
PHYSICAL REVIEW A 81, 012318 (2010)

Practical issues in quantum-key-distribution postprocessing

Chi-Hang Fred Fung,1,* Xiongfeng Ma,2,† and H. F. Chau1,‡
1Department of Physics and Center of Theoretical and Computational Physics, University of Hong Kong, Pokfulam Road, Hong Kong

2Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Ave W., Waterloo,
Ontario, Canada N2L 3G1

(Received 6 October 2009; published 21 January 2010)

Quantum key distribution (QKD) is a secure key generation method between two distant parties by wisely
exploiting properties of quantum mechanics. In QKD, experimental measurement outcomes on quantum states
are transformed by the two parties to a secret key. This transformation is composed of many logical steps (as
guided by security proofs), which together will ultimately determine the length of the final secret key and its
security. We detail the procedure for performing such classical postprocessing taking into account practical
concerns (including the finite-size effect and authentication and encryption for classical communications). This
procedure is directly applicable to realistic QKD experiments and thus serves as a recipe that specifies what
postprocessing operations are needed and what the security level is for certain lengths of the keys. Our result is
applicable to the BB84 protocol with a single or entangled photon source.

DOI: 10.1103/PhysRevA.81.012318 PACS number(s): 03.67.Dd, 03.67.Hk

I. INTRODUCTION

In theory, a few quantum key distribution (QKD) protocols,
such as the Bennett-Brassard-1984 (BB84) [1], Bennett-
Brassard-Mermin-1992 (BBM92) [2], Bennett-1992 (B92)
[3], and six-state [4,5] protocols, have been proven to be
unconditionally secure in the last decade [6–12]. Security
of other protocols, such as the Ekert91 protocol [13] and
the device-independent QKD protocol [14], have also been
studied. For a review of QKD, one can refer to Refs. [15–17].

QKD schemes can be classified into two types: prepare-
and-measure scheme and entanglement-based scheme. In the
former, one party, Alice, prepares the quantum signals (say,
using a laser source) according to her basis and bit values
and sends them through a quantum channel to the other party,
Bob, who measures them on reception. In the latter type, an
entanglement source emits pairs of entangled signals, which
are then measured in certain bases chosen by Alice and Bob
separately. There is an important difference in terms of security
between the emitted signals with practical sources in the two
cases. In the prepare-and-measure case, the signals emitted by
Alice (say, a weak coherent-state source) is basis dependent,
meaning that the coherent-state signal corresponding to one
basis is quantum mechanically different from that of the
other basis. An eavesdropper, Eve, can certainly leverage
this information to her advantage. New techniques such as
the decoy-state method [18–25], strong-reference-pulse QKD
[26–29], and DPS [30–33] have recently been invented to allow
the use of coherent-state sources securely. On the other hand,
entanglement-based QKD involves signals that are basis inde-
pendent. The security of basis-independent QKD (including
entanglement-based QKD with a PDC source and prepare-and-
measure QKD with a single-photon source) has been proven
in Ref. [34] and the performance of entanglement-based QKD
with a PDC source has been analyzed recently [35].

*chffung@hku.hk
†xfma@iqc.ca
‡hfchau@hkusua.hku.hk

As security analysis of QKD has become mature, it
now comes to the stage to consider all the underlying
assumptions and to apply the theoretical results to practical
QKD experiments. Although standard security proofs (such as
Ref. [9]) imply a procedure for distilling a final secret key from
measurement outcomes, such a procedure cannot be directly
carried out in an actual QKD experiment because many of the
security proofs focus on the case that the key is arbitrarily long.
Although, in theory, there is not a fundamental limit on the
length, it is constrained by the computational power in practice.
Therefore, it is imperative to quantify the finite-size effect and
to provide a precise postprocessing recipe that one can follow
for distilling final secret keys with quantified security in real
QKD experiments. This is the motivation of this article. We
remark that it is not that the security proofs are incorrect,
but carrying them out in practice requires more additional
consideration on the relation between the actual steps taken
and the final security parameter.

Ultimately, QKD system designers would like to know
the classical computation and communications needed to
transform the measurement results of a QKD experiment to
a final key. Furthermore, it is important to know the trade-off
between the final key length and the security parameter, since
this allows one to estimate the number of initial quantum
signals to be sent in order to achieve a certain final key length
and security. We provide the solution to this in the current
article.

It is important to note that the postprocessing procedure
contains many elements including authentication, error correc-
tion and verification, phase error rate estimation, and privacy
amplification. Integrating all these elements with a security
proof is nontrivial and the resultant postprocessing procedure
is the main contribution of our article. Our article uses the latest
security proof techniques to perform postprocessing analysis,
along a similar line to an early work by Lütkenhaus [36].
We emphasize that the main focus of our work is the overall
procedure for postprocessing rather than analyzing a security
proof in the finite-key situation. We note that, recently, lots
of efforts have been spent on the finite-key effect in QKD
postprocessing, such as Refs. [37–40].

1050-2947/2010/81(1)/012318(15) 012318-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.81.012318

CHI-HANG FRED FUNG, XIONGFENG MA, AND H. F. CHAU PHYSICAL REVIEW A 81, 012318 (2010)

The finite-key-length analysis is important not only from a
theoretical point view but also for experiments. For example,
the efficient BB84 protocol [41] is proposed to increase the
key generation rate. In order to select an optimal bias between
the two bases, X and Z, Alice and Bob need to consider
statistical fluctuations. We will address this issue in this article.
We remark that the proposed postprocessing scheme ties up a
few existing results with some modifications. Key features of
our work are as follows:

1. a strict bound for the phase error estimation is derived;
2. an authentication scheme is applied for the error

verification;
3. the efficiency of the privacy amplification is investi-

gated;
4. parameter optimization is studied.

This article is an expansion of our shorter article [42]
which summarizes the essential components of our data
postprocessing procedure. All the technical details related to
the procedure are presented here.

The article is organized as follows. Section II introduces the
assumptions used in the article. Section III discusses
the security aspect of our procedure. Section IV outlines
the postprocessing procedures. Section V introduces some
preliminary tools to be used in later sections. Sectioins VI–X
discuss the details of the various postprocessing steps. In
Sec. XI, we investigate the parameter optimization problem
for this postprocessing procedure. In Sec. XII, we simulate an
experiment setup as an example. We conclude in Sec. XIII.

II. ASSUMPTIONS

Here, we examine the underlying assumptions used in
the postprocessing scheme we propose in this article. We
emphasize that in order to apply the scheme to a QKD system,
one needs to compare these assumptions with the real setup.
The assumptions used in the article are listed as follows:

1. Alice and Bob perform the BB84 protocol with a perfect
single photon source (or basis-independent photon
source [35]);

2. The detection system is compatible with the squashing
model [43,44] (see also Ref. [45]). For example, the
efficiency mismatch is not considered in this article;

3. Alice and Bob use perfect random number generators
and perfect key management. They share a certain
amount of secure key prior to running their QKD
system.

III. SECURITY ASPECT

Our data postprocessing procedure is derived from entan-
glement distillation protocol- (EDP) based security proofs
[8,9,46] (also see Ref. [47]) and thus our procedure is secure
against the most general attacks allowed by the laws of
quantum mechanics. The original idea [8] casts QKD as
distilling Einstein-Podolsky-Rosen (EPR) pairs between Alice
and Bob, involving correcting general quantum errors. And the
ability to correct general quantum errors is equivalent to the
ability to correct bit and phase errors [48,49]. Later, Shor and
Preskill [9] show that correcting bit errors and phase errors in

the EDP picture correspond to bit error correction and privacy
amplification in distilling a secret key. Thus, proving the
security of QKD can be cast as showing that both bit and phase
errors are corrected in the EDP picture. In this way, provided
that a quantum error correction code exists for the specific bit
and phase error rates in the EDP picture, the security of the
corresponding QKD protocol is proved. However, this places
a rather strong requirement on the quantum error correction
code since constraints on both bit and phase error rates have
to be satisfied. Fortunately, Lo [46] further shows that bit
and phase errors can be decoupled by simply encrypting the
bit error syndrome transmission (without affecting the net
key generation rate). Koashi [47] adopts the same decoupling
mechanism and further generalizes the notion of phase errors
with a simple and yet powerful argument. In this article, we
follow this line of security proofs in our finite-key analysis.
Essentially, the important ingredients in our analysis are

1. encrypting the bit error syndromes;
2. using a random sampling argument to place bounds on

the phase error rate;
3. using a privacy amplification scheme (with structure)

and placing bounds on its phase error correcting
capacity;

4. integrating authentication in classical communications.

A. Composable security

The finite key analysis is closely related to the definition
of security. Currently, the composable security definition of
QKD [50,51] is widely accepted as the most stringent security
definition in the field. QKD is composable in the sense that the
final key generated is indistinguishable from an ideal secret
key except with a small probability, and thus the key can be
used in a subsequent cryptographic task where an ideal key
is expected. A secret key is considered ideal if it is identical
between Alice and Bob and is private to Eve (i.e., Eve has
no information on it). The notion of composability was first
proposed in the classical setting for the study of security when
composing classical cryptographic protocols in a complex
manner [52,53]. Composability has also been carried over
to the quantum setting [50,54]. One essential feature of the
composable security definition is that it characterizes the
security of a protocol with respect to the ideal functionality. In
particular, the security of a composable secret key generated
by QKD is measured with the trace distance between the real
situation with the real key and the ideal situation with an ideal
key [12,51,55].

Definition 1 [12,51,55]. A random variable V (the classical
key) drawn from the set V is said to be ζ secure with respect
to an eavesdropper holding a quantum system E if

1
2 Tr|ρV E − ρU ⊗ ρE| � ζ (1)

where ρV E = ∑
v∈V PV (v)|v〉〈v| ⊗ ρE|V =v , ρU = ∑

v∈V |v〉
〈v|/|V| represents an ideal key taking values uniformly over
V , and |V| is the size of V . Here, Tr|A| = ∑

i |λi | where λi are
the eigenvalues of A.

Since the trace distance 1
2 Tr|ρ − σ | is the maximum

probability of distinguishing between the two quantum states
ρ and σ , this security definition naturally gives rise to the

012318-2

PRACTICAL ISSUES IN QUANTUM-KEY-DISTRIBUTION . . . PHYSICAL REVIEW A 81, 012318 (2010)

operational meaning that the ζ -secure key V is identical to
an ideal key U except with probability ζ . This trace-distance
security parameter is additive when practical cryptographic
protocols are composed [50]. That is to say, suppose we
have a key generation protocol (e.g., QKD) and a second
cryptographic protocol which consumes an ideal secret key.
Furthermore, we suppose that the first protocol realizes an
ideal key generation scheme with a security parameter ζ1 for a
particular secret key output, and the second protocol realizes its
ideal functionality with a security parameter ζ2. Then, when the
two protocols are composed (i.e., the imperfect key generated
in the first protocol is used in the second protocol), the overall
security parameter will become ζ1 + ζ2.

Our article is based on EDP-based proofs which often
justify security with the fidelity between Alice and Bob’s
state and the ideal state (the perfect EPR pairs). This fidelity
is a direct consequence of the failure probability of the
postprocessing procedure. Thus, we need to find a connection
of this failure probability with the composability definition in
Definition 1.

The generation of the final key in one round of QKD is
composed of many steps (cf. Sec. IV and Table I) and each step
carries a certain failure probability. This probability represents
the case that Alice and Bob believe the step has succeeded but
actually not (in other word, a case of undetected failure). A
detected failure in any step will lead a premature termination of
the QKD process. Successes of all steps will result in a perfect
final key that is private to Eve and identical between Alice
and Bob. However, since each step may fail without being
detected, there is a certain probability that the final key fails to
be perfect and this probability is upper bounded by the sum of
the failure probabilities of all the steps. Essentially, this sum is
the failure probability ε of the entire postprocessing procedure,
which needs to be converted to the security parameter of the
final key.

In the context of Koashi’s proof [47], success of the phase
error correcting step as part of the postprocessing procedure
guarantees that Alice’s m-qubit state ρA can be corrected
to the pure state 0⊗m

X . The final key is then generated by
m measurements in the Z basis on ρA. Since the entire
postprocessing procedure fails with probability at most ε,
the component of Alice’s state ρA corresponding to the
pure state 0⊗m

X must satisfy 〈0⊗m
X |ρA|0⊗m

X 〉 � 1 − ε. In order
to make the connection with the universal composability
definition in Definition 1, it has been suggested [55] (also
see Ref. [50]) that a bound on the trace distance is obtained
from the fidelity using a general inequality relating them [56]:

1
2 Tr|ρ − σ | �

√
1 − F (ρ, σ)2, (2)

where F (ρ, σ) = Tr
√

ρ1/2σρ1/2 is the fidelity between ρ and
σ . Thus, we seek the minimum of the fidelity between ρAE

and |0⊗m
X 〉A〈0⊗m

X | ⊗ ρE in order to get an upper bound on
their trace distance, in accordance with Definition 1. Since
the fidelity never decreases under a trace-preserving quantum
operation [i.e., F (E(ρ), E(σ)) � F (ρ, σ)], system E can be
considered to be the entire purification of system A when the
minimum occurs. Assuming this worst case, the joint state is
of the form

|�AE〉 = √
α
∣∣0⊗m

X

〉
A
|0〉E + √

1 − α|�⊥〉AE, (3)

where |�⊥〉AE has unit norm, A〈0⊗m
X |�⊥〉AE = 0, and α �

1 − ε. The fidelity between the real situation and the ideal
situation is (see Appendix A for proof)

F
(
ρAE,

∣∣0⊗m
X

〉
A

〈
0⊗m

X

∣∣ ⊗ ρE

)
� α (4)

� 1 − ε, (5)

where ρAE = |�AE〉〈�AE | and ρE = TrA(ρAE). Thus, an
upper bound on the failure probability provided by the EDP-
based proofs can easily be translated to a composable security
measure. By substituting Eq. (5) for the fidelity in Eq. (2) and
using the fact that projection onto the eigenstates of the Z basis
corresponding to the final measurement does not increase the
trace distance,1 we conclude that the final key is

√
ε(2 − ε)

secure in accordance with Definition 1.
Lemma 1. When the failure probability of the postpro-

cessing procedure is ε, the final key is
√

ε(2 − ε) secure in
accordance with Definition 1.

We can apply this lemma when many rounds of QKD are
composed. Suppose the postprocessing of each round fails
with a probability ε, and Alice and Bob plan to use a QKD
system a million times in the manner that the secret key output
of one round is fed as input to the next. Since the trace-
distance measure is additive when cryptographic protocols
are composed [50], the trace-distance security parameter for
the key in the last round will be 106√ε(2 − ε). Note that
this security parameter increases linearly with the number
of rounds of the QKD system. This linear dependence is an
important feature of the composability security definition.

We note that Mayers’s security proof [6,7] has also
implicitly mentioned using failure probability to quantify the
security.

B. Equivalence of the failure probability and the trace distance
as the optimization objective

The failure probability of the postprocessing procedure ε

is related to the trace-distance security parameter ζ by ζ =√
ε(2 − ε). Since dζ

dε
> 0 and d2ζ

dε2 < 0, we have ζ (1) > ζ (2) ⇔
ε(1) > ε(2) and there is a one-to-one mapping between these
two measures. Thus, minimizing either ε or ζ subject to the
same constraints (such as a fixed key length) will produce the
same solution.

C. Simple lower bound on failure probability

It is easy to lower bound the failure probability as a
function of the secret-key cost kinitial by considering that
Eve has a 2−kinitial chance of guessing the right initial secret
key and thus will be able to launch a man-in-the-middle
attack successfully. Therefore, the failure probability of any
postprocessing scheme should be at least 2−kinitial . Moreover, the
failure probability of our scheme exhibits the same exponential
decrease as the lower bound (see the various constituent failure
probabilities ε’s listed in Table I).

1The trace distance never increases under a trace-preserving
quantum operation, i.e., Tr|E(ρ) − E(σ)| � Tr|ρ − σ |.

012318-3

CHI-HANG FRED FUNG, XIONGFENG MA, AND H. F. CHAU PHYSICAL REVIEW A 81, 012318 (2010)

TABLE I. List of resource cost and the failure probabilities in the various steps. Lengths of preshared secret key bits are designated with k

while the failure probabilities with ε. The relevant equations involving these quantities are also shown.

Step Message length Message encrypted? Tag length Failure probability

1. Key sift N – – –
2. Basis sift 2n No 2kbs 2εbs [Eq. (11)]
3. Bit error correction kec [Eq. (12)] Yes – –
4. Error verification – – kev εev [Eq. (14)]
5. Phase error estimation – – – εph [Eq. (21)]
6. Privacy amplification (nx + nz + l − 1) No kpa εpa [Eq. (31)]

IV. OUTLINE OF POSTPROCESSING PROCEDURE

The postprocessing procedure is listed as follows. We
remark that each communication between Alice and Bob
consists of a message and an authentication tag, each of which
may be of zero length. In our scheme, a tag is transmitted if and
only if authentication is used and in this case the authentication
tag is always encrypted by a one-time pad, consuming some
preshared secret bits. When a message is transmitted, it may
or may not be encrypted, and it is assumed to be unencrypted
unless otherwise stated. Note that no message but a tag is
transmitted in the error verification step (step 4). Figure 1
shows the flow chart of our data postprocessing procedure.

1. Key sift [not authenticated]: Alice sends N quantum
signals to Bob, of which n signals produce clicks. Bob
discards all no-click events and obtains n-bit raw key by
randomly assigning values to the double-click events.2

Note that other key sift procedures might be applied as
well (see, for example, Ref. [57]).

2In the case of a passive-basis-selection setup, Bob also randomly
assigns basis value X or Z for double clicks [44].

Key pool Encryption Authentication

Yes

Device characterization
Quantum state transmission and

measurement

Key sift

Privacy amplification

Error verification

No

Error correction

Discard no clicks
Randomly assign

double clicks

Basis sift

Abort

Failed

FIG. 1. Flow chart of our data postprocessing procedure [58].

2. Basis sift [authenticated]: Alice and Bob send each
other n-bit basis information. In the end of this step,
Alice and Bob obtain nx (nz)-bit sifted key in the X(Z)
basis. Define the bias ratio to be qx ≡ nx/(nx + nz).
Note that this bias ratio differs from the probability
the Alice and Bob choose the two bases. Define the
probability that Alice and Bob choose the X basis
to be px , then in the long key limit, qx = p2

x/[p2
x +

(1 − px)2].
3. Error correction [not authenticated but encrypted,

Sec. VII]: Alice and Bob perform error correction
so that Bob’s raw key matches Alice’s. The classical
messages exchanged in this process are encrypted. If
error correction fails, Alice and Bob abort the QKD
process.

4. Error verification [Sec. VIII]: Alice and Bob want to
make sure (with a high probability) that their keys
after the error correction step are identical. If error
verification fails, Alice and Bob either go back to the
error correction step or abort the QKD process. We note
that the idea of using error verification to replace error
testing is proposed by Lütkenhaus [36].

5. Phase error rate estimation [no communication,
Sec. IX]: Alice and Bob use the bit error rate measured
in the X(Z) basis to infer the phase error rate in the Z(X)
basis. The uncertainty in bounding the phase error rates
are quantified by a random sampling argument.

6. Privacy amplification [authenticated, Sec. X]: Alice
randomly generates an (nx + nz + l − 1)-bit random
bit string and sends to Bob through an authenticated
channel. Alice and Bob use this random bit string to
generate a Toeplitz matrix. The final key (with a size
of l) will be the product of this matrix (with a size
of (nx + nz) × l) and the key string (with a size of
nx + nz).

7. The final secure key length (net growth) is given by

NR � l − kbs − kec − kev − kpa (6)

with a failure probability of

ε � εbs + εev + εph + εpa, (7)

where l is given by Eq. (32). Here, the k’s are the secret-
key costs and the ε’s are the failure probabilities for
steps 2–6 (see Table I). Throughout the article, ε’s with
various footnotes stand for various failure probabilities.

012318-4

PRACTICAL ISSUES IN QUANTUM-KEY-DISTRIBUTION . . . PHYSICAL REVIEW A 81, 012318 (2010)

V. PRELIMINARY

A. Data representation

Data are represented as matrices or column vectors of 0’s
and 1’s. Additions are carried out in modulo 2. For example,
a raw key x is multiplied by a privacy amplification matrix
M to generate the final y = Mx, where the ith bit of y is∑

j M(i, j)x(j) mod 2.

B. Toeplitz matrices

In our framework, we rely heavily on a particular class
of hash functions to perform phase error correction, error
verification, and authentication. We are interested in using sets
of Toeplitz matrices to perform these tasks. Toeplitz matrices
are Boolean matrices with a special structure:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 a−1 a−2 · · · a−m+1

a1 a0 a−1
. . .

a2 a1
. . .

...
...

. . .
al−1 · · · al−m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8)

where ai = 0, 1. It can also be concisely described by M(i,j) =
ai−j , where M(i,j) is the (i, j) element of M . The advantage
of using Toeplitz matrices is that it can be specified by a small
number of parameters, namely, m + l − 1 bits, as opposed to
ml bits for completely random matrices. Hashing of a given
column vector x (whose elements are 0 or 1) can be performed
by choosing a Toeplitz matrix M randomly and computing the
hash value as Mx.

In our postprocessing scheme, we use Toeplitz matrices for
three purposes: privacy amplification, error verification, and
authentication. We remark that fully random Toeplitz matrices
(specified by m + l − 1 random bits) are used for privacy
amplification, while for error verification and authentication,
Toeplitz matrices specified by a smaller number (2l) of random
bits are used in order to save secret bits (see Sec. V C below).

C. Authentication

Alice and Bob can authenticate their classical communica-
tions with a family of Toeplitz matrices. For every (classical)
message they need to authenticate, both parties select a hash
function from a fixed family using preshared secret bits.
The sending party computes the hash value for the message
(called the tag) and sends both to the other party, who also
computes the hash value for the received message and can
conclude that the message originates from the legitimate party
if both hash values are identical.

In authentication, the key component is the construction of
hashing function. Wegman and Carter proposed unconditional
secure authentication schemes [59,60] by introducing the
universal hashing function families, which are also used for
privacy amplification. Afterwards, lots of efforts have been
spent on how to construct a universal hashing function family
effectively. In this article, we use the LFSR-based Toeplitz
matrix construction by Krawczyk [61,62] for authentication.

Here we state the result of the LFSR-based Toeplitz matrix
construction, which is given by Theorem 9 of Ref. [61] by

Krawczyk. The authentication scheme based on the LFSR-
based Toeplitz matrix construction is secure with a failure
probability of

εau = n2−k+1, (9)

where k is the length of the tag, n is the length of the message.
The authentication scheme can be stated as follows. Alice and
Bob use a 2k-bit secure key to construct a Toeplitz matrix with
a size of (k × n) by a LFSR. The authenticated tag is generated
by multiplying the matrix and the message. Then they encrypt
the tag by another k-bit secure key. Since the tag is encrypted
by a one-time pad, the 2k-bit key used for the Toeplitz matrix
construction is still secure [61]. Hence, the net secure-key cost
for this scheme is k.

We remark that in Krawczyk’s later result [62], the secure
key required for the LFSR-based Toeplitz matrix construction
can be reduced to an arbitrary number r , with sacrifice of
failure probability,

εau = 1

2k
+ k + n − 1

2r/2
(10)

One can see that by choosing r = 2k, Eq. (9) gives a slightly
tighter bound than Eq. (10) for the failure probability. Since
the secure-key cost is at least k in this construction due to
one-time pad encryption, for simplicity, we use Eq. (9) for
authentication and error verification.

We remark that, as pointed out in Ref. [61], the LFSR-
based Toeplitz matrix construction is highly practical in real-
life implementation.

VI. BASIS SIFT

Alice and Bob send each other n-bit basis information. Due
to the symmetry, we can assume the same failure probability
for the two message exchanges [61]:

εbs = n2−kbs+1. (11)

Here, Alice and Bob use a 2kbs-bit secure key to construct
a Toeplitz matrix with a size of (kbs × n) by a LFSR. The
authenticated tag is generated by multiplying the matrix and
the message. Then they encrypt the two tags by two kbs-bit
secure keys. The total secure-key cost in this step is 2kbs (for
the one-time-pad encryption of the tags) and the corresponding
failure probability is 2εbs . Note that when Alice and Bob
use a biased basis choice [41], they can exchange less than
n-bit classical information for basis sift by data compression.
Since the secure-key cost only logarithmically depends on the
length of the message, we simply use n for the following
discussion. In the end of this step, Alice and Bob obtain nx

(nz)-bit sifted key in the X (Z) basis. Define the bias ratio to
be qx ≡ nx/(nx + nz) as in Sec. IV.

VII. ERROR CORRECTION

For simplicity of discussion, we assume that Bob tries to
correct his raw key to match Alice’s. This means that we
assume no advantage distillation [63,64]. Error correction is
done by Alice sending parity information of her raw key to Bob
encrypted with secret bits from the key pool. The secure-key

012318-5

CHI-HANG FRED FUNG, XIONGFENG MA, AND H. F. CHAU PHYSICAL REVIEW A 81, 012318 (2010)

cost is given by

kec = nxf (ebx)H (ebx) + nzf (ebz)H (ebz), (12)

where f (x) is the error correction efficiency, and

H (x) = −x log2(x) − (1 − x) log2(1 − x) (13)

is the binary entropy function. In practice, Alice and Bob only
need to count the amount of classical communication used in
the error correction. That is, the value of kec can be directly
obtained from the postprocessing. After the error correction,
Alice and Bob count the number of errors in the X (Z) basis:
ebxnx (ebznz). Note that although we assume encryption of
the parity information here (cf. Sec. III), it may be avoided
by basing the postprocessing on other security proofs. In this
case, there may be some restriction on the error correction
procedure and more privacy amplification may be required. In
practice, there is an advantage to using error correction without
encryption, since if Alice and Bob abort the QKD procedure,
no secret bits will be lost due to encryption.

There is no failure probability associated with error correc-
tion in our postprocessing scheme. Identity between Alice’s
and Bob’s sifted keys is verified with an error verification step
(Sec. VIII below).

VIII. ERROR VERIFICATION

Suppose Alice and Bob each holds a bit string a and b. They
can verify the identity of their strings by exchanging shorter
strings which are the hash values f (a) and f (b). Identity of the
two hash values provides confidence that the two strings are
the same. Below we argue that error verification is the same
as authentication, and thus we use the same procedure for
both purposes. This procedure and the associated properties is
described in the authentication section (Sec. V C).

A. Relation to authentication

In QKD postprocessing, authenticated classical communi-
cation is required to overcome the man-in-the-middle attack.
The objective of the authentication procedure can be stated
as follows. Alice sends Bob a message through a (classical)
channel, which is accessible to Eve. Alice uses some authen-
tication scheme to make sure (with a high probability) that
the message is not modified during the transmission. This
classical problem is well studied in the literature [59–62]. One
traditional solution is for Alice to add a redundant code (tag)
to the message to be sent. The tag-message pair is designed in
such a way that whenever the message is modified, Bob can
detect it (with a high probability).

Error verification, on the other hand, is the procedure for
ensuring (with a high probability) that the bit strings (or keys)
owned by Alice and Bob are identical. One natural way to
do this is by random hashing. For example, Alice randomly
hashes her bit string and sends the hash value to Bob. Bob uses
the same hash function to obtain his hash value and compares
to the one sent by Alice. The probability that Alice and Bob
possess different bit strings (keys) decrease exponentially with
the number of rounds of hashing.

By comparing the two procedures, authentication and error
verification, one can see their commonality. In order to show

the link between the two procedures, we break down the
authentication procedure into two parts: Alice sends Bob
the message first and then the tag. Let us take a look at the
stage where Bob just receives the message sent by Alice (but
before the tag). Now, Alice and Bob each has a bit string.
In authentication, Alice sends a tag (corresponding to her
message) to Bob and Bob verifies it. The claim of a secure
authentication scheme is that if the tag passes Bob’s test, the
probability that Alice and Bob share the same string is high.
This is exactly what is asked in the error verification procedure.
Therefore, secure authentication schemes can be used for the
error verification.

We remark that the only difference between the two
procedures is that authentication does not care whether the
tag reveals information about the message or not, but error
verification does (at least for our use in QKD postprocessing).
This difference can be easily overcome by encrypting the tag,
which has already been done in some authentication schemes
including the one we use in this article.

Thus, in this procedure, Alice sends an encrypted tag of an
authentication scheme to Bob. The failure probability for this
step, kev , similar to Eq. (11), is

εev = (nx + nz)2
−kev+1. (14)

IX. PHASE ERROR RATE ESTIMATION

In the BB84 protocol, Alice and Bob measure the bit error
rate in the X basis, ebx , to estimate the phase error rate in the Z

basis, epz, and vice versa. In the infinite length limit, the error
rates, ebx and epz, converge to the underlying probabilities,
pbx and ppz. Due to the symmetry of BB84, we know that
pbx = ppz, from which follows ebx = epz in the asymptotic
case. With a finite key size, the rate is fluctuating around the
corresponding probability. Now the question can be stated as
a random sampling problem: given the bit error rate in the
X basis (ebx), the sample size (nx), and the population size
(nx + nz), upper bound the phase error rate in the Z basis
(epz), with a probability 1 − Pθx ,

Pθx ≡ Pr{epz � ebx + θx}, (15)

where θx represents the deviation of the phase error rate from
the tested value (the bit error rate in another basis) due to the
finite-size effect. Here nx and nz are the number of sifted key
bits in the X and Z basis, respectively. The failure probability
Pθx will be related to the failure probability of the phase error
rate estimation step [see Eq. (21)].

A. Random sampling

Define two random variables: k ≡ ebxnx and m ≡ epznz +
ebxnx . The number of bit errors in the X basis, k, can be
accurately (with a high probability) counted after the error
verification procedure. Note that m denotes the number of bit
errors if Bob measures all nx + nz qubits in the X basis. In the
squashing model [43,44,65], Eve prepares the qubit received
by Bob. Hence, one can assume Eve chooses a distribution of
m, Pr{m}, before Bob’s detection.

In order to link the probability, Pθx , to the measurement
results, nx , nz and k (or ebx), we go back to the original

012318-6

PRACTICAL ISSUES IN QUANTUM-KEY-DISTRIBUTION . . . PHYSICAL REVIEW A 81, 012318 (2010)

definition of the security parameter in QKD. In the security
analysis of QKD, Pθx denotes the probability that Eve sets up a
distribution Pr{m} (by preparing qubits) and then Bob obtains k

bit errors in the X basis. Therefore, the mathematical definition
for Pθx is

Pθx = Pr{epz � ebx + θx, ebx}
= Pr{m � ebx(nx + nz) + θxnz, k}

=
ebxnx+nz∑

m=ebx (nx+nz)+θxnz

Pr{m, k}

=
ebxnx+nz∑

m=ebx (nx+nz)+θxnz

Pr{k|m}Pr{m}. (16)

Bob chooses to measure the X basis randomly (without
replacement, of course), and thus Pr{k|m} is given by a
hypergeometric function,

Pr{k|m} =
(
m

k

)(
nx+nz−m

nx−k

)
(
nx+nz

nx

) . (17)

It is not hard to prove that Eq. (17) is a strict decreasing function
of m when m > (nx + nz)ebx . Thus, from Eq. (16),

Pθx � Pr{k|m = ebx(nx + nz) + θxnz}
<

√
nx + nz√

ebx(1 − ebx)nxnz

2−(nx+nz)ξx (θx), (18)

where the first equality holds when Eve sets the probability
distribution to be a delta function Pr{m} = δm,ebx (nx+nz)+θxnz

.
The derivation of the second inequality is presented in
Appendix B. Note that all the variables in Eq. (18) can be
measured in practice. The function ξx(θ) is given by

ξx(θx) ≡ H (ebx + θx − qxθx) − qxH (ebx)

− (1 − qx)H (ebx + θx), (19)

where qx = nx/(nx + nz) is the bias ratio.
A similar formula for the failure probability of phase error

rate estimation in the X basis, Pθz, can also be derived,

Pθz <

√
nx + nz√

ebz(1 − ebz)nxnz

2−(nx+nz)ξz(θz) (20)

with ξz(θz) is defined by ξz(θz) ≡ H (ebz + θz − qzθz) −
qzH (ebz) − (1 − qz)H (ebz + θz) and qz = nz/(nx + nz).
Combining the failure probabilities for the X basis and
Z basis, the total failure probability of phase error rate
estimation, εph, is then given by

εph � Pθx + Pθz. (21)

In case ebx = 0 (or ebz = 0), one can replace it by nxebx =
1 (or nzebz = 1) to get around the singularity as shown in
Appendix B. One can see that ξx(θx) is positive when θx >

0 and 0 � ebx, ebx + θx � 1, due to concavity of the binary
entropy function H (x).

B. Large data size approximation

In the limit of large nx and nz, θx can be chosen to be small.
Then we can use Taylor expansion for Eq. (19),

ξx(θx) = H (ebx + θx − qxθx) − qxH (ebx)

− (1 − qx)H (ebx + θ)

= −1

2
(1 − qx)qxH

′′(ebx)θ2
x + O

(
θ3
x

)

= ln 2

2

(1 − qx)qx

(1 − ebx)ebx

θ2
x + O

(
θ3
x

)
. (22)

When qx = 1/2, i.e., nx = nz, and θx is small, the failure
probability is given by

Pθx
<

1

2
√

2nebx(1 − ebx)
e
− θ2

x n

4(1−ebx)ebx (23)

Except for the factor 1/[2
√

2nebx(1 − ebx)], this is what is used
in the literature, such as Refs. [9,35]. In practice, normally we
have 2

√
2nebx(1 − ebx) > 1, so the bound given by Eq. (23)

is tighter than what is used in the literature.

X. PRIVACY AMPLIFICATION

In view of the EDP picture, we regard privacy amplification
as the result of phase error correction. In the following, we
focus on using two-universal hashing to perform phase error
correction and determine the corresponding failure probability.

A. Two-universal hashing

The family of all Toeplitz matrices {M} of size l × m has
2l+m−1 elements and satisfies the following property:

Pr{Mx = My} = 1

2l
for all x
= y, (24)

where it is assumed that each matrix is chosen with equal
probability. This can be proved by slightly adapting the proof
of Claim 7 of Ref. [66]. Note that the family of hash functions
performed with Toeplitz matrices is one specific case of a
more general class known as the two-universal families of
hash functions. A family of hash functions mapping S to T is
called two-universal [59] if

Pr{f (x) = f (y)} � 1

|T | for all x
= y, (25)

where f (x) is a hash function chosen in the family of hash
functions and in our case f (x) = Mx. Two-universal families
of hash functions have many useful properties and we will rely
on some of the them in this article.

B. Error correction

Suppose Alice holds a bit string, a, and Bob a noisy version
of it, b. The difference between the two strings e = a ⊕ b is
the error pattern. Let S be the set of all possible error patterns.
Alice and Bob intend to use a family of two-universal linear
hash functions to correct errors in Bob’s string with respect
to Alice’s. A hash function f (·) is selected from the family
and Alice and Bob each computes the hash value of their
bit strings with the hash function. Alice sends Bob her hash
value, to which Bob adds his hash value to arrive at the hash
value of the error pattern f (e) = f (a) ⊕ f (b). Note that this
is valid due to the linearity of the hash functions. Using this
hash value, Bob can identify the error pattern and thus correct
the errors in his string. Suppose that there are |T | possible
outputs for this family of hash functions. Using the definition
of a two-universal family given in Eq. (25), we can bound the

012318-7

CHI-HANG FRED FUNG, XIONGFENG MA, AND H. F. CHAU PHYSICAL REVIEW A 81, 012318 (2010)

probability of incorrectly identifying the error pattern as

Pr

⎧⎨
⎩

⋃
e′∈S\e

f (e) = f (e′)

⎫⎬
⎭ � |S|

|T | , (26)

which follows from applying the union bound to Eq. (25).
Thus, Bob’s error-corrected string matches Alice’s with
probability at least 1 − |S|/|T |.

Although this hashing-based error correcting procedure
may not be as practical and efficient as conventional ones, it is
useful for phase error correction in security proofs [9,46,47].
This is because for security purpose we only need to show that
the phase error pattern is identified without actually correcting
the error [9], and we only need a bound on the probability of
successfully identifying the error pattern.

C. Privacy amplification and phase error correction

Suppose we perform privacy amplification using a set of
l × m Toeplitz matrices, a member of which can be selected
with l + m − 1 random bits. Here, l is the final key length and
m is the sifted key length. For each matrix M in the privacy
amplification set, we associate an (m − l) × m matrix M⊥ that
is orthogonal to M . The collection of all these matrices {M⊥}
forms the set of hash functions for phase error correction. We
would like to find out whether this set {M⊥} has the property of
Eq. (25). If it does, we can determine the successful probability
of phase error correction from Eq. (26).

We remark that it does not matter whether the matrices of the
set {M⊥} have the Toeplitz form or not since we do not need to
generate them but only need to make sure that there exists such
a set with a certain phase error correcting capability. On the
other hand, we do impose the Toeplitz form on the privacy
amplification set {M} since we actually need to generate
this set.

Indeed, it can be shown (see, e.g., Theorem 1 of Ref. [67])
that when M is chosen from a set of random Toeplitz matrices,
the corresponding matrices M⊥ also form a two-universal set,
i.e.,

Pr{M⊥x = M⊥y} � 1

2m−l
for all x
= y.

Thus, according to the discussion in Sec. X B, we can use
the set {M⊥} to identify the phase error pattern and perform
the correction. In essence, when (i) there are |S| number of
possible phase error patterns, (ii) the sifted key length is m,
and (iii) the final key length is l, the failure probability of phase
error correction is upper bounded by

εpc = |S|2−(m−l). (27)

(Note that the sifted key length here will be equal to m =
nx + nz when it is used in the next subsection.)

For BB84, the bit error rates for the Z bits and X bits
are exactly determined from the error correction procedures,
up to a certain probability given by the verification step
[cf. Eq. (14)]. Focusing on the Z bits, we can estimate its phase
error rate epz from the actual bit error rate of the X bits ebx

using the random sampling argument of Sec. IX. Accordingly,
the lower and upper bounds on the number of phase errors on
the Z bits are, except with probability Pθx

[which is bounded

in Eq. (18)],

0 � epznz < (ebx + θx)nz. (28)

[Note that the second inequality is a strictly less than due to
the definition of Pθx

in Eq. (15).] Therefore, with probability
at least 1 − Pθx

, the number of possible phase error patterns in
the Z bits is

|Sz| =
�(ebx+θx)nz−1
∑

k=0

(
nz

k

)
<

(
nz

(ebx + θx)nz

)
(29)

< 2nzH (ebx+θx), (30)

where the first inequality holds for ebx + θx < 1/3 (see
Appendix C for proof of the first inequality and see, e.g.,
Refs. [68,69] for proof of the second inequality). We can
similarly obtain the bound for the number of possible phase
error patterns in the X bits |Sx |. Combining the number
of patterns in the Z and X bits, we have |S| = |Sz||Sx | in
Eq. (27).

D. Key length

Alice and Bob determine the size of the matrix, l ×
(nx + nz), used for hashing. Here, l is the key length after the
privacy amplification. Alice generates an (nx + nz + l − 1)-bit
random bit string and sends it to Bob through an authenticated
channel. Alice and Bob use this random bit string to generate
a Toeplitz matrix. The final key (with a size of l) will be the
product of this matrix [with a size of l × (nx + nz)] and the key
string (with a size of nx + nz) after passing through the error
verification. The overall failure probability of the privacy
amplification is the sum of that for authentication [Eq. (9)]
and that for phase error correction [Eq. (27)]:

εpa = (nx + nz + l − 1)2−kpa+1 + 2−toe , (31)

where kpa is the secure-key cost for the authentication and toe

is related to Eq. (27) by 2−toe = εpc. By rearranging Eqs. (27)
and (30), the final key length is

l = nx[1 − H (ebz + θz)] + nz[1 − H (ebx + θx)] − toe. (32)

The first term in Eq. (31) gives the failure probability of the
authentication for the (nx + nz + l − 1)-bit random bit string
transmission. The second term in Eq. (31) gives the failure
probability of privacy amplification using the Toeplitz matrix.
In the equivalent EDP used in the security proof [9,47], the
second term in Eq. (31) gives the failure probability of the
phase error correction.

XI. OPTIMIZATION

Alice and Bob calibrate the QKD system to get an estimate
of the transmittance η, the error rates ebx and ebz. Through
some rough calculation of the target length of the final key,
they decide the acceptable confidence interval 1 − ε and fix
the length of the experiment, N , which denotes the number
pulses sent by Alice. Then roughly, the length of the raw key
is n = Nη. After basis sift, Alice and Bob share an nx-bit
(nz-bit) key in the X (Z) basis.

012318-8

PRACTICAL ISSUES IN QUANTUM-KEY-DISTRIBUTION . . . PHYSICAL REVIEW A 81, 012318 (2010)

Alice and Bob can optimize their postprocessing using
either the failure probability or the trace distance as the
security measure, since they are directly related to one another
as discussed in Sec. III B. Here, we will use the failure
probability as the security measure for our discussion. The
failure probability ε is chosen by Alice and Bob according to
the later practical use of the final key. The desired message
security level sets an upper bound threshold value for ε.
Thus, the exact value of ε is not strictly predetermined. That
is, it can slightly deviate from the predetermined threshold
value.

Given n and ε [cf. Eq. (7)], Alice and Bob need to
optimize all the parameters for the key generation rate given in
Eq. (6). The first parameter they want to optimize is the basis
bias ratio, qx = nx/(nx + nz) which (roughly) determines
the probabilities to choose the X and Z bases, px and pz,
by qx ≈ p2

x/(p2
x + p2

z). The bias ratio should be determined
before quantum transmission while all other parameters can
be determined right after a raw key is obtained. The initial
calibration process gives Alice and Bob some idea about the
basis ratio which they will use in the subsequent QKD process.
The remaining parameters that need to be optimized are as
follows: kbs , kec, kev , kpa , εbs , εev , εph, εpa and toe. Alice
and Bob need to balance the failure probabilities from each
step [cf. Eq. (7)] and the secure-key cost [cf. Eq. (6)]. The
optimization problem becomes the following: given the total
failure probability

ε � 2εbs + εev + εph + εpa

= 2n2−kbs+1 + (nx + nz)2
−kev+1 + εph

+ (nx + nz + l − 1)2−kpa+1 + 2−toe , (33)

maximize the final key length

NR � l − 2kbs − kec − kev − kpa (34)

Note that the parameters kbs , kev , kpa , and toe affect ε and
the final key rate in similar ways. Also, error correction and
phase error rate estimation mainly depend on the bias ratio.
Thus, Alice and Bob can group the secure key costs and failure
probabilities into two parts by defining ε3 ≡ 2εbs + εev + εpa

and k3 ≡ 2kbs + kev + kpa + toe [see Eqs. (32), (6), and (7)].
The final secure key length can be rewritten as

NR � nx[1 − f (ebx)H (ebx) − H (ebz + θz)]

+ nz[1 − f (ebz)H (ebz) − H (ebx + θx)] − k3. (35)

We remark that if the contribution from one basis is negative
in Eq. (35), Alice and Bob should use the detections from this
basis for parameter estimation only, but not for the key.

We consider the subproblem: given the failure probability

ε3 � 2εbs + εev + εpa

= 2n2−kbs+1 + (nx + nz)2
−kev+1

+ (nx + nz + l − 1)2−kpa+1 + 2−toe , (36)

minimize the secret-key cost

k3 � 2kbs + kev + kpa (37)

With the inequality of arithmetic and geometric means, one
can show that the optimized secure-key cost for each step is

given by

toe = k3

5
− 4

5
− 1

5
log2 A

kbs = toe + 1 + log2 n
(38)

kev = toe + 1 + log2(nx + nz)

kpa = toe + 1 + log2(nx + nz + l − 1),

where A = n2(nx + nz)(nx + nz + l − 1). The corresponding
failure probability is

ε3 = 5A1/52−(k3−4)/5 (39)

From Eq. (39), we have

k3 = −5 log2 ε3 + log2 A + 4 + 5 log2 5. (40)

Note that n4/4 < A < 2n4 and also ε = ε3 + εph. Here if
Alice and Bob allow ε to have a small deviation from the
predetermined value, they can put a soft lower bound for ε3 in
the optimization. The exact value of the soft lower bound is
not really important here as long as it is within the tolerable
fluctuation range of ε. Here, we simply choose the tolerable
deviation to be within 1%, which implies that 10−2ε < ε3 < ε.
Thus,

−5 log2 ε + 4 log2 n + 2 + 5 log2 5 < k3

< −5 log2 ε + 4 log2 n + 15 + 15 log2 5. (41)

This is true for all θx , θz, and qx . Note that the difference
between the lower bound and the soft upper bound of k3 is less
than 37 bits. When the final key length is much larger than
37 bits, Alice and Bob can set

k3 = −5 log2 ε + 4 log2 n + 50 (42)

and the failure probability ε3 will satisfy ε3 < 10−2ε since the
right-hand side of Eq. (42) is larger than the upper bound in
Eq. (41).

Since Alice and Bob will recalculate the failure probability
in the end and allow the final ε to have a small deviation from
the predefined value, they can safely use εph = ε in the opti-
mization of the basis bias. Thus, the simplified optimization
problem only has three parameters to be optimized: qx , θx , and
θz, given εph = ε − ε3 ≈ ε.

In summary, the simplified optimization procedure for a
target failure probability ε is as follows:

1. Compute k3 using Eq. (42);
2. Maximize the key rate in Eq. (35) over qx , θx , and

θz subject to εph = ε. Here, εph is related to the
three optimization variables by Eqs. (18), (20), and
(21);

3. After the optimization, they can recalculate the final
failure probability ε = ε3 + εph, where ε3 is given in
Eq. (39).

As discussed above, since one can set ε3 < 10−2ε (when
the key length is much larger than 37 bits), the failure
probabilities for basis sift, error verification, and privacy
amplification are relatively small, and the failure probability
for random sampling is the major contribution to the total
failure probability.

Observation. The main effect of the finite key analysis
for the QKD postprocessing stems from the phase error rate

012318-9

CHI-HANG FRED FUNG, XIONGFENG MA, AND H. F. CHAU PHYSICAL REVIEW A 81, 012318 (2010)

estimation. Inefficiencies due to authentication, error verifica-
tion, and privacy amplification are relatively insignificant.

XII. SIMULATIONS

Now let us consider an example of the postprocessing in
the simple case of symmetric errors in the two bases.

Suppose N = 1010, η = 10−3 (then n = Nη = 107), ebx =
ebz = 4%, and ε = 10−7. It is not hard to see that the final
key length is much larger than 37 bits. Thus, the simplified
optimization is used. First, the secure-key cost k3 = 543 bit,
according to Eq. (42). Second, given n = 107, ebx = ebz = 4%
and ε = 10−7, we optimize the parameters: θx , θz, and qx .
Through a numerical program, we get θx = 1.07%, θz =
0.84%, and qx = 99.8% (or px = 96.0%). Note that, in
this case, the X and Z bases are interchangeable due to
symmetry.

Finally, we can compute the key length and the correspond-
ing security parameter using our postprocessing procedure and
compare with the key length using asymptotic assumptions.
The final key length using asymptotic assumptions is

Kasymp = n[1 − h2(ebx) − h2(ebz)], (43)

where we used the fact that, asymptotically, the phase error
rate in one basis is the same as the bit error rate in the other
basis and the use of efficient BB84 leads to always matching
basis between Alice and Bob. The key length with asymptotic
analysis is 5.15 Mb, and the one with the postprocessing
procedure is 4.41 Mb and its failure probability is ε =
1.0073 × 10−7 (roughly 1 + 2−7 times the predefined value
of 10−7). Furthermore, we can get the trace-distance security
parameter using Lemma 1 to conclude that this 4.41 Mb key is
composable and is (4.4884 × 10−4) secure in accordance with
security Definition 1. Here, for illustrative purposes, the key
length using the postprocessing procedure is calculated with
the assumption that nx = np2

x and nz = n(1 − px)2.

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

10
11

0

0.1

0.2

0.3

0.4

0.5

Raw key length

K
ey

 r
at

e
pe

r
ra

w
 k

ey
 b

it

ε=10−3

ε=10−7

ε=10−50

Finite key
Asymptotic key

FIG. 2. (Color online) Lower bound for the key rate as a function
of the raw key length; parameters used: ebx = ebz = 4% and the error
correction efficiency is 100%. The three curves correspond to three
different values of failure probability ε.

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

10
2

10
3

10
4

10
5

Failure Probability ε

M
in

. r
aw

 k
ey

 le
ng

th
 to

 y
ie

ld
 a

 k
ey

FIG. 3. (Color online) Minimum raw key length to yield a positive
key length as a function of ε; parameters used: ebx = ebz = 4% and
the error correction efficiency is 100%.

In the simulation, we assume the error correction efficiency
is 100% (Shannon limit). Thus, the difference between the
“asymptotic-key” length and the “finite-key” length, 0.74 Mb,
comes from the finite statistical analysis. The cost (and the
security parameter) due to the finite key analysis mainly
comes from the phase error rate estimation. Note that all the
remaining cost is only k3 = 543 bit and ε3 = 7.3 × 10−10. This
point can be clearly seen by comparing Eqs. (21) and (39) in
the case of large n. The exponent coefficient in Eq. (21) is
− θ2

4(1−ebx)ebx
, while in Eq. (39) it is − k3

5n
, and also a small

change in θ affects the key rate more than that in k3/n

does.
Figure 2 shows the lower bound for the key rate as a function

of the raw key length. Note that since we use our simplified

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6
x 10

5

Bias ratio p
x

F
in

al
 k

ey
 le

ng
th

Finite−key
Asymptotic

FIG. 4. (Color online) Effect of the bias ratio on the final key
length; parameters used: ebx = ebz = 4%, target failure probability
ε = 10−7, the raw key length is 106, and the error correction efficiency
is 100%.

012318-10

PRACTICAL ISSUES IN QUANTUM-KEY-DISTRIBUTION . . . PHYSICAL REVIEW A 81, 012318 (2010)

10
2

10
4

10
6

10
8

10
10

10
12

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Raw key length

O
pt

im
al

 b
ia

s
ra

tio

p
x
 set by Alice

q
x
 obtained by Bob

FIG. 5. (Color online) Plot of the optimal bias ratio vs. the raw key
length; parameters used: ebx = ebz = 4%, target failure probability
ε = 10−7, and the error correction efficiency is 100%.

optimization method, the final security parameter ε for
the failure probability deviates slightly from the predefined
value. Calculations show that this difference is less than 1%
of the predefined values over the entire plotting range for all
three curves.

Figure 3 shows the minimum raw key length needed to yield
a positive key length as a function of the predefined security
parameter ε. In typical applications, a rough security level
may be required for a secret key which is to be generated
by QKD. Thus, this figure gives the minimum number of
signals needed to be detected in order to achieve such a security
level.

Figure 4 illustrates the effect of the bias ratio on the final
key length. It can be seen that when the optimal bias ratio is
used, the final key length increases by over 50% compared to
the case when the bias ratio of 0.5 is used. Thus, the bias ratio
has a big effect on the key generation performance. Figure 5
shows the optimal bias ratio versus the raw key length. The
optimal bias ratio leads to the largest final key length. It can
be seen that as the raw key length approaches infinity, the
optimal bias ratio tends to one. This makes sense since in the
asymptotic case, it is more efficient for Alice and Bob to use
one basis with a high probability for key generation in order
to avoid wasteful basis mismatch and to use the other basis
only for phase error estimation; this is the idea of the efficient
BB84 protocol [41]. The optimal bias ratio drops to 0.5 as
the raw key length approaches the minimal for positive key
generation.

XIII. CONCLUDING REMARKS

In this article, we propose a complete postprocessing
procedure for transforming measurement outcomes in a
QKD experiment to a final secret key, which we quantify
with a security parameter, namely the failure probability
of the postprocessing procedure. This failure probability is
directly connected to the composability security definition
(cf. Lemma 1). Our postprocessing procedure contains many
elements, including authentication, the choice of the basis

bias ratio, error correction and verification, phase error rate
estimation, and privacy amplification. Our procedure results
from integrating all these elements with ideas from security
proofs. Since the underlying security proofs [8,9,46,47] are
secure against the most general attacks, our postprocessing
procedure also inherits this important property. Based on our
analysis, the main contribution to the finite-size effect comes
from the inefficiency of phase error rate estimation, which is
a consequence of the random sampling argument for inferring
unobserved quantities from observed ones. Further remarks
and future directions are listed as follows:

1. In the privacy amplification step, Alice and Bob need
a common matrix to generate the final secure key. The
current way to construct the matrix is by Alice sending a
random bit string to Bob, which requires authenticated
classical communication. An alternative way is by each
of them generating a matrix with a preshared secret
key. Of course, the amount of preshared secret key
bits required must be small compared to the generated
key length. Also, the failure probability is related to
the amount of preshared bits consumed. We leave this
investigation for future research. The main advantage of
the second method is that no classical communication
is needed for the privacy amplification part. In this case,
the error verification step can be done either before or
after the privacy amplification.

2. In the security proof, the imperfection of X- and
Z-basis measurements and efficiency mismatch are not
considered. It is interesting to consider the detector
efficiency mismatch with the finite key analysis [70].

3. As noted in Ref. [20], the finite-key analysis for the
decoy-state QKD is a hard problem. In the decoy-state
QKD, the fluctuation comes from not only statistics but
also hardware imperfections. The question of interest
is where the main contribution of the fluctuation comes
from and how to quantify these fluctuations. Since QKD
systems with coherent states are most widely used in
experiments, investigating the finite key effect in decoy-
state QKD is an important step toward a QKD standard.

4. In order to fairly compare our finite-key analysis to
others, such as Scarani and Renner [38] and Cai and
Scarani [40], one has to make sure the postprocessing
elements of different postprocessing procedures carry
similar capacities. For example, there are different
ways to treat the basis bias ratio, authentication, and
random sampling. Therefore, a clear objective must be
defined first before making a meaningful comparison.
We remark that comparing the performance of various
postprocessing procedures as a whole and comparing
only the underlying security proofs (which are just
one element in a postprocessing procedure) are two
different goals. As we have shown in this article, the
main contribution to the finite-size effect comes from
random sampling in the parameter estimation step.
Thus, it may be more interesting in practice to compare
different random sampling arguments.

5. Our analysis treats the X basis and Z basis separately,
especially when we estimate the phase error rates using
the random sampling argument. On the other hand,

012318-11

CHI-HANG FRED FUNG, XIONGFENG MA, AND H. F. CHAU PHYSICAL REVIEW A 81, 012318 (2010)

one may mix the measurement data of different bases
before any analysis. Doing so makes it easy to perform
a similar finite-key analysis for other protocols such
as the Scarani-Acı́n-Ribordy-Gisin-2004 (SARG04)
protocol [71]. In this case, we can use the Azuma’s
inequality [72] in place of the random sampling argu-
ment to estimate the phase error rate. This is discussed
in more detail in Appendix D.

6. In QKD experiments, error correction is often per-
formed in blocks (say, 1 kbit) and privacy ampli-
fication is performed on all the blocks together. In
some error correction scheme, the failure probability
for small blocks is not negligible. That is, after the
error correction, some blocks may still have errors,
discarding these blocks may have security implication
and thus care is required [73]. It is an interesting
future topic to give a strict security argument on this
issue.

7. Although our analysis uses particular procedures for
the steps (e.g., authentication, error correction), our
analysis is generic in the sense that each specific
procedure may be substituted by another with the
same functionality. The new secret-key cost and failure
probability will then be used in the analysis of the
generation rate and failure probability of the final
key.

ACKNOWLEDGMENTS

We thank J.-C. Boileau, C. Erven, N. Godbout, M. Hayashi,
D. W. Leung, H.-K. Lo, N. Lütkenhaus, M. Koashi, X. Mo,
B. Qi, R. Renner, V. Scarani, D. Stebila, K. Tamaki, W. Tittel,
Q. Wang, Y. Zhao and other participants in the workshop
Quantum Works QKD Meeting (Waterloo, Canada) and Finite
Size Effects in QKD (Singapore) for enlightening discussions.
X. Ma especially thanks H. F. Chau for hospitality and support
during his visit at the University of Hong Kong. This work
is supported by the NSERC Innovation Platform Quantum
Works, the NSERC Discovery grant, the RGC Grant No. HKU
701007P of the HKSAR Government, and the Postdoctoral
Grant Program of NSERC.

APPENDIX A: PROOF OF EQ. (4)

First, given that 〈0⊗m
X |ρA|0⊗m

X 〉 = α, the purification |�AE〉
of ρA is of the general form

|�AE〉 = √
α
∣∣0⊗m

X

〉
A
|0〉E + √

1 − α|�⊥〉AE, (A1)

where |�⊥〉AE has unit norm and A〈0⊗m
X |�⊥〉AE = 0. Thus,

the fidelity in question is

F
(
ρAE,

∣∣0⊗m
X 〉A

〈
0⊗m

X

∣∣ ⊗ ρE

)
= Tr

√
|�AE〉〈�AE|[∣∣0⊗m

X

〉
A

〈
0⊗m

X

∣∣ ⊗ ρE

]|�AE〉〈�AE |
= Tr

√
|�AE〉[α〈0|ρE |0〉]〈�AE| =

√
α〈0|ρE |0〉, (A2)

where ρAE = |�AE〉〈�AE| = ρ
1/2
AE . Since ρE = TrA(ρAE) and

〈0|ρE |0〉 =
∑

i

|〈�AE|[|i〉A|0〉E]|2, (A3)

where the summation is over all vectors of a basis in system
A, by considering a basis having |0⊗m

X 〉A as its basis state,
we get 〈0|ρE|0〉 � α. Substituting this into Eq. (A2), we get
Eq. (4).

APPENDIX B: EVALUATION OF HYPERGEOMETRIC
FUNCTION

In this appendix, we will evaluate the hypergeometric
function

Pθ � Pr{k|m, n,N} =
(
m

k

)(
N−m

n−k

)
(
N

n

) , (B1)

with k = ebxnx , N = nx + nz, n = nx , and m = ebx(nx +
nz) + θnz. Here, we relabel the function for simplicity. Strictly
speaking, θ is a discrete variable with a minimum quantum of
1/nz, which will keep m to be an integer.

In the following discussion, we assume the integers N >

m > k � 1 and N > n > k. The only exception that could
(though highly unlikely) happen in the realistic case is k = 0.
In this case, for a given m, Pθ (k = 0) < Pθ (k = 1). Now
that we only care about the upper bound of the probability,
we can always safely replace k = 0 with k = 1 in the
calculation.

We simplify the hypergeometric function by the Stirling
formula [74]

n! =
√

2πn
(n

e

)n

eλn , (B2)

where

1

12n + 1
< λn <

1

12n
. (B3)

Then, Eq. (B1) can be expressed as

Pθ �
(
n

k

)(
N−n

m−k

)
(
N

m

)
= n!(N − n)!(N − m)!m!

k!(n − k)!(m − k)!(N − n − m + k)!N !

= 1√
2π

√
n
√

N − n
√

N − m
√

m√
k
√

n − k
√

m − k
√

N − n − m + k
√

N

· nn(N − n)N−n(N − m)N−mmm

kk(n − k)n−k(m − k)m−k

· 1

(N − n − m + k)N−n−m+kNN

· exp(λn + λN−n + λN−m + λm − λk

− λn−k − λm−k − λN−n−m+k − λN). (B4)

First, we can prove that

λn + λN−n + λN−m + λm − λk

− λn−k − λm−k − λN−n−m+k − λN < 0 (B5)

with the facts of m > k�1, n − k > 1 and Eq. (B3). Remark:
though the left-hand side of Eq. (B5) is negative, it is close to
0 in the order of O(1/12k).

012318-12

PRACTICAL ISSUES IN QUANTUM-KEY-DISTRIBUTION . . . PHYSICAL REVIEW A 81, 012318 (2010)

Second, we know that 1/
√

x(1 − x) is a decreasing function
for 0 < x < 1/2. Then we can easily see that

√
n
√

N − n
√

N − m
√

m√
k
√

n − k
√

m − k
√

N − n − m + k
√

N

�
√

N√
n(N − n)

1√
ebx(1 − ebx)

= 1√
N

1√
qx(1 − qx)ebx(1 − ebx)

(B6)

with the facts of ebx = k/n and epz = (m − k)/(N − n) �
ebx . Remark: when epz = ebx , the equality holds. From this
point of view, the bound is tight.

Third, the remaining term of the failure probability can be
expressed by

nn(N − n)N−n(N − m)N−mmm

kk(n − k)n−k(m − k)m−k(N − n − m + k)N−n−m+kNN

= 2nH (k
n

)+(N−n)H (m−k
N−n

)−NH (m
N

)

≡ 2−Nξx (θ), (B7)

where we use the definition of the binary entropy function
H (x). The exponent coefficient is given by

ξx(θ) ≡ H (ebx + θ − qxθ) − qxH (ebx)

− (1 − qx)H (ebx + θ) (B8)

with qx = n/N and (m − k)/(N − n) = ebx + θ . Due to the
concavity of H (x), ξx(θ) is negative for θ > 0 and 0 < qx < 1.

Therefore, by combining Eqs. (B4), (B5), (B6), and (B7),
the failure probability of Eq. (18) is given by

Pθ <
1√
N

1√
qx(1 − qx)ebx(1 − ebx)

2−Nξx (θ), (B9)

where ξx(θ) is given by Eq. (B8). Note that ξx(θ) is independent
of key size N given the error rates and bias ratio. Now we can
see that the failure probability decreases (actually, slightly
faster than) exponentially with N .

APPENDIX C: PROOF OF EQ. (29)

We prove Eq. (29) by the following claim.
Claim 1.

m−1∑
k=0

(
n

k

)
<

(
n

m

)
(C1)

when m � n/3.
Proof. First notice that(

n

k−1

)
(
n

k

) = k

n − k + 1
<

1

2
(C2)

is true for all k � n/3. Thus,

m−1∑
k=0

(
n

k

)
�

m−1∑
k=0

2k−m

(
n

m

)
=

(
n

m

) m−1∑
k=0

2k−m <

(
n

m

)
(C3)

is true for m � n/3.

APPENDIX D: ESTIMATION OF PHASE ERROR RATE
FOR MIXED-BASIS ANALYSIS

The analysis in the main part of the article treats each of
the two bases separately when estimating the phase error rates
for them. This is possible in BB84, since the phase errors
in one basis are the bit errors in the other basis. And in this
case, a random sampling argument suffices to establish some
confidence on the unmeasured phase error rate in one basis
from the measured bit error rate in the other basis. On the other
hand, one may mix all the measurement data in the different
bases together before applying any further analysis. This can be
done in BB84. For other protocols, this mixing actually leads
to a simpler analysis and thus is favorable. Here, we describe
how to estimate the phase error rate for the mixed-basis case.
When the measurements are mixed, protocols can usually be
characterized with a relation between the bit and phase error
probabilities pp = αpb, where α � 1 in general (e.g., α = 3/2
for SARG04 [75,76] and α = 5/4 for a three-state protocol
[77]). (Note that here the error probabilities are the combined
values of all bases and thus do not carry a basis designation.)
Given such a relation in probabilities, we want to establish a
similar relation for the error rates and compute the confidence
for it. A useful tool to do this is the Azuma’s inequality [72]
(see also Refs. [75–78] for the application of it to security
proofs), which relates the sum of conditional probabilities to
the total number of a particular outcome in many trials. To
start, we relate the probability and the rate for the bit error
and the phase error separately using the Azuma’s inequality as
follows:

Pr{|pb − eb| � εAz} � 2 exp

(−nε2
Az

2

)
(D1)

Pr{|pp − ep| � εAz} � 2 exp

(−nε2
Az

2

)
(D2)

where pb,p and eb,p designate the error probabilities and the
error rates, respectively, εAz represents a failure probability,
and n is the number of measurements made. Because pp =
αpb, we multiple these two inequalities to get the relation
between the bit and phase error rates:

Pr{|ep − αeb| � (1 + α)εAz} � 4 exp
(−nε2

Az

)
. (D3)

For BB84, α = 1 and this bound is worse than the random
sampling result [cf. Eq. (23)] in typical situations.

[1] C. H. Bennett and G. Brassard, in Proceedings of IEEE
International Conference on Computers, Systems, and Signal
Processing (IEEE, New York/Bangalore, 1984), pp. 175.

[2] C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett.
68, 557 (1992).

[3] C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

012318-13

CHI-HANG FRED FUNG, XIONGFENG MA, AND H. F. CHAU PHYSICAL REVIEW A 81, 012318 (2010)

[4] D. Bruss, Phys. Rev. Lett. 81, 3018 (1998).
[5] H. Bechmann-Pasquinucci and N. Gisin, Phys. Rev. A 59, 4238

(1999).
[6] D. Mayers, in Advances in Crytology-Crypto ’96, Lecture Notes

in Computer Science (Springer, Berlin, 1996), Vol. 1109, p. 343.
[7] D. Mayers, J. ACM 48, 351 (2001).
[8] H.-K. Lo and H. F. Chau, Science 283, 2050 (1999).
[9] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

[10] H.-K. Lo, Quantum Inf. Comput. 1, 81 (2001).
[11] K. Tamaki, M. Koashi, and N. Imoto, Phys. Rev. Lett. 90, 167904

(2003).
[12] R. Renner, Ph.D. thesis, Swiss Federal Institute of Technology

(2005);also available in Int. J. Quantum. Inform. 6, 1 (2008).
[13] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).
[14] A. Acı́n, N. Brunner, N. Gisin, S. Massar, S. Pironio, and

V. Scarani, Phys. Rev. Lett. 98, 230501 (2007).
[15] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod.

Phys. 74, 145 (2002).
[16] H.-K. Lo and N. Lütkenhaus, Phys. Canada 63, 191

(2007).
[17] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek,

N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301
(2009).

[18] W.-Y. Hwang, Phys. Rev. Lett. 91, 057901 (2003).
[19] H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504

(2005).
[20] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Phys. Rev. A 72, 012326

(2005).
[21] X.-B. Wang, Phys. Rev. Lett. 94, 230503 (2005).
[22] X.-B. Wang, Phys. Rev. A 72, 012322 (2005).
[23] J. W. Harrington, J. M. Ettinger, R. J. Hughes, and J. E. Nordholt,

e-print arXiv:quant-ph/0503002 (2005).
[24] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, Phys. Rev. Lett.

96, 070502 (2006).
[25] Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, in Proc. of IEEE

ISIT (IEEE, 2006), 2094 .
[26] K. Tamaki and N. Lütkenhaus, Phys. Rev. A 69, 032316 (2004).
[27] M. Koashi, Phys. Rev. Lett. 93, 120501 (2004).
[28] K. Tamaki, N. Lütkenhaus, M. Koashi, and J. Batuwantudawe,

Phys. Rev. A 80, 032302 (2009).
[29] K. Tamaki, Phys. Rev. A 77, 032341 (2008).
[30] K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. Lett. 89,

037902 (2002).
[31] K. Inoue, E. Waks, and Y. Yamamoto, Phys. Rev. A 68, 022317

(2003).
[32] H. Takesue, E. Diamanti, C. Langrock, M. M. Fejer, and

Y. Yamamoto, Opt. Express 14, 9522 (2006).
[33] H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer,

K. Inoue, and Y. Yamamoto, New J. Phys. 7, 232 (2005).
[34] M. Koashi and J. Preskill, Phys. Rev. Lett. 90, 057902

(2003).
[35] X. Ma, C.-H. F. Fung, and H.-K. Lo, Phys. Rev. A 76, 012307

(2007).
[36] N. Lütkenhaus, Phys. Rev. A 59, 3301 (1999).
[37] M. Hayashi, Phys. Rev. A 74, 022307 (2006).
[38] V. Scarani and R. Renner, Phys. Rev. Lett. 100, 200501

(2008).
[39] V. Scarani and R. Renner, Lect. Notes Comput. Sci. 5106, 83

(2008).
[40] R. Y. Cai and V. Scarani, New J. Phys. 11, 045024 (2009).

[41] H.-K. Lo, H. F. Chau, and M. Ardehali, J. Cryptology 18, 133
(2005).

[42] X. Ma, C.-H. F. Fung, J.-C. Boileau, and H. F. Chau, e-print
arXiv:0904.1994 (2009).

[43] T. Tsurumaru and K. Tamaki, Phys. Rev. A 78, 032302
(2008).

[44] N. J. Beaudry, T. Moroder, and N. Lütkenhaus, Phys. Rev. Lett.
101, 093601 (2008).

[45] M. Koashi, e-print arXiv:quant-ph/0609180 (2006).
[46] H.-K. Lo, New J. Phys. 5, 36 (2003).
[47] M. Koashi, J. Phys. Conf. Ser. 36, 98 (2006).
[48] D. Gottesman, Phys. Rev. A 54, 1862 (1996).
[49] D. Gottesman, Ph.D. thesis, California Institute of Technology,

1997.
[50] M. Ben-Or, M. Horodecki, D. W. Leung, D. Mayers, and

J. Oppenheim, in Second Theory of Cryptography Conference
TCC 2005, Lecture Notes in Computer Science (Springer-Verlag,
2005), Vol. 3378, p. 386 .

[51] R. Renner and R. König, in Second Theory of Cryptography
Conference TCC 2005, Lecture Notes in Computer Science
(Springer-Verlag, 2005), Vol. 3378, p. 407 .

[52] R. Canetti, Tech. Rep. TR01-016, Electronic Colloquium on
Computational Complexity (ECCC) (2001), preliminary version
in IEEE Symposium on Foundations of Computer Science,
pp. 136, 2001.

[53] R. Canetti and H. Krawczyk, in EUROCRYPT 2002: Lecture
Notes in Computer Science (Springer-Verlag, New York, 2002),
Vol. 2332, p. 337 .

[54] M. Ben-Or and D. Mayers, e-print arXiv:quant-ph/0409062
(2004).

[55] R. König, R. Renner, A. Bariska, and U. Maurer, Phys. Rev.
Lett. 98, 140502 (2007).

[56] C. A. Fuchs and J. van de Graaf, IEEE Trans. Inf. Theory 45,
1216 (1999).

[57] X. Ma, T. Moroder, and N. Lütkenhaus, e-print arXiv:0812.4301
(2008).

[58] This is a slightly modified version of the flow chart proposed by
Wolfgang Tittel in the workshop Quantum Works QKD Meeting
(Waterloo, Canada, 2008).

[59] M. N. Wegman and J. L. Carter, J. Comput. Syst. Sci. 18, 143
(1979).

[60] M. N. Wegman and J. L. Carter, J. Comput. Syst. Sci. 22, 265
(1981).

[61] H. Krawczyk, in Advances in Cryptology—CRYPTO’94, Lecture
Notes in Computer Science (Springer-Verlag, New York, 1994),
Vol. 893, p. 129.

[62] H. Krawczyk, in Advances in Cryptology—EUROCRYPT’95
(Springer-Verlag, New York, 1995), Vol. 921, p. 301.

[63] D. Gottesman and H.-K. Lo, IEEE Trans. Inf. Theory 49, 457
(2003).

[64] X. Ma, C.-H. F. Fung, F. Dupuis, K. Chen, K. Tamaki, and H.-K.
Lo, Phys. Rev. A 74, 032330 (2006).

[65] D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill,
Quantum Inf. Comput. 4, 325 (2004).

[66] Y. Mansour, N. Nisan, and P. Tiwari, in Proceedings of
the Twenty-Second Annual ACM Symposium on Theory of
Computing (ACM, New York, 1990), p. 235.

[67] M. Hayashi, Phys. Rev. A 76, 012329 (2007).
[68] W. Feller, An Introduction to Probability Theory and Its

Applications, 3rd ed. (Wiley, New York, 1968).

012318-14

PRACTICAL ISSUES IN QUANTUM-KEY-DISTRIBUTION . . . PHYSICAL REVIEW A 81, 012318 (2010)

[69] T. M. Cover and J. A. Thomas, Elements of Information Theory,
2nd ed. (Wiley Interscience, New York, 2006).

[70] C.-H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, Quantum
Inf. Comput. 9, 0131 (2009).

[71] V. Scarani, A. Acı́n, G. Ribordy, and N. Gisin, Phys. Rev. Lett.
92, 057901 (2004).

[72] K. Azuma, Tôhoku Math. J. 19, 357 (1967).
[73] This issue was raised by Wolfgang Tittel.

[74] H. Robbins, Am. Math. Mon. 62, 26 (1955).
[75] K. Tamaki and H.-K. Lo, Phys. Rev. A 73, 010302(R) (2006).
[76] C.-H. F. Fung, K. Tamaki, and H.-K. Lo, Phys. Rev. A 73, 012337

(2006).
[77] J.-C. Boileau, K. Tamaki, J. Batuwantudawe, R. Laflamme, and

J. M. Renes, Phys. Rev. Lett. 94, 040503 (2005).
[78] C.-H. F. Fung and H.-K. Lo, Phys. Rev. A 74, 042342

(2006).

012318-15

