an even stronger driving field, as the cavity field tracks
the upper branch of the bistability curve, concurrence stays
at zero. However, if the field does not show bistability, the
corresponding concurrence curve shows a much smoother
behavior. Hence, a sharp rise and fall in concurrence is
accompanied by the presence of strong bistability. This is a

FIG. 3. Concurrence C and scaled cavity field intensity X2/50
plotted against scaled pump parameter ε/γ for three different sets of
values of scaled dot-field coupling g/γ .
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remarkably interesting phenomenon that tells us if the cavity
field shows bistability, then by measuring the field leaking
outside the cavity, an observer should be able to determine
the presence or absence of entanglement between the dots. By
adjusting the driving field strength appropriately and hence
controlling the field inside the cavity, one can switch the
entanglement on and off. We find that with increasing photon
density inside the cavity, the dots closely resemble the state

�̂ ≈

⎛⎜⎝
1
3 0 0

0 1
3 0

0 0 1
3

⎞⎟⎠ ; (25)

that is, x, y, p, p∗, q, q∗, r, and r∗ in Eq. (9) tend toward
0 (typical values of x, y, p... are of the order of 0.001). In
other words, the state of the dots can accurately be described
as an equal mixture of the zero-exciton, single-exciton, and
biexciton states, each with probability 1

3 . Because our single-
exciton state |1〉 = 1√

2
(|0〉1
⊗ |1〉2 + |1〉1

⊗ |0〉2) is itself an
entangled state, it might appear that even in this final steady
state there should be some entanglement left between the dots.
However, when we express the complete density matrix in the
usual |00〉, |01〉, |10〉 and |11〉 basis, we obtain

ρ =

⎛⎜⎜⎜⎜⎝
1
3 0 0 0

0 1
6

1
6 0

0 1
6

1
6 0

0 0 0 1
3

⎞⎟⎟⎟⎟⎠ , (26)

which has concurrence zero, meaning no entanglement. The
reason is that this density matrix could be obtained as a
statistical mixture of purely unentangled states.

Following Ref. [38], if in the Bell basis a density matrix
can be written as

(p1|
+〉〈
+| + p2|
−〉〈
−| + p3|�+〉〈�+| + p4|�−〉〈�−|),
where

|
+〉 = 1√
2

[|00〉 + |11〉],

|
−〉 = i
1√
2

[|00〉 − |11〉],
(27)

|�+〉 = i
1√
2

[|01〉 + |10〉],

|�−〉 = 1√
2

[|01〉 − |10〉]

are the modified Bell states, and none of p1, p2, p3, and p4

is greater than (1/2), then it is always possible to find phase
constant θj s such that

4∑
j=1

pje
iθj = 0 (28)

and recreate the density matrix as an equal mixture of the
following set of eight states:

√
p1e

iθ1/2|
+〉 ± √
p2e

iθ2/2|
−〉 ± √
p3e

iθ3/2|�+〉
± √

p4e
iθ4/2|�−〉.

Each of these states is an unentangled state, implying that the
overall state will also be unentangled.

In our case, p1 = 1/3, p2 = 1/3, p3 = 1/3, and p4 = 0. If
we choose θj ’s so that Eq. (28) is satisfied (e.g., θ1 = π/3, θ2 =
−π/3 and θ3 = π ), we get the following four unentangled
states:

1√
6

[(eiπ/6 + ie−iπ/6)|0〉1 + |1〉1]⊗
[|0〉2 + (eiπ/6 − ie−iπ/6)|1〉2],

1√
6

[(eiπ/6 + ie−iπ/6)|0〉1 − |1〉1]⊗
[|0〉2 − (eiπ/6 − ie−iπ/6)|1〉2],

1√
6

[(eiπ/6 − ie−iπ/6)|0〉1 + |1〉1]⊗
[|0〉2 + (eiπ/6 + ie−iπ/6)|1〉2],

1√
6

[(eiπ/6 − ie−iπ/6)|0〉1 − |1〉1]⊗
[|0〉2 − (eiπ/6 + ie−iπ/6)|1〉2].

These states can reproduce the density matrix given in Eq. (26)
when mixed in equal (one-fourth) proportion. Any other choice
of θ satisfying Eq. (27) would also reproduce ρ from an
ensemble of unentangled states.

Next we examine whether the results described in the
preceding discussion can be observed with current experi-
mental techniques. Several recent experiments using GaAs
quantum dots have shown that it is possible to optically
manipulate the coherent evolution of one [10] or more [11]
dot(s). Charge-entangled state preparation has been possible
in one (or two) quantum dots using GaAs and InAs dots [9].
All optical quantum gate operations have also been carried out
on a single GaAs quantum dot [12]. Here we show that the
range of parameters needed to observe the features described
in Figs. 1, 2, and 3 can be achieved experimentally. We
have the following parameters associated with the complete
dot-cavity-pump system: cavity-pump coupling ε, cavity-dot
coupling g, dot-dot coupling w, dot decay rate γ , cavity decay
rate κ , dot detuning �d , and cavity detuning �c. Of these, the
two detuning parameters can be adjusted, and for simplicity,
we choose to be zero. The energy band gap in typical GaAs
quantum dots is about 1.6 eV, which requires an excitation
wavelength in the vicinity of 900 nm for resonance. The
experimentally observed value of g for GaAs dots is of the
order of 0.1 meV [13]. Possible interdot coupling w due to
the Forster interaction has been calculated by Lovett et al. [14]
and Unold et al. [15]. They estimated that depending on the
material, shape, size, and distance among the dots, w can be
of the order of 0.01 meV to 1 meV. Experimentally observed
dephasing time for GaAs dots [10] is ∼40 ps, which gives
γ ∼ 15 µeV. However, quantum dots with ultra-long dephas-
ing times have been experimentally observed, as in Ref. [16],
where InGaAs dots with lifetime >600 ps have been observed,
giving γ ∼ 1 µeV. Modern optical cavities can have a very
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long lifetime and a correspondingly small decay rate. It is
not unusual to have an optical cavity lifetime in excess of
10 ns [17], giving κ < 0.1 µeV. Finally, the cavity-pump
coupling ε, which depends on the strength of the driving field,
can be adjusted as required.

As an example, scaled parameters in Fig. 2(a) are γ /g =
0.5, W = 2w/γ = 0.4, κ/g between 0 and 1, ε/g between
0 and 1, and �d = �c = 0. In terms of unscaled value
of g = 0.1 meV, values of other parameters correspond to
γ = 0.05 meV, w = 0.01 meV, κ between 0 and 0.1 meV,
and ε between 0 and 0.1 meV, all within an existing range of
experimentally achievable parameter values. The bistability
curves shown in Fig. 1(a) can be observed using unscaled
parameters w = 0.01 meV, g = 0.1 meV, γ = 0.05 meV, and
κ = 0.3 to 0.04 meV. Similarly, we can show that the features
in other graphs of Figs. 1, 2, and 3 can be experimentally
realized.

V. CONCLUSION

We have studied the dynamics of two coupled quantum dots
interacting with a cavity driven by a coherent field. We have
observed that starting from an initially unentangled state, it
is possible to generate and sustain significant entanglement
between the dots in the steady state for nonzero cavity-dot
coupling (g �= 0), even in the presence of both dot decay
and cavity decay. Maximum entanglement in steady state
increases with an increase in dot-dot coupling and decreases
with increased dot decay rate and dot detuning. The maximum
entanglement the system can achieve is not significantly
affected by the dot-field coupling strength, cavity decay rate,
and cavity detuning, but maximum entanglement is achieved
at a much larger value of the driving field. We also find that
for large values of cavity-dot coupling, the cavity field shows
bistable behavior and appears to be strongly correlated with the
entanglement between the dots. With an increase in the driving
field, both cavity field intensity and dot-dot entanglement
increase. As the cavity field nears the edge of the lower
branch of the bistability curve, entanglement starts to decrease
rapidly and falls to zero at the transition point. No steady-state
entanglement between the dots is found when the cavity field
follows the upper branch of the bistability curve. Hence, by
changing the external driving field, entanglement between
the dots can be turned on and off. With recent advances in
quantum dot technology, it is possible to observe these results
experimentally.

ACKNOWLEDGMENTS

The authors wish to thank S. Singh for many helpful
discussions.

APPENDIX

To obtain the Fokker-Planck equation, we convert the
operator equation given in Eq. (8) into a c-number equation.
We use properties for field operators given in Ref. [33] [see

Eq. (18)] and the following properties for the dot operators:

Ĵz�̂ =

⎛⎜⎝−
1
3 − x −p −q

0 0 0

q∗ r∗ 1
3 + y

⎞⎟⎠
= 1

3
(y − x)Î − 1

3
(1 + 2x + y)

∂�̂

∂x
+ 1

3
(1 + x + 2y)

∂�̂

∂y

−p
∂�̂

∂p
− q

∂�̂

∂q
+ q∗ ∂�̂

∂q∗ + r∗ ∂�̂

∂r∗ ,

�̂Ĵz =

⎛⎜⎝−
1
3 − x 0 q

−p∗ 0 r

−q∗ 0 1
3 + y

⎞⎟⎠
= 1

3
(y − x)Î − 1

3
(1 + 2x + y)

∂�̂

∂x
+ 1

3
(1 + x + 2y)

∂�̂

∂y

+ q
∂�̂

∂q
+ r

∂�̂

∂r
− p∗ ∂�̂

∂p∗ − q∗ ∂�̂

∂q∗ , (A1)

Ĵ+�̂ = (�̂Ĵ−)† =

⎛⎜⎝ 0 0 0
1
3 + x p q

p∗ 1
3 − x − y r

⎞⎟⎠
= 1

3
(p + r)Î − 1

3
(p + r)

∂�̂

∂x

+ 1

3
(2r − p)

∂�̂

∂y
+ q

∂�̂

∂r

+
(

1

3
+ x

)
∂�̂

∂p∗ + p∗ ∂�̂

∂q∗

+
(

1

3
− x − y

)
∂�̂

∂r∗ ,

�̂Ĵ+ = (Ĵ−�̂)† =

⎛⎜⎝ p q 0
1
3 − x − y r 0

r∗ 1
3 + y 0

⎞⎟⎠
= 1

3
(p + r)Î + 1

3
(2p − r)

∂�̂

∂x

− 1

3
(p + r)

∂�̂

∂y
+ q

∂�̂

∂p

+
(

1

3
− x − y

)
∂�̂

∂p∗ + r∗ ∂�̂

∂q∗

+
(

1

3
+ y

)
∂�̂

∂r∗ , (A2)

T̂ �̂ =

⎛⎜⎝
1
3 + x p q

2p∗ 2
(

1
3 − x − y

)
2r

q∗ r∗ 1
3 + y

⎞⎟⎠
= 1

3
(4 − 3x − 3y)Î − 1

3

(
1

3
− 4x − y

)
∂�̂

∂x

− 1

3

(
1

3
− x − 4y

)
∂�̂

∂y
+ p

∂�̂

∂p
+ q

∂�̂

∂q
+ 2r

∂�̂

∂r
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+ 2p∗ ∂�̂

∂p∗ + q∗ ∂�̂

∂q∗ + r∗ ∂�̂

∂r∗ ,

�̂T̂ =

⎛⎜⎝
1
3 + x 2p q

p∗ 2
(

1
3 − x − y

)
r

q∗ 2r∗ 1
3 + y

⎞⎟⎠
= 1

3
(4 − 3x − 3y)Î − 1

3

(
1

3
− 4x − y

)
∂�̂

∂x

− 1

3

(
1

3
− x − 4y

)
∂�̂

∂y
+ 2p

∂�̂

∂p
+ q

∂�̂

∂q
+ r

∂�̂

∂r

+p∗ ∂�̂

∂p∗ + q∗ ∂�̂

∂q∗ + 2r∗ ∂�̂

∂r∗ , (A3)

2Ĵ−�̂Ĵ+ − Ĵ+Ĵ−�̂ − �̂Ĵ+Ĵ−

=

⎛⎜⎝ 2
(

1
3 − x − y

) −p + 2r −q

−p∗ 2(x + 2y) −2r

−q∗ −2r∗ −2
(

1
3 + y
)
⎞⎟⎠

= 2

(
1

3
− x − y

)
∂�̂

∂x
− 2

(
1

3
+ y

)
∂�̂

∂y
− (p − 2r)

∂�̂

∂p

− q
∂�̂

∂q
− 2r

∂�̂

∂r
− (p∗ − 2r∗)

∂�̂

∂p∗

− q∗ ∂�̂

∂q∗ − 2r∗ ∂�̂

∂r∗ . (A4)

Using these operator relations, we can convert Eq. (8) to a
corresponding equation for P (α, α∗, x, y, p, p∗, q, q∗, r, r∗).
As an example, we consider the second term [Ĵz, ρ], which
can be written as

(Jzρ − ρJz)

=
∫

P |α〉 〈α| (Jz�̂ − �Jz

)
d2α dx dy d2p d2q d2r

=
∫

P |α〉 〈α|
[(

−p
∂

∂p
+ p∗ ∂

∂p∗ − 2q
∂

∂q
+ 2q∗ ∂

∂q∗

− r
∂

∂r
+ r∗ ∂

∂r∗

)
�̂

]
d2α dx dy d2p d2q d2r

=
∫

|α〉 〈α| �̂
[(

∂

∂p
p − ∂

∂p∗ p∗ + ∂

∂q
2q − ∂

∂q∗ 2q∗

+ ∂

∂r
r − ∂

∂r∗ r∗
)

P

]
d2α dx dy d2p d2q d2r. (A5)

In the last step, we have changed the derivative from �̂ to
P , using the rules of partial integration, which leaves a minus
sign. This is valid as long as the quasiprobability function
P vanishes at the boundary. After calculating each of the
remaining terms in a similar fashion, we finally write the
equation for P as∫

|α〉〈α| �̂
∂P

∂t
d2α dx dy d2p d2q d2r

=
∫

|α〉〈α| �̂

{
− ∂

∂α
[ε − (κ + i�c)α + g(p∗ + r∗)]

− ∂

∂α∗ [ε − (κ − i�c)α∗ + g(p + r)]

+ ∂

∂x

[
γ

(
x + y − 1

3

)
− gαp − gα∗p∗

]
+ ∂

∂y

[
γ

(
y + 1

3

)
+ gαr + gα∗r∗

]
+ ∂

∂p

[
γ
(p

2
− r
)

+ gα∗(2x + y) − gαq

− i(w + �d )p
]

+ ∂

∂p∗

[
γ

(
p∗

2
− r∗
)

+ gα(2x + y)

− gα∗q∗ + i(w + �d )p∗
]

+ ∂

∂q

[
γ

q

2
+ gα∗(p − r) − 2i�dq

]
+ ∂

∂q∗

[
γ

q∗

2
+ gα(p∗ − r∗) + 2i�dq

∗
]

+ ∂

∂r
[γ r − gα∗(x + 2y) + gαq + i(w − �d )r]

+ ∂

∂r∗ [γ r∗ − gα(x + 2y) + gα∗q∗ − i(w − �d )r∗]

− ∂2

∂α∂x
g

[
x(p∗ + r∗) − 2p∗ − r∗

3

]

− ∂2

∂α∂y
g

[
y(p∗ + r∗) + p∗ + r∗

3

]

− ∂2

∂α∂p
g

[
p(p∗ + r∗) +

(
x + y − 1

3

)]

− ∂2

∂α∂p∗ g[p∗(p∗ + r∗) − q∗] − ∂2

∂α∂q

× g[q(p∗ + r∗) − r] − ∂2

∂α∂q∗ g[q∗(p∗ + r∗)]

− ∂2

∂α∂r
g

[
r(p∗ + r∗) −

(
y + 1

3

)]
− ∂2

∂α∂r∗

× g[r∗(p∗ + r∗)] − ∂2

∂α∗∂x
g

[
x(p + r) − 2p − r

3

]

− ∂2

∂α∗∂y
g

[
y(p + r) + p + r

3

]

− ∂2

∂α∗∂p
g[p(p + r) − q] − ∂2

∂α∗∂p∗

× g

[
p∗(p + r) +

(
x + y − 1

3

)]

− ∂2

∂α∗∂q
g[q(p + r)] − ∂2

∂α∗∂q∗ g[q∗(p + r) − r]

− ∂2

∂α∗∂r
g[r(p + r)] − ∂2

∂α∗∂r∗

× g

[
r∗(p + r) −

(
y + 1

3

)]}
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P d2α dx dy d2p d2q d2r

=
∫

|α〉〈α| �̂ (L P ) d2α dx dy d2p d2q d2r, (A6)

whereL is the operator inside the curly bracket acting on P . To
satisfy this equation, it is sufficient that the integrands on both
sides be equal, which results in Fokker-Planck equations (11)
and (12).
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