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Efficient optimal minimum error discrimination of symmetric quantum states
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This article deals with the quantum optimal discrimination among mixed quantum states enjoying geometrical
uniform symmetry with respect to a reference density operator ρ0. It is well known that the minimal error
probability is given by the positive operator-valued measure obtained as a solution of a convex optimization
problem, namely a set of operators satisfying geometrical symmetry, with respect to a reference operator �0 and
maximizing Tr(ρ0�0). In this article, by resolving the dual problem, we show that the same result is obtained
by minimizing the trace of a semidefinite positive operator X commuting with the symmetry operator and such
that X � ρ0. The new formulation gives a deeper insight into the optimization problem and allows to obtain
closed-form analytical solutions, as shown by a simple but not trivial explanatory example. In addition to the
theoretical interest, the result leads to semidefinite programming solutions of reduced complexity, allowing to
extend the numerical performance evaluation to quantum communication systems modeled in Hilbert spaces of
large dimension.
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I. INTRODUCTION

In a quantum system Alice prepares the quantum channel
into one of several quantum states. Bob measures the quantum
channel by a set of measurement operators and, on the basis of
the result, it guesses the choice made by the transmitter. These
actions lead to a classical channel, and the problem arises
of finding the measurement operators that provide optimal
performance according to a predefined criterion; in this article,
the minimum error probability. However, to solve the problem,
except for some particular cases, has appeared to be a very
difficult task since the pioneering contributions in the 1970s
[1–3].

In recent years, particular attention has been paid to
quantum states satisfying geometrical symmetry [4–7], in
view of applications to optical communication systems. In
some specific cases, including symmetric pure quantum
states [4,5] and symmetric mixed quantum states with a
characteristic structure [6], the solution named square root
measurement (SRM) proves optimal. Nevertheless, in general,
SRM represents a suboptimal strategy, although it provides
pretty good performance in many scenarios.

In this article, we are concerned with the construction of
optimal positive operator-valued measure (POVM) for the
discrimination of symmetric mixed quantum states. We present
some results that provide intuition into the problem and offer
perspectives on its solution.

Optimal quantum state discrimination represents a convex
optimization problem, and, as such, it can be formulated
in a primal and in a dual form, with the latter having a
reduced number of variables and constraints [3,6]. In this
article we investigate how primal and dual problems simplify
with symmetric quantum states. For the primal problem this
study was already considered in Ref. [6]. Herein, we extend
the analysis to the dual problem, where the optimal solution
can be searched in a set of smaller dimension. The simplified
formulation of the dual problem is illustrated with an example
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where a closed-form solution is easily found. For problems of
large dimension, that cannot be solved analytically, the reduced
number of variables in the simplified dual statement becomes
useful to the numerical solution by means of semidefinite
programming (SDP) tools.

II. GENERAL FORMULATION OF MINIMUM ERROR
DISCRIMINATION

The quantum decision problem is formalized in a N -
dimensional complex Hilbert space H [1], where an ensem-
ble of quantum states ρi , i = 0, 1, . . . , M − 1, with prior
probabilities qi � 0,

∑M−1
i=0 qi = 1, is given. The quantum

states ρi are density operators on H, i.e., (self-adjoint)
positive semidefinite (PSD) operators (ρi � 0), with unit trace,
Tr(ρi) = 1. For notation convenience, we denote byP the class
of the PSD operators on H. The measurement operators �i ,
i = 0, 1, . . . ,M − 1, constitute a POVM having the properties
�i ∈ P and

∑M−1
i=0 �i = I, where I is the identity operator

on H. The transition probabilities of the resulting quantum
channel become p(j |i) = Tr(ρi�j ), so the probability of
correct detection is given by Pc = ∑M−1

i=0 qiTr(ρi�i).
Hence, the problem of finding the maximum probability of

correct state discrimination can be concisely stated as follows.
Primal problem (PP1). Find the maximum of the probabil-

ity of correct detection Pc = ∑M−1
i=0 qiTr(ρi�i) over the class

of the POVM on H.
The analytical solution of PP1 is in general difficult since

Pc has to be maximized over the whole M-tuple of measure
operators �i . As a matter of fact, closed-form results to the
primal problem are available only for some particular quantum
mechanical systems, e.g., the binary case [1]. Nevertheless,
since the objective is to search a global maximum of a linear
function into a convex set, the problem can be faced by means
of numerical tools such as SDP. Besides, according to classical
results in convex optimization theory [8], in place of the
primal problem, it is in general more convenient to consider
its corresponding dual problem, since it presents a smaller
number of variables and constraints [3,6].
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Dual problem (DP1). Minimize the trace of the optimiza-
tion operator X over the class P , subject to the constraints
X � qiρi , i = 0, 1, . . . ,M − 1. Once found a minimum trace
operator Xopt, its trace gives the maximum probability of
correct detection, Pc = Tr(Xopt).

The equalities (Xopt − qiρi)�i = �i(Xopt − qiρi) = 0,
i = 0, 1, . . . ,M − 1, are necessary conditions on the optimal
POVM. These conditions become sufficient, once the searched
measure operators are constrained to belong to P and to solve
the identity on H.

III. DISCRIMINATION OF SYMMETRIC
QUANTUM STATES

In quantum detection an important role is played by
geometrically uniform symmetry [4–6]. Among the several
generalizations, we consider the basic case of symmetric mixed
quantum states generated from a reference density operator ρ0

as

ρi = Siρ0S
−i , i = 0, 1, . . . , M − 1, (1)

where the symmetry operator S is unitary (SS† = S†S = I )
and such that SM = I . The geometry implicitly requires
that the mixed states are equiprobable, i.e., qi = 1/M , i =
0, 1, . . . , M − 1. In Ref. [6] it was shown that optimal POVM
having the same symmetry can always be found. Hence,
without loss of generality, we can assume that

�i = Si�0S
−i , i = 0, 1, . . . ,M − 1, (2)

where �0 is the reference measure operator. Consequently, for
a fixed M , the knowledge of ρ0, �0 and S is sufficient to fully
describe the state ensemble and the POVM.

The density operators (1) have all the same rank, and the
same holds for the measure operators (2). As proved in Ref. [9],
the optimal measure operators can be assumed to have rank
no higher than that of the corresponding density operators,
namely rank(�0) � rank(ρ0).

A. Primal problem for symmetric quantum states

The specific geometry of the state ensemble can be ex-
ploited to get insight into how solving the state discrimination
problem. In particular, the primal problem PP1 can be rewritten
in a simpler form as follows.

Primal problem for symmetric quantum states (PP2). Find
the maximum of Pc = Tr(ρ0�0), with �0 ∈ P and such that∑M−1

i=0 Si�0S
−i = I .

Proof: This formulation was first given in Ref. [6]. It can
straightforwardly be proved by using (1) and (2) in PP1, so that
Pc = ∑M−1

i=0 qiTr(ρi�i) = ∑M−1
i=0

1
M

Tr(Siρ0S
−iSi�0S

−i) =
Tr(ρ0�0). Moreover, if �0 � 0 then �i = Si�0S

−i � 0. �

B. Dual problem for symmetric quantum states

The optimization problem PP2 is comparatively simple,
and, perhaps, this is the reason why no particular attention has
been paid in the literature to the study of the dual theorem
to obtain an alternative formulation. In the following we
investigate this point.

Dual problem for symmetric quantum states (DP2). Min-
imize the trace of the optimization operator X over the class
P , subject to the constraints X � 1

M
ρ0 and XS = SX. Once

found a minimum trace operator Xopt, its trace gives the
maximum probability of correct detection, Pc = Tr(Xopt).

Proof: Define ρ ′
i = Si( 1

M
ρ0)S−i . Let V be the feasible set

according to the general dual problem in Sec. II, i.e., the set
of PSD operators X such that X � ρ ′

i , i = 0, 1, . . . ,M − 1,
and let V ′ be the set of PSD operators X′ such that X′ �
ρ ′

0 and X′S = SX′. The proof is organized in two steps. In
the first step it is shown that V ′ ⊂ V , while in the second
step it is proved that for any X ∈ V there exist X′ ∈ V ′ such
that Tr(X′) = Tr(X). Then, the search of X can be confined
into V ′.

Step 1: If X′ ∈ V ′, for the commutativity between X′ and S

we get X′ = SX′S−1 and recursively X′ = SiX′S−i . Hence,
for any i

X′ − ρ ′
i = X′ − Siρ ′

0S
−i = SiX′S−i − Siρ ′

0S
−i

= Si(X′ − ρ ′
0)S−i � 0,

since X′ � ρ ′
0 for assumption.

Step 2: For each X ∈ V we consider

X′ = 1

M

M−1∑
i=0

S−iXSi.

Being X � ρ ′
i for each i, it follows that

X′ � 1

M

M−1∑
i=0

S−iρ ′
iS

i = ρ ′
0.

Moreover, recalling that SM = I

SX′S−1 = 1

M

M−1∑
i=0

S−(i−1)XSi−1 = X′

and then X′ commutes with S. Finally,

Tr(X′) = 1

M

M−1∑
i=0

Tr(S−iXSi) =
M−1∑
i=0

Tr(XSiS−i)

= 1

M

M−1∑
i=0

Tr(X) = Tr(X),

and the proof is complete. �
Therefore, the search of the unknown optimization operator

X can be restricted to the subclass of P composed by the PSD
operators that commute with the symmetry operator S.

The optimal �0 can be found by the relations (Xopt −
1
M

ρ0)�0 = �0(Xopt − 1
M

ρ0) = 0 subject to �0 ∈ P and∑M−1
i=0 Si�0S

−i = I .
In the next section, we develop a formulation, where the

commutation condition XS = SX is replaced by an alternative
constraint.

C. Alternative formulation of the dual problem

Since the symmetry operator S is known a priori, it is
possible to exploit its spectral characterization to rewrite the
dual problem DP2 as follows.
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Other form for the dual problem for symmetric quantum
states (DP3). Let λ0, λ1, . . . , λN̄−1 be the N̄ � N distinct
eigenvalues of S, and Ni be the multiplicity of λi . Let U

be a basis of eigenvectors of S, with the first N0 eigenvectors
corresponding to λ0, the next N1 eigenvectors corresponding
to λ1, and so on. Then, minimize the trace of the optimization
operator X̃ over the subclass ofP consisting of block-diagonal
operators with blocks of dimension Ni , under the constraint
X̃ � 1

M
U †ρ0U . Once found a minimum trace operator X̃opt,

its trace gives the maximum probability of correct detection,
Pc = Tr(X̃opt).

Proof: By DP2 the optimization operator X can be chosen
to commute with S. Therefore, given an eigenbasis U for
S, we can write X = UX̃U † where, by well-known results
on simultaneous diagonalization of commuting self-adjoint
operators [10], X̃ turns out to be block diagonal with the size
of the blocks given by the multiplicity of the eigenvalues of S.
Moreover, we find that Tr(X) = Tr(UX̃U †) = Tr(X̃) and the
constraint X � 1

M
ρ0 becomes X̃ � 1

M
U †ρ0U . �

The commutative requirement XS = SX is then replaced
by fixing the block-diagonal structure on X̃. Given an
optimal X̃opt, the reference optimal operator �0 is solution
of (UX̃optU

† − 1
M

ρ0)�0 = �0(UX̃optU
† − 1

M
ρ0) = 0, sub-

ject to �0 ∈ P and
∑M−1

i=0 Si�0S
−i = I .

The new formulation of the dual problem is given in a form
that is particularly suitable for SDP computational tools [11]
and, moreover, it is analytically more tractable that the previous
version. We now quantify the complexity of the different
approaches.

D. Problem dimension and number of constraints

The complexity of a linear program, to get the solution of
a convex optimization problem, is hard to evaluate in terms of
arithmetic operations (see Ref. [8] for details). Nevertheless,
since we are seeking a global optimum, the dimension of the
feasible region for the objective function gives an order of the
complexity of the problem [8].

The set of self-adjoint operators on H forms an N2 dimen-
sional real vector space. Therefore, for a given optimization
problem we can find the dimension d of the correspondent real
space on which the considered objective function is defined. In
other terms, we find the number of real variables d in a given
objective function. The results are summarized in Table I where
Ce and Ci represent, respectively, the number of equality and
inequality constraints for a given problem. Note that the PSD
condition on self-adjoint operators is counted as an inequality,
e.g., the relation �0 ∈ P is counted as the inequality �0 � 0.

TABLE I. Number of real decision variables d , equality con-
straints Ce, and inequality constraints Ci for the optimization
problems.

d Ce Ci

PP1 MN 2 1 M

PP2 N 2 1 1
DP1 N 2 0 M

DP2 N 2 0 2

DP3
∑N̄

i=0 N 2
i 0 1

The dual problem DP3 presents the smaller number of
variables and constraints among the considered optimization
problems and, in particular, d = ∑N̄−1

i=0 N2
i is smaller than N2,

depending on the spectrum of the symmetry operator S. If S

has all distinct eigenvalues, then N̄ = N , Ni = 1 for each i,
and the optimization operator X̃ in DP3 becomes diagonal,
giving d = N < N2.

IV. EXAMPLE OF APPLICATION

In this section, the previous results are applied to the
discrimination of an ensemble of M symmetric mixed quantum
states on a two-dimensional (N = 2) complex Hilbert space.
The symmetry operator is

S =
[

cos
(

π
M

) − sin
(

π
M

)
sin

(
π
M

)
cos

(
π
M

)
]

, (3)

and it represents a linear transformation given by a counter-
clockwise rotation through angle π/M . We assume that the
reference density operator has the general form

ρ0 =
[

α β

β 1 − α

]
, (4)

where α and β are real numbers. Since ρ0 is PSD, the feasible
values of α and β are constrained as 0 � α � 1 and |β| �√

α(1 − α), respectively. Without loss of generality we assume
α � 1/2.

The operator S has two nondegenerate eigenvalues equal
to λ1(S) = eiπ/M and λ2(S) = e−iπ/M . Therefore, the corre-
sponding eigenvectors define the basis

U = 1√
2

[
1 1
−i i

]
. (5)

Consequently, for the dual problem DP3 the optimization
operator X̃ has to be diagonal

X̃ =
[

x̃1 0
0 x̃2

]
, (6)

where both x̃1 and x̃2 are real and non-negative, being X̃ PSD.
The constraint X̃ � 1

M
U †ρ0U reads

X̃ � 1

2M

[
1 (2α − 1) + i2β

(2α − 1) − i2β 1

]
, (7)

and after some simple algebra,1 we find that it can be rewritten
as

(2Mx̃1 − 1)(2Mx̃2 − 1) − [(2α − 1)2 + (2β)2] � 0, (8)

with x̃1 � (1/2M) and x̃2 � (1/2M). Hence, the minimum
of Tr(X̃) = x̃1 + x̃2 is obtained for x̃1 = x̃2 = (1/2M)(1 +√

(2α − 1)2 + (2β)2. In conclusion, the minimum error prob-
ability Pe = 1 − Pc = 1 − Tr(X̃) is

Pe = M − 1

M
− 1

M

√
(2α − 1)2 + (2β)2. (9)

We note that the first term on the right-hand side of (9)
corresponds to a blind guessing on the equiprobable elements

1It is recalled that a Hermitian matrix is PSD if and only if its
principal minors are all non-negative.
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belonging to the quantum state ensemble, while the second
term represents the gain due to the optimal quantum discrim-
ination. It is interesting to observe that the minimum error
probability is obtained for β = √

α(1 − α) and it results

Pe = 1 − 2

M
. (10)

For instance, (10) holds for α = 1 and β = 0 which is the case
of study considered by Helstrom [1] and Ban et al. [5], which
models linearly dependent spin-1/2 quantum states, where the
generating density operator has rank-one ρ0 = |ψ0〉〈ψ0| with
pure state |ψ0〉 = [ 1

0

]
. When ρ0 is diagonal, i.e., β = 0, (9)

simplifies as

Pe = 1 − α
2

M
. (11)

The optimal reference measure operator �0 can be
found from the conditions given in Sec. III C, (UX̃optU

† −
1
M

ρ0)�0 = �0(UX̃optU
† − 1

M
ρ0) = 0, that in this example

simplify as (x̃1I − 1
M

ρ0)�0 = �0(x̃1I − 1
M

ρ0) = 0, being
X̃opt = x̃1I . Note that these conditions also imply that ρ0�0 =
�0ρ0. The optimal �0 can then be numerically found by
solving a linear system of equations including the additional
requirements �0 ∈ P and

∑M−1
i=0 Si�0S

−i = I .
It is useful to observe that the condition∑M−1
i=0 Si�0S

−i = I implicitly fixes the value of the trace
of �0. In fact, Tr(

∑M−1
i=0 Si�0S

−i) = ∑M−1
i=0 Tr(Si�0S

−i) =∑M−1
i=0 Tr(�0S

−iSi) = MTr(�0) and being Tr(I ) = N it
follows that Tr(�0) = N/M . By simple algebra it can be found
a closed-form expression for �0 in the following two cases.

(a.) β = 0. The optimal �0 is given by

�0 = 2

M

[
1 0

0 0

]
. (12)

In particular, setting α = 1/3 the same numerical
results obtained in Ref. [12] are found.

(b.) β = √
α(1 − α). The measure operator results

�0 = 2

M
ρ0. (13)

The constraint
∑M−1

i=0 Si�0S
−i = I becomes

2
M

∑M−1
i=0 ρi = I showing that the quantum state

ensemble has a particular structure. Indeed, such a
specific geometry has been considered by Yuen et al.
in Ref. [3], (IV.4)] and the results therein reported are
in agreement with (10) and (13).

The proposed formulation of the dual problem has also
proved useful to numerically solve systems of large dimen-
sions, where the computational complexity sets a severe limit
to the possibility of finding an optimal solution. This is the
case of pulse position modulation (PPM), a modulation format
candidate for deep space communications [13]. In quantum
PPM the states are defined in a Hilbert space given by the
tensorial product of M subspaces, each of dimension n, and,
therefore, the overall space dimension N grows exponentially
with the PPM order M , being N = nM [14]. In Ref. [15], DP3
is applied to quantum PPM using the software CVX for SDP
[11]. The solution of DP3 results considerably faster than DP1.

V. CONCLUSIONS

We have studied the dual problem for minimum error
probability discrimination of symmetric quantum states. It has
been shown that the optimization operator, in the objective
function, can be assumed to commute with the symmetry
operator. This result leads to an alternative formulation of
the dual problem that presents a reduced number of variables
and constraints. The obtained dual statement is convenient
to find analytical solutions to the discrimination problem,
as we showed with an illustrative example. On the other
hand, the new formulation also permits a computationally
efficient numerical solution by means of SDP methods. This
property is particularly useful to study the performance limits
of quantum mechanical systems described by geometrically
uniform quantum states on Hilbert spaces of large dimensions,
such as modulated coherent states in optical communications.
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