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This article begins with a simple proof of the existence of squash operators compatible with the Bennett-
Brassard 1984 (BB84) protocol that suits single-mode as well as multimode threshold detectors. The proof shows
that, when a given detector is symmetric under cyclic group C4, and a certain observable associated with it has rank
two as a matrix, then there always exists a corresponding squash operator. Next, we go on to investigate whether
the above restriction of “rank two” can be eliminated; i.e., is cyclic symmetry alone sufficient to guarantee the
existence of a squash operator? The motivation behind this question is that, if this were true, it would imply that
one could realize a device-independent and unconditionally secure quantum key distribution protocol. However,
the answer turns out to be negative, and moreover, one can instead prove a no-go theorem that any symmetry is,
by itself, insufficient to guarantee the existence of a squash operator.
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I. INTRODUCTION

Quantum key distribution (QKD) is a technique for dis-
tributing information-theoretically secure secret keys between
two parties connected by a quantum channel. The oldest, and
now de facto, standard protocol for QKD is the well-known
Bennett-Brassard 1984 (BB84) protocol [1]. Several different
approaches have been advanced for proving its unconditional
security [2–6], e.g., one based on virtual entanglement
distillation protocol (EDP) [2,3] and another based on the
complementarity of quantum theory [4].

The most widely used of these approaches is the one based
on EDP, where an actual QKD protocol is converted to an
equivalent and virtual EDP performed by Alice and Bob. The
conversions must be made so that Alice’s and Bob’s quantum
operations are seen by Eve to retain the same positive operator
valued measures (POVM); i.e., Eve’s information regarding
the secret key bits is not changed by conversion. The original
EDP-based proofs [2] assumed that the actual protocol had
access to a perfect single-photon source and photon-number
resolving detectors. However, this assumption is invalid for
real-world QKD systems, which use attenuated lasers as light
sources, and the receiver uses “threshold detectors,” which
can discriminate a nonzero photon state from the vacuum but
cannot determine the exact photon number.

In fact, techniques are already known that can fill these
gaps. As for light sources, by exploiting decoy states, lasers
can be driven to effectively emit single-photon pulses [7].
One of the known solutions for detectors [8,9,11] is the
powerful theoretical tool called “squash operator.” Squash
operator is a quantum operation that transforms an incoming
n-photon state to a qubit state. By incorporating this operator
into a conventional type of security proof where BOB has
a photon-number discriminating detector, one automatically
obtains a new proof that remains valid even if threshold
detectors are used. A squash operator was first assumed in the
security proof by Gottesman et al. [3], however, its existence
was only conjectured; no proof was given. For threshold
detectors, which are sensitive only to single-mode photon
pulses, its existence was proved first by the present author
and Tamaki [8], and also independently by Beaudry et al. [9].
Although this method was originally introduced in the context

of EDP-based security proofs, it can also be applied to other
proof approaches, e.g., the one based on the quantum de Finetti
representation theorem [5] (for details, see Refs. [8,9]).

The aim of this article is to investigate how far we
can generalize this result from the viewpoint of symmetry
constraints imposed on the detector. In the first half of this
article, we show that when a given set of POVM is symmetric
under transformations of cyclic group C4, and the observable
Mz related with it has rank two, then there always exists
a corresponding squash operator compatible with the BB84
protocol (Theorem 1). An immediate corollary of this theorem
is that a squash operator exists, not only for single-mode
threshold detectors, but also for multimode threshold detectors.
Next, in the second half of the article, we tackle the question of
whether the above restriction of “rank two” can be eliminated.
The answer turns out to be negative. Furthermore, it can be
shown that, more generally, no symmetry is sufficient by itself
to guarantee the existence of a squash operator (Theorem 2).

II. DEFINITION OF SQUASH OPERATOR

In the BB84 protocol, ALICE and BOB use two different
bases, r , for their measurements, interchangeably. They are
usually denoted as the z and the x basis (r = z, x) because
they are related to qubit measurements of the Pauli matrices
σz, σx . Similarly, the notation of r = +,× bases is used to
indicate the directions of photon polarization. In what follows,
we stick to the notation of r = z, x for the sake of simplicity.

We denote the Hilbert space of the receiver’s incoming
states as HB . In this space, there are two sets of POVM
elements, M(r,b), corresponding to basis r = z, x and the output
bit b = 0, 1. We also define observables Mr := M(r,0) − M(r,1)

for later convenience. For example, if a receiver measures
state ρB ∈ HB using the x basis, he observes output bit b = 0
with probability p(x,0) = Tr[ρBM(x,0)]. We also assume that
the measurements are complete for each basis; that is,

M(r,0) + M(r,1) = IB (1)

holds for r = z, x, where IB is the identity operator of HB .
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Squash operator F is a completely positive trace-preserving
(CPTP) map with the following properties.1 F maps states in
HB to those in qubit space HC , and, when F is followed by
the z or the x measurement in HC , it reproduces Mr of the
actual measurement device. That is, for an arbitrary mixed
state ρB ∈ HB , it satisfies

Tr [F (ρB)σr ] = Tr (ρBMr ) for r = z, x (2)

with σr being the Pauli operators. In fact, in the article by
Gottesman et al. [3], which gave the original definition of
squash operator, it was assumed F might depend slightly on
basis r , and Eq. (2) with F replaced by Fr was used as the
definition. They then discussed the security of QKD when
the basis dependence of Fr was small enough. In this article,
however, we neglect this basis-dependent flaw for the sake of
simplicity, and concentrate on cases where F is independent
of r .

A convenient way of describing F is to use an operator
sum representation with a set of Kraus operators Fc (see, e.g.,
Ref. [13].) In this notation, the trace-preserving condition of
F takes the form

∑
c F

†
c Fc = IB . Complete positiveness is

guaranteed as long as F is expressed as F (ρB) = ∑
c FcρBF

†
c .

This notation has the additional merit that the Hermitian
conjugate, F †, of F can be expressed in simple form as
F †(ρC) = ∑

F
†
c ρCFc with ρC being an arbitrary state in HC .

By using these relations, the definition of squash operator F for
Mr given in Eq. (2) can be equivalently stated as the following
two conditions for Kraus operator Fc,

Mr =
∑

c

F †
c σrFc, (3)

IB =
∑

c

F †
c Fc. (4)

III. CYCLICALLY SYMMETRIC POVM FOR THE
BB84 PROTOCOL

In the first half of this article, we show that F actually
exists for multimode threshold detectors as well. Against this
goal, we generalize the problem slightly by taking up finite
group C4, i.e., a cyclic group of order 4, and consider POVM
elements M(r,b) that are symmetric under its transformations
(for details of C4 group, see, e.g., Ref. [10].) The C4 symmetry
of M(r,b) is stated rigorously as follows.

Definition 1. A set of POVM elements {M(r,b)} of BB84 type
is C4 symmetric if there exists a unitary operator U satisfying
U 4k = IB with k ∈ N, and it transforms them as follows

UM(z,b)U
† = M(x,b), (5)

U 2M(r,b)U
†2 = M(r,1−b). (6)

Intuitively, operator U corresponds to rotating a detector
spatially by 45◦, when polarization encoding is used. It can be
better seen if we newly define operators L0, . . . , L3 as L2b =
M(z,b) and L2b+1 = M(x,b) for b = 0, 1. The relations (5)
and (6) can thus be rewritten as ULcU

† = Lc+1, where modulo
4 is assumed in the summation of index c. Note here that with

1Squash operation is called a “squashing model” in Ref. [9].

U being a 45◦ rotation, we have U 8 = IB instead of U 4 = IB .
This example demonstrates why we needed to consider cases
of k > 1 in Definition 1.

Theorem 1. If a given set of POVM elements {M(r,b)} of
BB84 type is C4 symmetric, and the rank of the corresponding
observable Mz (or equivalently, Mx) as a matrix is two, there
always exists a corresponding squash operator compatible with
the BB84 protocol.

Here, it should be noted that the restriction of “rank two”
does not necessarily mean that the Hilbert space HB is a qubit
space, as illustrated by the following example.

An important example of C4-symmetric POVMs is the
threshold detector. In this paragraph, following Refs. [8,9],
we concentrate on photon detection modules consisting of
two photon threshold detectors, each of which corresponds
to output bits b = 0, 1; we call such photon detection units
simply “threshold detectors” with only a slight abuse of
the terminology. We also assume that, when both detectors
click coincidently (double-click events), the detection system
outputs a random bit as its output, b. However, we differ from
Refs. [8,9] in that we do not restrict ourselves to a single
mode but assume that an incoming light pulse may have
m � 1 modes of propagation; we label each using index i.
We also denote the number of photons in mode i as ni and let
N = (n1, n2, . . . , nm). Clearly, any threshold detector is block
diagonalized with respect to the photon number configuration
N , and there is no loss of generality in considering each of the
blocks individually when analyzing security. For each such
section, N , the observables Mr can be written as a matrix with
rank two

Mr = |N ; r, 0〉〈N ; r, 0| − |N ; r, 1〉〈N ; r, 1| (7)

for r ∈ {z, x}, where

|N ; r, b〉 := AN (a†
1rb)n1 (a†

2rb)n2 · · · (a†
mrb)nm |0〉. (8)

Note here that Mr has rank two because double-click events
are replaced by a random bit in our model, and thus all states
besides |N ; r, 0〉 and |N ; r, 1〉 are canceled in the subtraction
Mr = M(r,0) − M(r,1) (a similar argument can be found in
Ref. [11].) Coefficient AN in Eq. (8) is the normalization
constant for state |N ; r, b〉, and a

†
irb are the creation operators

for photons propagating in mode i, having bit value b of basis
r . In accordance with the usual notations of Pauli matrices,
creation operators a

†
irb for two bases r = z, x are related

as a
†
ixb = 1√

2
[a†

iz0 + (−1)ba†
iz1]. The single-mode threshold

detectors discussed in Refs. [8,9] correspond to the special
case of m = 1. C4 symmetry can be shown by using an explicit
form of the transforming operator UN ,

UN = exp

[
i

2

∑
i

(a†
iy0aiy0 − a

†
iy1aiy1)

]
.

The creation operator along the y axis appearing in the above
equation is defined as a

†
iyb = (a†

iz0 + i(−1)ba†
iz1)/

√
2.

From these facts, and also from Theorem 1, it immediately
follows that a squash operator exists, not only for single-mode
threshold detectors but also for multimode threshold detectors.

Proof of Theorem 1. Here we give only the proof for k = 1,
since all other cases (k � 2) can be shown by exactly the same
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argument. As can be seen from U 2MzU
†2 = −Mz, for each

normalized eigenstate |v〉 of Mz with an eigenvalue 0 < λ � 1,
there always exists another eigenstate U 2|v〉 having a different
eigenvalue −λ, and thus is orthogonal

〈v|U 2|v〉 = 0. (9)

From this, and since the rank of Mz is two, it follows that Mz

takes the form

Mz = λ(|v〉〈v| − U 2|v〉〈v|U †2). (10)

By using a basis that diagonalizes U , we can always decom-
pose |v〉 as

|v〉 =
3∑

c=0

µc |vc〉 , (11)

with U |vc〉 = ic |vc〉. Then, from Eq. (9), we see that coeffi-
cients µi satisfy

|µ0|2 + |µ2|2 = |µ1|2 + |µ3|2 = 1
2 . (12)

We now define a completely positive, but not necessarily
trace-preserving map, F , with a set of Kraus operators
F0, F1, . . . , F3 which take the form

Fc =
√

2λ(µc+1|0y〉〈vc| + µc|1y〉〈vc+1|) (13)

if µcµ
∗
c+1 �= 0, otherwise Fc = 0. In Eq. (13), modulo 4 is

assumed for the summations of index c. From the linearity of
F †, we obtain the following relation

F †(σz + iσx) =
3∑

c=0

F †
c (σz + iσx)Fc

= 2
3∑

c=0

F †
c |0y〉〈1y |Fc

= 4λ

3∑
c=0

µcµ
∗
c+1 |vc〉 〈vc+1|

= λ

3∑
c=0

icUc|v〉〈v|U †c = Mz + iMx. (14)

Similarly, from Eqs. (12) and (13), we have F †(IC) =∑3
c=0 F

†
c Fc � IB . Furthermore, F can be modified such that it

satisfies the trace-preserving condition (6) and also maintains
relation F †(σz + iσx) = Mz + iMx , obtained in Ref. (14).
This can be done by introducing extra Kraus operators Fc,
c > 3, having the form Fc = |by〉〈ψc| with b = 0 or 1.

That the CPTP map F thus obtained also satisfies (5) for
r = z can be shown as F †(σz) = 1

2F †((σz + iσx) + H.c.) =
1
2 (Mz + iMx) + H.c. = Mz, where H.c. denotes the Hermi-
tian conjugate. The other relation for r = x can be shown
similarly. �

IV. DOES SYMMETRY IMPLY THE EXISTENCE OF
SQUASH OPERATORS?

A natural question that arises here is as follows: Can we
eliminate the restriction of “rank two” appearing in Theorem
1? In other words, is cyclic symmetry C4 alone sufficient to
guarantee the existence of a squash operator or, more generally,
is there any type of symmetry that is strong enough to ensure its

existence? In the remaining half of this article, we shall
investigate this possibility. This question is interesting because
if this were actually the case, we would need no knowledge
about microscopic structures of a detector in order to ensure
the existence of its squash operator. In other words, we would
succeed in proving the unconditional security of some of the
existing protocols, such as the Bennett-Brassard-Mermin 1992
(BBM92) protocol [12], in a device-independent way [14,15].

Indeed, C4 symmetry is already realized in most conven-
tional BB84 systems (c.f. the paragraph below Definition 1).
For example, when polarization encoding is used, bases z, x

can be switched by rotating the detector by 45◦. In addition,
the receiver may interchange the assignment of two detectors
to output bit b = 0, 1 randomly, by rotating them by 90◦ and
flipping b. This may be done in order to cancel the mismatch
between two detectors in terms of quantum bit error rate. These
two types of rotation generate a C4 group.

Moreover, for some QKD protocols, no knowledge about
microscopic structures of any components besides detectors is
needed to prove security. For example, consider the BBM92
protocol, where an untrusted third party prepares an entangled
state. It is clear that if symmetry could actually imply the
existence of squash operators, we would be able to prove
the security of a QKD system without knowing anything of the
microscopic structure of the devices, only the macroscopic op-
erations by ALICE and BOB. Note here that, although there are
already remarkable results on the device-independent security
of QKD [14,15], whether there exists an efficient protocol that
can achieve unconditional security is still an open problem.

However, as we shall show below, that is not actually the
case. The fact is that we can prove a no-go theorem that
denies such relations between a squash operator and symmetry.
In order to discuss this point rigorously, we define general
symmetries of POVM below and then present a theorem.

Definition 2. A set of POVM elements {M(r,b)} of BB84
type is symmetric under finite group G if they transform under
G as

V (g)M(r,b)V
†(g) = Mg(r,b) for g ∈ G,

with V (g) being a unitary representation of group G. Here,
map g : (r, b) �→ (r ′, b′) determines how each POVM element
M(r,b) is transformed into another element by g ∈ G.

Theorem 2. No symmetry is sufficient by itself to guarantee
the existence of a squash operator. That is, one cannot prove a
theorem that states that “For an arbitrary G-symmetric set of
POVM, there always exists a squash operator compatible with
the BB84 protocol.”

We present below a proof of this theorem. The basic strategy
here is to show that if the type of theorems as quoted in
Theorem 2 holds, it can be used to show the improbable
proposition that any arbitrary operator, whether symmetric or
asymmetric, possesses a squash operator.

Proof of Theorem 2. For an arbitrary set of operators M(r,b)

of BB84 type, which may not be symmetric, one can always
define other G-symmetric operators M̃(r,b) as

M̃(r,b) :=
∑
g∈G

Mg−1(r,b) ⊗ |g〉〈g|

in HB ⊗ HD . Here, HD is an ancilla space that is spanned by
orthonormal basis {|g〉}g∈G, that is, a set of orthonormal states
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|g〉 labeled by all elements g ∈ G. M̃ is G symmetric under
unitary transformation Ṽ as defined by Ṽ (g) := idB ⊗ RD(g)
with RD being the regular representation of G defined by
RD(g)|h〉D = |gh〉D (see, e.g., Ref. [10]). Hence if one could
prove the type of theorems quoted in Theorem 2, it would
readily follow that there is a squash operator for M̃(r,b).

On the contrary, however, once such a F̃ is obtained, one
can also construct squash operator F for the original operators
M(r,b). In order to see this, note that we have for an arbitrary
ρB ∈ HB

Tr [MrρB] = Tr[M̃r (ρB ⊗ |e〉〈e|)]
= Tr[σrF̃ (ρB ⊗ |e〉〈e|)].

with e being the identity element of G. Thus, applying F̃

on ρB ⊗ |e〉〈e| serves as a correct squash operator for ρB .
This result shows that any POVM M(r,b) of BB84 type,
whether symmetric or not, possesses a squash operator.
However, this leads to a contradiction because there exists
the counterexample of POVM M0 defined by

M0z = M0x = σz,

which has no squash operator.
The fact that M0 possesses no squash operator can be

shown, e.g, by the same argument as Beaudry, Moroder, and
Lütkenhaus used for the six-state protocol [9], but it can
alternatively be shown by the following simple argument. Con-
sider the situation where Alice and Bob perform the BBM92
protocol using M0 as their detectors, and, as the entanglement
source, Eve provides states |ψb〉 := |bz〉A ⊗ |bz〉B with a bit
b ∈ {0, 1} of her choice. In this setup, clearly, all sifted key
bits b are known to Eve, and thus Alice and Bob will never
succeed in sharing secret keys. Hence, the existence of squash
operator F for M0 would lead to a contradiction, since F could
be used to prove the unconditional security of this system, with
the quantum bit error rate measured by Alice and Bob being
exactly zero. �

V. SUMMARY

In this article, we first showed that, if a given detector is C4

symmetric, and the observable Mz associated with it has rank
two, then there always exists a corresponding squash operator
compatible with the BB84 protocol (Theorem 1). By using
this result, we then proved that squash operators exist not only
for single-mode threshold detectors but also for multimode
threshold detectors.

Next, we took up the question of whether this result can
be generalized to symmetric detectors with arbitrary ranks,
as an attempt toward the realization of device-independent
and unconditionally secure QKD protocols. However, it turned
out that the truth is quite opposite. That is, we have succeed
in proving that, no matter what symmetry one imposes on
the detectors, the symmetry is never sufficient, by itself, to
guarantee the existence of a corresponding squash operator
(Theorem 2).

Finally, we would like to stress that our result is not
intended to rule out the possibility of device-independent
and unconditionally secure QKD protocols based on other
approaches. Indeed, such a protocol has already been given by
Barrett et al. [14], although it is rather inefficient and supports
only the zero-error case. Moreover, even with our approach
using detector symmetry, there are still possibilities that they
may be realized by extending the framework, for example, by
considering a small basis-dependent flaw of squash operator
F [c.f. the argument below eq. (2)], or by generalizing the
definition of detector symmetry given in Definition 2. These
topics remain as future work.
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