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Experimental preparation of two-photon Knill-Laflamme-Milburn states
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1Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic,
17. listopadu 50A, 779 07 Olomouc, Czech Republic
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We report an experimental preparation of the so-called Knill-Laflamme-Milburn states (KLM states) that
have been known to have interesting properties related to quantum information processing. Our experiment
has demonstrated successful preparation of entangled two-photon four-mode KLM states using spontaneous
parametric down-conversion as a source of entangled photon pairs, linear optical components, and avalanche
photodiodes for single-photon detection. We have verified the successful generation of KLM states by complete
quantum state tomography.
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I. INTRODUCTION

The formulation of basic principles of quantum physics
at the beginning of the twentieth century has been quickly
succeeded by exploration of possible applications of the
discovered quantum properties of matter and light. During
recent years, theoretical and experimental effort among other
fields of interest aimed at enriching classical information
processing by joining it with the quantum theory and thus
developing quantum information processing (QIP) [1,2]. It
was demonstrated that QIP surpasses classical information
processing in several ways. For instance, quantum cryptogra-
phy offers an inherent security to cyphered communications
due to the fundamental property of quantum states known
as the no-cloning theorem [3–5]. Other examples include the
significant improvement in efficiency of several computational
algorithms such as factorizing [6–9].

Light is a particularly suitable quantum information carrier
[10]. Moreover, a universal quantum computation can be in
principle carried out using only linear optical elements such
as beam splitters or phase shifters, single-photon sources, and
single-photon detectors [11]. Triggered by this seminal discov-
ery, a significant amount of theoretical and experimental work
has been devoted to the development of basic linear-optical
quantum gates [11–16] and related technologies [17,18] with
the ultimate goal of constructing an optical quantum computer
in the future.

One of the major setbacks of QIP with light is the
probabilistic nature of almost all of the QIP schemes. Typically,
the success probability decreases with increasing complexity
of the scheme. However, as shown by Knill, Laflamme, and
Milburn this disadvantage may be overcome by employing
a specific class of ancillary entangled multiphoton states (re-
ferred to as KLM states) that may reduce the failure probability
of linear optical quantum gates to an arbitrarily small value
inversely proportional to the size of the multiphoton KLM
state [11]. Besides the capability of increasing the success
probability of complex quantum computational schemes, the
KLM states have been known to enhance other QIP tasks as
well. Even the two-photon KLM states can be employed to
perform quantum state teleportation and error correction [19].

In this paper we report on an experimental generation and
full characterization of the entangled two-photon KLM states.

Our experiment follows a recent theoretical proposal by two
of the present authors [20] who showed that spontaneous
parametric down-conversion (SPDC) along with linear optical
components is sufficient to prepare the two-photon KLM states
in a more general form put forward by Franson et al. [13],

|ψKLM〉 = γ |1100〉 + δ|1001〉 − γ |0011〉. (1)

Here γ and δ are real numbers satisfying 2γ 2 + δ2 = 1 and 0
and 1 denote the number of photons in the first through fourth
spatial mode. It is easy to see that by means of polarizing
beam splitters the state (1) can be transformed into a state of
two spatial modes and two polarization modes,

|ψKLM〉 = γ |H1V1〉 + δ|H1V2〉 − γ |H2V2〉, (2)

where |H 〉 and |V 〉 denote states of a single photon with
horizontal and vertical linear polarization, respectively, and
subscripts 1 and 2 label the two spatial modes.

II. EXPERIMENTAL SETUP

Our experimental setup for generation and characterization
of the states (2) is shown in Fig. 1. It can be divided into
three main parts: source of entangled photon pairs, KLM
state preparation, and KLM state analysis. To generate an
entangled two-photon state, we use a pair of beta barium borate
(BBO) type I (e → oo) nonlinear crystals with orthogonally
rotated phase-matching planes as proposed by Kwiat et al. [21]
[see Fig. 1(a)]. The optical pumping is supplied by a cw
krypton-ion laser at the wavelength of 413.1 nm and about
200 mW of optical power. Before impinging on the crystal, the
pumping beam passes through a half-wave plate (HWP) and a
quarter-wave plate (QWP) so that we can set arbitrary polar-
ization of the beam. Nonlinear processes of SPDC (H → V V )
and (V → HH ) are occurring coherently and simultaneously
in the first and the second crystal, respectively. Because of
the fact that these two processes are indistinguishable, the
resulting state of the emitted photon pairs can be expressed as
a coherent superposition of two terms,

|�1〉 = sin α|H1H2〉 + eiφ cos α|V1V2〉, (3)

where subscripts 1 and 2 label the spatial modes. Parameters
α and φ can be controlled by rotation of the HWP and tilt of
the QWP in the pump beam.
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FIG. 1. (Color online) Experimental setup divided into three main parts: (a) source of entangled photon pairs, (b) KLM state preparation,
and (c) KLM state analysis. Optical components are labeled as follows: HWP, half-wave plate; QWP, quarter-wave plate; BBO, nonlinear
crystals; MT, motorized translation; BS, beam splitter; PBS, polarizing beam splitter; APD, set of cut-of filter, single-mode fiber, and avalanche
photodiode. Spatial modes are labeled 1 and 2, respectively.

Photons in the state (3) are transferred by two single-mode
optical fibers to the entrance of the second part of our setup—
the KLM state preparation [see Fig. 1(b)]. The single-mode
fibers serve also as spatial mode filters, allowing us to reach
high interference visibility. First, we swap the polarization of
one photon of the pair by putting a diagonally rotated HWP
into its path. The resulting state reads

|�2〉 = sin α|V1H2〉 + eiφ cos α|H1V2〉. (4)

Subsequently, the photons are coherently superposed on the
beam splitter BS1. Both beam splitters BS1 and BS2 are at-
tached to a microtranslation and can be transversally shifted as
depicted by the arrows. The path of the reflected beam depends
strongly on the beam splitter positioning, while the transmitted
beam is left almost unaffected. By shifting the beam splitter
we are thus able to tune its effective reflectivity/transmissivity
ratio in the range from 50:50 to 0:100. This operation can
be expressed as a linear transformation of the annihilation
operators,

â1,out = 1√
2

(â1,in + σ â2,in +
√

1 − σ 2 â1,vac),

(5)

â2,out = 1√
2

(â2,in − σ â1,in +
√

1 − σ 2 â2,vac),

where âj,vac denote annihilation operators of auxiliary vacuum
modes. The effective amplitude reflectance σ ∈ [0; 1] is set by
the position of the beam splitter on the microtranslation and
can be adjusted as needed. After the interference on BS1 the
state conditioned on the presence of both photons in the signal
output modes reads

|�3〉 = 1
2 [σ (sin α + eiφ cos α)(|H1V1〉 − |H2V2〉)
+ (sin α − σ 2eiφ cos α)|V1H2〉
+ (eiφ cos α − σ 2 sin α)|H1V2〉]. (6)

To prepare the KLM state (2) one needs to nullify the amplitude
of the undesired term |V1H2〉. This can be achieved by setting
φ = 0 and σ = √

tan α. This choice ensures that the resulting
state (6) becomes equivalent to the required KLM state (2)

with real parameters γ and δ satisfying

γ

δ
=

√
sin α cos α

cos α − sin α
. (7)

From this equation we can determine α for any target ratio γ /δ

that fully specifies the KLM state (2).
We begin the experiment by performing the photon source

adjustment. Beam splitters BS1 and BS2 are shifted to the
0:100 (σ = 0) position during this phase so that we can
perform the quantum state tomography and estimation [22]
of the state |�2〉 generated by the crystal. This tomography
determines the values of α and φ, which can be adjusted by
rotation of the HWP and the tilt of the QWP in the pump
beam. We have obtained high state purity of about 94%–98%
and fidelity of about 94%. After the adjustment of the photon
source is complete, we put the beam splitter BS1 into position
so that σ = √

tan α. Motorized translation MT is then used
to balance the lengths of photon trajectories to maximize the
visibility of Hong-Ou-Mandel (HOM) interference [23] on the
beam splitter BS1 where the KLM state is created.

III. STATE ANALYSIS

The state analysis is performed in three basic steps using
part c of the experimental setup. For the purposes of the first
two ones the beam splitter BS2 is tuned to the 0:100 position
(and so it can be considered as effectively removed). The third
step of the analysis requires the beam splitter BS2 to be placed
also into the 50:50 (σ = 1) position.

In the first analysis step we verify that the undesired term
H2V1 vanishes due to destructive two-photon interference on
BS1. This can be achieved by measuring the coincidences for
different positions of the motorized translation (see Fig. 2). The
experimental data clearly show that the H2V1 coincidences
realize dip with typical visibility around 95% and they
represent only about 0.45% of the total signal at the dip. In
order to confirm that the prepared state is not contaminated
by other unwanted contributions we have further measured
the coincidences H1H2 and V1V2, which turned out to be
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FIG. 2. (Color online) Coincidence measurement with the beam
splitter BS2 shifted out to 0:100 position. Plotted are the measured
coincidences H1V1, H2V2, H1V2, and H2V1 (markers) and their re-
spective theoretical fits (lines). The relative position of the motorized
translation MT has been set so that its origin corresponds to the center
of H2V1 dip. Error bars are smaller than the marker size.

negligible (less than 150 coincidences per 30 s). Coincidence
measurements have also been performed in the diagonal linear
polarization basis. The observed dips in coincidence clicks of
two detectors monitoring the same spatial mode are consistent
with the absence of any |2H, 0V 〉 or |2V, 0H 〉 states. These
measurements and the high fidelity of the input state with
state |�2〉, which exhibits perfect anticorrelation of photon
polarizations in the H -V basis, indicate that we can restrict
ourselves to a three-dimensional Hilbert space spanned by the
basis states |H1V1〉, |H2V2〉, |H1V2〉 when characterizing the
generated KLM state.

In the second step of our analysis we verify the correct
intensity ratios of H1V1, H2V2, and H1V2 terms. We have
performed a series of coincidence measurements for different
settings of parameter α to demonstrate the correct behavior
of amplitudes γ and δ as functions of α. In Fig. 3(a) we
plot the experimentally determined ratio of coincidences H1V1

and H2V2, showing that it approaches well the theoretical
value of 1 in all cases. In Fig. 3(b) we plot the experimentally
determined ratio of coincidences H1V1 and H1V2 together with
the theoretical expectation γ 2/δ2 given by Eq. (7). One may
observe that the experimentally determined values correspond
well to the theoretical prediction.

To fully analyze the prepared KLM state and determine
its purity and fidelity one needs to perform a complete state
tomography. For this purpose we employ the second beam
splitter BS2 and thus form a Mach-Zehnder interferometer.
The following three sets of coincidence measurements are
carried out: First, we measure all coincidences (H1V1, H2V2,
H1V2, H2V1) with beam splitter BS2 in the 0:100 position
(a similar measurement as in the previous step). Second, we
measure the same set of coincidences with BS2 in balanced
position 50:50 (σ = 1) and with zero phase shift between the
two arms of the interferometer. Finally, we measure with BS2
again in 50:50 position but with relative phase of π

4 between
the two arms. The correct phase can be set using a piezo
translation in one of the arms. This measurement requires us to
perform two stabilization procedures: One is the stabilization
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FIG. 3. (Color online) (a) Ratio of coincidences H1V1 and H2V2.
(b) Ratio of coincidences H1V1 and H1V2. The experimental data with
error bars are depicted by blue dots and the theoretical prediction
according to Eq. (7) is plotted by the orange full line.

of the HOM dip on the first beam splitter BS1 and the second
is the active stabilization of the phase in the interferometer.
Dip stabilization is performed about every 30 s and MZ
interferometer stabilization is carried out about every 5 s.

The three sets of measured coincidences provide sufficient
data to fully reconstruct the density matrix of the generated
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FIG. 4. (Color online) (a) Real and imaginary parts of re-
constructed density matrix of KLM state with α = 0.08π .
(b) Theoretically determined density matrix of the corresponding
pure target KLM state (2).
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TABLE I. Purities and fidelities of three prepared KLM states
with different parameters α. The purity P and fidelity of reconstructed
state F is shown together with the fidelity FC obtained after optimal
compensation of local phase shifts.

α γ 2/δ2 P F FC

0.17π 3.67 92.4% 93.5% 95.9%
0.11π 0.97 86.0% 91.1% 92.4%
0.08π 0.48 90.4% 92.9% 94.6%

KLM states. We have used the well-established maximum
likelihood estimation method [22] and performed complete
state tomography for three different KLM states (see Table I).
Typical fidelities of prepared states are about 92% and
purities about 90%. As an illustration we present one of the
reconstructed density matrices as well as the related theoretical
prediction in Fig. 4. Nonzero imaginary parts of reconstructed
density matrix elements suggest that further improvement
of the fidelity F can by achieved by application of local
phase shifts, that is, by transformation |H1V1〉 → |H1V1〉,
|H1V2〉 → eiθ1 |H1V2〉, |H2V2〉 → eiθ2 |H2V2〉. We have numer-
ically determined the optimal phase shifts θ1 and θ2 that
maximize the fidelity for a given reconstructed density matrix

and target KLM state. We present the resulting improved
fidelities FC in the last column of Table I.

IV. CONCLUSIONS

In summary, we have presented a successful experimental
preparation of two-photon KLM states using only SPDC
photon source and linear optical components. The easy
tunability of the entanglement source and of the splitting ratio
of the beam splitter allows us to prepare any two-photon KLM
state with fidelity of about 92% at the expense of losses on
the beam splitter BS1 and therefore requiring postselection
of cases when both photons arrive at detectors. These losses
can however be overcome by employing a custom unbalanced
beam splitter with splitting ratio calculated for some fixed
value of α. In that way the scheme would not require any
postselection, but it becomes limited to one specific KLM
state corresponding to the splitting ratio of the chosen beam
splitter.
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