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Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser
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The generation of two-mode Gaussian-type entangled states of the cavity field is studied in a quantum beat
laser, where three-level atoms of the V -type level configuration are coupled to two quantized modes of the cavity
field and two upper levels of the atom are driven by a strongly classical field. According to Simon’s criterion that
is a necessary and sufficient condition for the inseparability of two-mode Gaussian states with a general form of
covariance matrices, we analytically and numerically investigate the influence of phase and Rabi frequency of
the classical driving field, cavity loss, and the purity and nonclassicality of the initial state of the cavity field on
the entanglement property of the resulting two-mode Gaussian state. In the limit of weak cavity loss and strong
driving, we show that the cavity field can be periodically into an ideal two-mode entangled Gaussian-type state.
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I. INTRODUCTION

Two-mode entangled states of the radiation field possess
nonlocal correlations between phase-quadrature components
that are analogous to position and momentum operators of
a massive particle, and become a fundamental resource for
quantum information processes of continuous variables such as
quantum teleportation and quantum cryptography [1]. Among
various types of two-mode entangled states, Gaussian-type
states including the two-mode squeezed state as a special case
have attracted a lot of attention [2]. On the aspect of theory,
a necessary and sufficient condition for the inseparability of
bipartite Gaussian states has been established by Simon [3],
and Duan and coworkers [4]. The evaluation of entanglement
of formation as a measure of entanglement can also be
performed for symmetric two-mode Gaussian states [5] and
even for arbitrary two-mode Gaussian states [6]. From the
point of view of experiment, bipartite Gaussian entangled
states can be completely characterized and easily generated in
experiment [7,8]. For example, the two-mode squeezed state
that is one of typical two-mode Gaussian-type entangled
states (TMGES) can be generated from an optical parametric
oscillator (OPO) operating below threshold [9]. The TMGES
can be also generated in a very simple way by mixing at a beam
splitter two single-mode squeezing beams out of a degenerate
OPO [10].

Besides the nonlinear interaction of light with crystals
such as in an OPO and the linear optical device such as
beam splitter, the interaction of two-mode cavity fields with
atoms coherently driven by laser fields is often employed
to generate the TMGES. It has been shown that correlated
photons in a two-mode Gaussian state are produced via
four-wave parametric interactions of strongly driven two-level
atoms with cavity fields [11]. By means of the interaction
of properly driven V -type three-level atoms with two cavity
modes, Li et al. [12] showed that the TMGES can be generated
via the four-wave mixing process with high efficiency. Pielawa
et al. [13] showed that the TMGES with high purity such as
the two-mode squeezed vacuum state can be obtained with a
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two-step preparation by randomly injecting two-level atoms
into a high-Q microwave cavity. The correlated emission laser
(CEL) [14] involves the interaction of three-level atoms of
the cascade level configuration with two modes of the cavity
field, which upper and lower levels are coherently driven by a
strong classical field. Xiong, Scully, and Zubairy showed that
the two-mode entangled light with a large number of photons
in each mode can be generated via a CEL [15]. It has also been
shown that the cavity field generated in a CEL is in a two-mode
Gaussian state when each of two modes of the cavity field is
initially in a Gaussian state [16]. A CEL-based scheme of
four-level atoms with the Raman-driven coherence has also
been proposed for generating the TMGES [17].

In a quantum beat laser (QBL), three-level atoms of the
V -type level configuration interact with two modes of the
radiation in a doubly resonant cavity [18]. In order to make
the two modes beat and couple each other, two upper levels of
the atom are coherently driven by a strong classical field. In
a recent study, Qamar et al. [19] considered the generation of
two-mode entangled states of the cavity field via a quantum
beat laser. Assuming that each of the two modes is initially
in the specific states such as the squeezed state, vacuum state,
number state, and coherent state, they numerically studied the
variation of entanglement of the field in time according to
the two sufficient conditions for the existence of entanglement
in bipartite systems, which were proposed by Duan, Giedke,
Cirac, and Zoller (DGCZ) [4], and Hillery and Zubairy [20].
They found that the two criteria lead to different time intervals
for the entanglement existence and the two-mode cavity field
can be kept in an entangled state for a longer time as the
Rabi frequency of the classical driving field becomes larger. A
four-level Raman-driven QBL-based scheme has been also
proposed for generating two-mode entangled states of the
cavity field [21].

In a quantum beat laser, no steady-state entangled states
exist and the state of the cavity field at time t strongly depends
on its initial state. It is also noticed that the interaction of
a V -type three-level atom with two modes of the quantized
cavity field can be approximated to be a beam splitter when
the Rabi frequency of the classical field driving the two upper
levels of the atom is much larger than the decay rate of the atom
to other states. As was shown in Ref. [22], a beam splitter can
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have two output fields entangled. In this paper, considering that
each of two modes of the cavity field is initially in a general
single-mode Gaussian state that takes coherent state, vacuum
state, and squeezed vacuum state as a special case, we study
the generation of TMGESs of the cavity field in a quantum
beat laser. For TMGESs, either Simon criterion [3] or Duan
criterion [4] can be used to adjudge the entanglement existence.
However, the later one becomes necessary and sufficient only
when TMGESs have a standard form of covariance matrices,
but the Simon criterion is necessary and sufficient for the
entanglement existence of TMGESs with a general form of
covariance matrices. Thus, by employing the Simon criterion
in this paper, we analytically and numerically investigate the
influence of phase and Rabi frequency of the driving field,
cavity loss, and the purity and nonclassicality of the initial
state of the cavity field on the entanglement property of the
resulting two-mode Gaussian state. We find that the cavity field
can be periodically into an ideal two-mode entangled Gaussian
state under certain conditions.

This paper is organized as follows. In Sec. II, the master
equation for the cavity field in a quantum beat laser is derived.
In Sec. III, we analytically study the conditions for the
entanglement existence of the cavity field in the limit of no
photon leakage out of the cavity and strong driving. In Sec. IV,
we numerically investigate the influence of cavity loss, Rabi
frequency of the classical field, the purity and nonclassicality
of the initial field state on the entanglement property of the
resulting two-mode Gaussian state. In Sec. V, the main results
of the present paper are summarized.

II. MODEL AND MASTER EQUATION

In Fig. 1, a three-level atom with the V configuration is
shown. The transitions from level |c〉 to levels |a〉 and |b〉
are electrical dipole allowed and coupled to two modes of
the quantized radiation field. The transition between levels |a〉
and |b〉 is electrical dipole forbidden and driven by a strong
classical field. In the dipole and rotating-wave approximations,
the Hamiltonian of the atom-field coupled system takes the
form

H = H0 + V, (1)

where

H0 = h̄(ωc + ν1 + �)|a〉〈a| + h̄(ωc + ν2 + �)|b〉〈b|
+ h̄ωc|c〉〈c| + h̄ν1a

†
1a1 + h̄ν2a

†
2a2, (2)

V = h̄g1(a1|a〉〈c| + a
†
1|c〉〈a|) + h̄g2(a2|b〉〈c| + a

†
2|c〉〈b|)

− h̄�

2
(e−i�−iν3t |a〉〈b| + ei�+iν3t |b〉〈a|). (3)

In the above, a1 (a†
1) and a2 (a†

2) are the annihilation (creation)
operators of photons in two modes of frequencies ν1 and
ν2, respectively, g1 and g2 are interaction constants of the
atom with the quantized cavity modes. The classical field of
frequency ν3, Rabi frequency �, and phase � is resonant
with the transition |a〉 ↔ |b〉, that is, ν3 = ωa − ωb. The two
modes of the cavity field is tuned from the atomic transitions
|a〉 ↔ |c〉 and |b〉 ↔ |c〉 by an amount � = ωa − ωc − ν1 =
ωb − ωc − ν2.

FIG. 1. (Color online) Atomic level configuration.

In the interaction picture, the Hamiltonian (1) is trans-
formed into the form

VI = h̄g1(a1|a〉〈c| + a
†
1|c〉〈a|) + h̄g2(a2|b〉〈c| + a

†
2|c〉〈b|)

− h̄�

2
(e−i�|a〉〈b| + ei�|b〉〈a|) + h̄�(|a〉〈a| + |b〉〈b|).

(4)

From the equation of motion for the density matrix of the
atom-field coupled system

ρ̇ = − i

h̄
[VI , ρ], (5)

tracing over the atomic variables, we have the equation of
motion for the reduced density matrix of the cavity field

ρ̇f = − i

h̄
T ratom[VI , ρ]

= −ig1[a†
1, ρac] − ig2[a†

2, ρbc] + H.c. (6)

In the limit of � � g1, g2, upon keeping the coupling
constants of the cavity field up to the second order [23], the
equations of motion for the matrix element operators ρac and
ρbc can be approximately written as

ρ̇ac = −(γ + i�)ρac + i�

2
e−i�ρbc

+ ig1ρaaa1 + ig2ρaba2 − ig1a1ρcc, (7)

ρ̇bc = −(γ + i�)ρbc + i�

2
ei�ρac

+ ig1ρbaa1 + ig2ρbba2 − ig2a2ρcc, (8)

where the decay of the atomic levels to other states at rate γ is
phenomenologically included. Correspondingly, we keep the
equations of motion for the matrix element operators ρaa , ρbb,
ρab, ρba , and ρcc which have been multiplied by the coupling
constant of the cavity field in Eqs. (7) and (8) up to the zero-
order

ρ̇aa = −γρaa + i�

2
e−i�ρba − i�

2
ei�ρab + raρf , (9)

ρ̇bb = −γρbb + i�

2
ei�ρab − i�

2
e−i�ρba, (10)

ρ̇ab = −γρab + i�

2
e−i�ρbb − i�

2
e−i�ρaa, (11)
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ρ̇ba = −γρba + i�

2
ei�ρaa − i�

2
ei�ρbb, (12)

ρ̇cc = 0, (13)

where we have assumed that the atoms are pumped at a rate ra

into the level |a〉. By setting all the time derivatives on the left
side of Eqs. (7)–(13) to be zero, we can find the steady-state
solutions for ρac and ρbc. It follows on inserting the steady-state
solutions into Eq. (6) and taking the damping of the cavity field
to the vacuum into account that we obtain the master equation
for the reduced density operator of the cavity field

ρ̇f = − 1
2 [α∗

11a1a
†
1ρf + α11ρf a1a

†
1 − (α11 + α∗

11)a†
1ρf a1]

− 1
2 [α∗

22a2a
†
2ρf + α22ρf a2a

†
2 − (α22 + α∗

22)a†
2ρf a2]

− 1
2 [α∗

21a
†
1a2ρf + α12ρf a

†
1a2 − (α12 + α∗

21)a†
1ρf a2]e−i�

− 1
2 [α∗

12a1a
†
2ρf + α21ρf a1a

†
2 − (α21 + α∗

12)a†
2ρf a1]ei�

− κ1(a†
1a1ρf − 2a1ρf a

†
1 + ρf a

†
1a1)

− κ2(a†
2a2ρf − 2a2ρf a

†
2 + ρf a

†
2a2), (14)

where κj (j = 1, 2) is the relaxation rate of the cavity mode
j and the other parameters are given by the following
equations:

α11 = g2ra

2γ (γ 2 + �2)

(
(2γ 2 + �2 + i�γ )[γ − i(� − �/2)]

[γ 2 + (� − �/2)2]

+ (2γ 2 + �2 − i�γ )[γ − i(� + �/2)]

[γ 2 + (� + �/2)2]

)
, (15)

α12 = g2ra�

2γ (γ 2 + �2)

(
[γ − i(� − �/2)]

[γ 2 + (� − �/2)2]
(� − iγ )

− [γ − i(� + �/2)]

[γ 2 + (� + �/2)2]
(� + iγ )

)
, (16)

α21 = g2ra

2γ (γ 2 + �2)

(
(2γ 2 + �2 + i�γ )[γ − i(� − �/2)]

[γ 2 + (� − �/2)2]

− (2γ 2 + �2 − i�γ )[γ − i(� + �/2)]

[γ 2 + (� + �/2)2]

)
, (17)

α22 = g2ra�

2γ (γ 2 + �2)

(
[γ − i(� − �/2)]

[γ 2 + (� − �/2)2]
(� − iγ )

+ [γ − i(� + �/2)]

[γ 2 + (� + �/2)2]
(� + iγ )

)
. (18)

In the limit of � � γ , the master equation (14) can be
approximated to

ρ̇f = − i

2
[α1a1a

†
1ρf − α1ρf a1a

†
1] − i

2
[α1a2a

†
2ρf

−α1ρf a2a
†
2] − i

2
[α2a

†
1a2ρf − α2ρf a

†
1a2]e−i�

− i

2
[α2a1a

†
2ρf − α2ρf a1a

†
2]ei� − κ1(a†

1a1ρf − 2a1ρf a
†
1

+ ρf a
†
1a1) − κ2(a†

2a2ρf − 2a2ρf a
†
2 + ρf a

†
2a2), (19)

where

α1 = Kγ

2

(
1

� − �/2
+ 1

� + �/2

)
, (20)

α2 = Kγ

2

(
1

� − �/2
− 1

� + �/2

)
, (21)

with K = g2ra/γ
2. The master equation (19) can be rewritten

in the form

ρ̇f = −i[Heff, ρf ] − κ1(a†
1a1ρf − 2a1ρf a

†
1 + ρf a

†
1a1)

− κ2(a†
2a2ρf − 2a2ρf a

†
2 + ρf a

†
2a2), (22)

with the effective Hamiltonian

Heff = 1
2α1(a1a

†
1 + a2a

†
2) + 1

2α2(e−i�a
†
1a2 + ei�a1a

†
2).

(23)

Thus, in the strongly driving limit, the two-mode interaction
induced via coherence between the upper levels of the atom
is equivalent to an optical beam splitter. It has been shown
that two output fields may become entangled via a beam
splitter [22].

For the general case, according to Eqs. (14), we can derive
out the time evolution equations for expectation values of the
photon number and the two-photon correlation

d

dt
〈a†

1a1〉=
[

1

2
(α11 + α∗

11) − 2κ1

]
〈a†

1a1〉 + 1

2
(α12e

−i�〈a†
1a2〉

+ α∗
12e

i�〈a1a
†
2〉) + 1

2
(α11 + α∗

11), (24)

d

dt
〈a†

2a2〉 =
[

1

2
(α22 + α∗

22) − 2κ2

]
〈a†

2a2〉 + 1

2
(α∗

21e
−i�

×〈a†
1a2〉 + α21e

i�〈a1a
†
2〉) + 1

2
(α22 + α∗

22), (25)

d

dt
〈a1a

†
2〉 =

[
1

2
(α11 + α∗

22) − (κ1 + κ2)

]
〈a1a

†
2〉 + 1

2
(α∗

21e
−i�

×〈a†
1a1〉+α12e

−i�〈a†
2a2〉)+1

2
(α∗

21 + α12)e−i�,

(26)
d

dt
〈a†

1a2〉 =
[

1

2
(α∗

11 + α22) − (κ1 + κ2)

]
〈a†

1a2〉 + 1

2
(α21e

i�

×〈a†
1a1〉 + α∗

12e
i�〈a†

2a2〉) + 1

2
(α21 + α∗

12)ei�,

(27)
d

dt
〈a1a2〉 =

[
1

2
(α11 + α22) − (κ1 + κ2)

]
〈a1a2〉

+ 1

2
α12e

−i�〈a2a2〉 + 1

2
α21e

i�〈a1a1〉, (28)

d

dt
〈a1a1〉 = (α11 − 2κ1)〈a1a1〉 + α12e

−i�〈a1a2〉, (29)

d

dt
〈a2a2〉 = (α22 − 2κ2)〈a2a2〉 + α21e

i�〈a1a2〉. (30)

By numerically solving these equations, one can investigate
the entanglement property of the cavity field.
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III. CONDITIONS FOR INSEPARABILITY OF
THE CAVITY FIELD

We assume that two modes of the cavity field are initially in
a product of two single-mode Gaussian states ρ1 ⊗ ρ2, which
covariance matrix is given by


0 = 
1 ⊕ 
2 =

⎛
⎜⎝

c1 d1 0 0
d∗

1 c1 0 0
0 0 c2 d2

0 0 d∗
2 c2

⎞
⎟⎠ , (31)

where cj is a real parameter and dj = |dj |eiφj (j = 1, 2). Thus,
we have the initial expectation values 〈a†

1a1〉0 = c1 −1/2,

〈a†
2a2〉0 = c2 − 1/2, 〈a1a

†
2〉0 = 〈a†

1a2〉∗0 = 0, 〈a1a2〉0 = 0,

〈a1a1〉0 = −d1, 〈a2a2〉0 = −d2. The parameters of the
covariance matrix can be expressed in terms of the purity uj

and the nonclassical depth τj of the initial Gaussian state as
follows [24]:

cj = 1

2
+ τ 2

j + 1/(2uj )2 − 1/4

1 − 2τj

, (32)

|dj | = τj − τ 2
j + 1/(2uj )2 − 1/4

1 − 2τj

, (33)

where uj = Tr(ρ2
j ) and

τj ≡ max{0, 1
2 − ηj }, j = 1, 2. (34)

In Eq. (34), ηj is the smallest eigenvalue of the covariance
matrix 
j .

When κ1 = κ2 = κ and � � γ , Eqs. (24)–(30) can be
analytically solved and the solutions are as follows:

〈a†
1a1〉 = 1

2
e−2κt [−1 + c1 + c2 + (c1 − c2) cos(2θ )], (35)

〈a†
2a2〉 = 1

2
e−2κt [−1 + c1 + c2 + (c2 − c1) cos(2θ )], (36)

〈a1a
†
2〉 = i

2
(c1 − c2)e−2κt−i� sin(2θ ), (37)

〈a†
1a2〉 = − i

2
(c1 − c2)e−2κt+i� sin(2θ ), (38)

〈a1a2〉 = −1

4
e−2κt−i�− 2iKγ t

2�+� (d1e
i(2�+φ1) + d2e

iφ2 )(e4iθ − 1),

(39)
〈a1a1〉 = −1

4
e−2κt−2i�− 2iKγ t

2�+� [d2e
iφ2 (e2iθ − 1)2

+ d1e
i(2�+φ1)(e2iθ + 1)2], (40)

〈a2a2〉 = −1

4
e−2κt− 2iKγ t

2�+� [d2e
iφ2 (e2iθ + 1)2

+ d1e
i(2�+φ1)(e2iθ − 1)2], (41)

where θ = Kγ�t/(�2 − 4�2). At time t , the cavity field is
in a two-mode Gaussian state with the covariance matrix


t=

⎛
⎜⎜⎜⎜⎝

〈a†
1a1〉 + 1

2 −〈a1a1〉 〈a1a
†
2〉 −〈a1a2〉

−〈a1a1〉∗ 〈a†
1a1〉 + 1

2 −〈a1a2〉∗ 〈a1a
†
2〉∗

〈a1a
†
2〉∗ −〈a1a2〉 〈a†

2a2〉 + 1
2 −〈a2a2〉

−〈a1a2〉∗ 〈a1a
†
2〉 −〈a2a2〉∗ 〈a†

2a2〉 + 1
2

⎞
⎟⎟⎟⎟⎠ ,

(42)

According to Peres’s partial transposition criterion [25],
Simon [3] derived the necessary and sufficient condition for
separability of two-bipartite Gaussian states


c = 
t + 1
2T1ET1 � 0, (43)

where E = diag(1,−1, 1,−1) and

T1 =
(

0 1
1 0

)
⊕

(
1 0
0 1

)
. (44)

Substituting Eqs. (35)–(41) and (42) into the left side of the
inequality (43), we work out the necessary and sufficient
condition for separability of the cavity field at time t{

(2(|d1|2 + |d2|2 − (c1 − c2)2) cos 4θ − 4|d1||d2|
× (1 − cos 4θ ) cos(φ1 − φ2 + 2�))

+ 2
[
2 + c2

1 + c2
2 − |d1|2 − |d2|2 − 4c2 − 4c1 + 6c1c2

]}
× e−4κt + 4

[
2
(
c2

1 − |d1|2
)
(2c2 − 1) + 2

(
c2

2 − |d2|2
)

× (2c1 − 1) − 8c1c2 − 1 + 3(c1 + c2)
]
e−6κt

+ [(2c1 − 1)2 − 4|d1|2][(2c2 − 1)2 − 4|d2|2]e−8κt � 0.

(45)

It is obvious that the cavity field must finally evolute into
a separable state since the exponential decay terms resulting
from the cavity loss on the left side of the inequality (45) exists.

Now let us consider the following two cases.
1. When κ → 0, and φ1 − φ2 + 2� = 0, inequality (45)

can be rewritten in terms of the parameters uj and τj into the
form

λ1 + λ2 cos 4θ � 0, (46)

where

λ1 = 1 − 4(τ1 + τ2 − 2τ1τ2) − (1 − 2τ1)(1 − 2τ2)
[
u2

1 + u2
2

−u2
1u

2
2(1 + τ1 + τ2 − 2τ1τ2)

]
, (47)

λ2 = [
1 − u2

1(1 − 2τ1)(1 − 2τ2)
][

1 − u2
2(1 − 2τ1)(1 − 2τ2)

]
.

(48)

Obviously, λ2 � 0. When θ = (2n + 1)π/4 with n =
0, 1, 2 . . . , the inequality (46) becomes

−4[τ1(1 − τ2) + τ2(1 − τ1)]
[
1−u2

1u
2
2(1−2τ1)(1−2τ2)

]
� 0.

(49)

Therefore, inequality (49) can be violated as long as either
of the two modes is initially nonclassical, that is, τ1 
= 0 or
τ2 
= 0. When θ = nπ/2 with n = 1, 2, . . . , inequality (46)
becomes (

1 − u2
1

)(
1 − u2

2

)
� 0. (50)

This inequality cannot be violated. Thus, in this case, the cavity
field never be entangled no matter whether the cavity field is
initially nonclassical or classical.

Therefore, we see that the cavity field is periodically entan-
gled and separable in time since θ [= Kγ�t/(�2 − 4�2)] is
proportional to time.

2. When κ → 0 and φ1 − φ2 + 2� = π , the left side of
inequality (45) takes its maximum value. In terms of the
parameters uj and τj , the condition (45) is rewritten as

λ3 + λ4 cos 4θ � 0, (51)
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where

λ3 = (τ1 + τ2 − 1)
[
u2

1(1 − 2τ1) + u2
2(1 − 2τ2)

]
+ (1 − 2τ1)(1 − 2τ2)

(
u2

1u
2
2 + 1

)
, (52)

λ4 = (τ2 − τ1)
[
u2

1(1 − 2τ1) − u2
2(1 − 2τ2)

]
. (53)

When τ1 = τ2 = τ , λ4 = 0 and the inequality (51) becomes(
1 − u2

1

)(
1 − u2

2

)
(1 − 2τ )2 � 0. (54)

It cannot be violated. Therefore, the cavity field never be
entangled if the initial single-mode Gaussian states have the
same nonclassical depth. This conclusion is valid no matter
whether the cavity field is initially mixed or pure.

When λ4 < 0 and θ = nπ/2 with n = 1, 2, . . . , the left
side of inequality (51) takes its minimum value and inequality
(51) becomes(

1 − u2
1

)(
1 − u2

2

)
(1 − 2τ1)(1 − 2τ2) � 0. (55)

In this case, the inequality is always valid and the cavity field
is separable.

When λ4 > 0 and θ = (2n + 1)π/4 with n = 0, 1, 2, . . . ,

the left side of inequality (51) takes its minimum value and
inequality (51) becomes[
1 − 2τ1 − u2

2(1 − 2τ2)
][

1 − 2τ2 − u2
1(1 − 2τ1)

]
� 0. (56)

When either τ1 < τ2 with the conditions u2
1 > (1 − 2τ2)/(1 −

2τ1) and u2
2 < (1 − 2τ1)/(1 − 2τ2) or τ1 > τ2 with the condi-

tions u2
1 < (1 − 2τ2)/(1 − 2τ1) and u2

2 > (1 − 2τ1)/(1 − 2τ2),
inequality (56) can be violated and the cavity field is entangled.

When λ4 > 0 and θ = nπ/2 with n = 1, 2, . . . , the left side
of inequality (51) takes its maximum value and the inequality
becomes (

1 − u2
1

)(
1 − u2

2

)
� 0. (57)

Obviously, the inequality is always valid and the cavity field
is never entangled.

To summarize, when λ4 > 0, the cavity field can oscillate
periodically in time between entangled and separable states
since θ [= Kγ�t/(�2 − 4�2)] is proportional to time.

IV. NUMERICAL RESULTS

In this section, we investigate the influence of the Rabi
frequency of the driving field, cavity loss, and the purity
and nonclassicality of the initial state on the entanglement
property of the cavity field for the case of φ1 − φ2 + 2� = 0
by numerically finding the eigenvalues of the matrix 
c defined
on the left side of the inequality (43). When one of the
eigenvalues of the matrix 
c is negative, inequality (43) must
be violated and the cavity field certainly is in an entangled
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FIG. 2. (Color online) Time evolution of the minimum eigenvalue of the matrix 
c against Kt for � = γ, κ = 0, τ1 = τ2 = 0.499, u1 =
u2 = 1. The value of the Rabi frequency � is (a) 150γ ; (b) 250γ ; (c) 400γ ; (d) 1000γ . The blue-solid and black-dashed lines represent the
results obtained from the approximated solutions (35)–(41) and the numerical solutions of (24)–(30), respectively.
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FIG. 3. (Color online) Time evolution of the minimum eigenvalue
of the matrix 
c against Kt for � = 400γ, � = γ, τ1 = τ2 =
0.499, u1 = u2 = 1. The curves (A), (B), and (C) represent the results
for κ = 0, 0.0001K , and 0.001K , respectively.

state. In the our calculations, � and � are rescaled in the unit
of γ .

In Fig. 2(a)–2(d), the minimum eigenvalue of 
c is plotted
against Kt for various values of the Rabi frequency �. In
these figures, the blue-solid and black-dashed lines represent
the results obtained from the approximated solutions (35)–
(41) in the limit of � � γ and the numerical solutions of
Eqs. (24)–(30), respectively. We see that the entanglement is
generated in the beginning period but gradually is dismissed
if the Rabi frequency is not sufficiently large. The cavity field
can periodically come into an entangled state in a long time
interval as the Rabi frequency increases. In the limit of � � γ ,
the eigenvalue oscillates between 0 and −0.5 and thus the
cavity field periodically evolutes in an ideal entangled state as
we have analytically shown in the preceding section.
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FIG. 4. (Color online) Time development of the minimum eigen-
value of the matrix 
c against Kt for � = 400γ, � = γ, κ =
0.0001K, u1 = u2 = 1. The curves (A), (B), and (C) represent the
results for τ1 = τ2 = 0.1, 0.3, and 0.499, respectively.
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FIG. 5. (Color online) Time evolution of the minimum eigen-
value of the matrix 
c against Kt for � = 400γ, � = γ, κ =
0.0001K, τ1 = τ2 = 0.499. The curves (A), (B), and (C) represent
the results for u1 = u2 = 0.1, 0.5, and 1, respectively.

In Fig. 3, the minimum eigenvalue of the matrix 
c is plotted
against Kt for various values of the cavity loss rate κ . The
cavity field can be entangled in the beginning period even if
the cavity loss is large. However, the disentanglement process
is greatly speeded up as the cavity loss increases.

In Fig. 4, the minimum eigenvalue of the matrix 
c is shown
against Kt for various values of the nonclassical depth of the
initial state. It is observed that the cavity field can be kept in
an entangled state for a long time interval as the nonclassical
depth increases.

In Fig. 5, the minimum eigenvalue of the matrix 
c vs Kt

is shown for various values of the purity of the initial state. We
see that the initial purity has the much weak effect on the time
evolution of entanglement of the cavity field.

V. SUMMARY

The generation of two-mode Gaussian entangled states
of the cavity field is investigated in a quantum beat laser.
According to Simon’s criterion that is a necessary and suffi-
cient condition for the entanglement existence of two-mode
Gaussian states with a general form of covariance matrices,
we analytically study the influence of phase of the classical
driving field, and the purity and nonclassicality of the initial
Gaussian state of the cavity field on inseparability of the
resulting two-mode Gaussian state in the limit of strong driving
and weak cavity loss. We find that in the limit case the cavity
field can evolute periodically in time into an ideal two-mode
entangled Gaussian state. For the general case, we numerically
investigate the effects of the cavity loss, Rabi frequency of the
classical driving field, the purity and nonclassicality of the
initial Gaussian state of the cavity field on the entanglement
property of the resulting two-mode Gaussian state. We find that
keeping the Rabi frequency of the classical field being much
larger than the decay rate of the atomic levels to other states is
necessary for maintaining the cavity field in an entangled state
for a long time interval. It is noticed that the disentanglement
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process is greatly speeded up as the cavity loss increases.
The results also show that the cavity field can be kept in an
entangled state for a longer time period as the nonclassicality of
the initial field becomes stronger. We also notice that the purity
of the initial state has no obvious effects on the generation of
the entangled states.
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