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Multifrequency control pulses for multilevel superconducting quantum circuits
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Superconducting quantum circuits, such as the superconducting phase qubit, have multiple quantum states
that can interfere with ideal qubit operation. The use of multiple frequency control pulses, resonant with the
energy differences of the multistate system, is theoretically explored. An analytical method to design such control
pulses is developed, using a generalization of the Floquet method to multiple frequency controls. This method
is applicable to optimizing the control of both superconducting qubits and qudits and is found to be in excellent
agreement with time-dependent numerical simulations.
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I. INTRODUCTION

Superconducting circuits are a promising approach to build-
ing a large-scale quantum information processor. Over the past
ten years quantum coherence times have improved by 2 orders
of magnitude, from nanosecond to microsecond time scales
[1–6]. With this improvement has come increased attention
to the fundamental quantum processes that arise when these
circuits are controlled by microwave fields. A recurring theme
in recent experiments was to characterize the multiple quantum
levels that can be excited in either the frequency or time
domain. On the one hand, these extra levels can interfere with
ideal qubit operation. There have been many theoretical studies
of the imperfections that arise due to higher energy levels, a
phenomenon called “leakage” [7]. On the other hand, these
higher levels can also be used advantageously, either to mediate
quantum interactions between qubits [8] or to process quantum
information with higher dimensional quantum systems called
qudits [9]. Recently, multiple levels of a superconducting
phase qubit were addressed by multifrequency control fields
to emulate a quantum spin (with spin > 1/2) [10]. From either
perspective, it is an important task to develop theoretical tools
to model these quantum processes simply and accurately.

Most theoretical work focused on the deviations from ideal
qubit behavior during Rabi oscillations and how these can
be mitigated by pulse shaping techniques [11,12]. Optimal
control theory was also applied to this problem [13–15] and
recent work has indicated that arbitrarily fast control is possible
using certain choices of pulses [16]. The presence of higher
levels is also problematic for coupled-qubit operation. These
arose in the study of coupled phase qubits: The spectroscopic
signatures were analyzed in Ref. [17] while a nonadiabatic
controlled-phase gate using the higher levels was first proposed
in Ref. [8].

Experimentally, the effect of the higher levels in a super-
conducting circuit was demonstrated in transmon circuits [18]
both in single-qubit operations [19] and recently in a two-
qubit controlled-phase gate [20], similar to the phase-qubit
gate described previously. For phase qubits, multilevel Rabi
oscillations [21,22] and multiphoton Rabi oscillations [23]
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were analyzed in some detail while a sensitive characterization
of leakage was demonstrated by a Ramsey filter method
[24]. Recently, interference effects due to multiple frequency
controls were demonstrated [25], thus realizing effects re-
lated analogous to electromagnetically induced transparency
[26,27].

In this article we develop a simple theoretical framework to
describe the control of multiple levels in a superconducting
phase qubit using multifrequency control fields. We start
from an early proposal to reduce leakage during qubit
manipulation by resonantly canceling off-resonant transitions
to the higher energy levels [28]. Numerical simulations are
used to demonstrate that this approach can optimize a quantum
transition on the multilevel qubit. These results are explained
using the many-mode generalization [29] of the Floquet
formalism [30] for a Hamiltonian that is periodic in time.
We show that multifrequency control fields can produce a
unique quantum interference to optimize the desired transition,
without complex pulse shaping. We further show how the
Floquet formalism can describe other interference effects when
driving multiple transitions.

This article is organized as follows. In Sec. II we describe
the basic model of a phase qubit. In Sec. III we introduce the
Floquet formalism for a single frequency control pulse, repro-
ducing the effects that occur in three-level Rabi oscillations.
This formalism generalizes the rotating-wave approximation,
taking a time-dependent problem to a time-independent prob-
lem (with a much larger state space). In Sec. IV we extend
the Floquet formalism to include control fields with multiple
frequencies. This analytical approach is used to optimize a
transition between the first two levels of the phase qubit. These
ideas are confirmed in Sec. V through numerical optimizations
of square and Gaussian control pulses. We return to the Floquet
formalism in Sec. VI to predict beating effects relevant to the
recent spin-emulation experiment [10]. Finally, we conclude
our study in Sec. VII, while certain theoretical results are
detailed in the Appendix.

II. PHASE-QUBIT HAMILTONIAN

The phase qubit is generally based on a variation of the
current-biased Josephson junction [1]. This is described by
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the following Hamiltonian

H = 4Ech̄
−2p2

γ − EJ [cos γ + (I/Ic)γ ] . (1)

The dynamical variables are γ , the gauge-invariant phase
difference, and pγ its conjugate momentum subject to the
commutation relation [γ, pγ ] = ih̄. The other parameters
are the junction’s bias and critical currents I = Idc and Ic,
the capacitance C, and the energy scales EJ = h̄Ic/2e and
Ec = e2/2C.

To describe Rabi oscillations, we will let the bias current
be time dependent, of the form I = Idc − Iac(t), and restrict
the Hamiltonian to the lowest four energy levels to find

H = H0 + f (t)X, (2)

where we divide the Hamiltonian into its unperturbed, time-
independent form

H0 =

⎛
⎜⎝

E0 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E3

⎞
⎟⎠ , (3)

and a set of dimensionless matrix elements

X =

⎛
⎜⎝

x00 x01 x02 x03

x01 x11 x12 x13

x02 x12 x22 x23

x03 x13 x23 x33

⎞
⎟⎠ . (4)

The energy levels En and the matrix elements xnm can be
calculated by either diagonalizing the washboard potential
directly or by some approximation scheme. The latter can
be efficiently performed by first approximating the washboard
potential as a cubic oscillator of the form

H = h̄ω0
(

1
2p2 + 1

2x2 − λx3
)
, (5)

where h̄ω0 = √
8EcEJ [1 − (Idc/Ic)2]1/4 and λ = 1/

√
54Ns

with Ns given by

Ns = �U

h̄ω0
≈ 23/4

3

(
EJ

Ec

)1/2 (
1 − Idc

Ic

)5/4

. (6)

The resulting energies and matrix elements, calculated using
perturbation theory, are found in the Appendix. Finally, the
driving field has the explicit form

f (t) = Iac(t)

Ic

EJ

(
8Ec

h̄ω0

)1/2

≈ −h̄
dω0

dI

Iac(t)

3λ
. (7)

III. SINGLE-MODE FLOQUET THEORY: THREE-LEVEL
RABI OSCILLATIONS

For Rabi oscillations in the presence of strong driving there
are deviations from two-level behavior that can be analyzed
using a three-level model. Previous studies [11,12,31,32]
using the rotating-wave approximation identified three main
features. First, the coherent oscillations between the ground
and first excited state are accompanied by oscillations to
the second excited state. Second, there is a reduction in a
Rabi frequency. Finally, there is a Stark shift of the optimal
resonance condition. All of these effects have been seen
experimentally [23,24,32]. In this section we theoretically
derive these effects by introducting the Floquet formalism [30].

First, we let the driving field be given by f (t) = A cos ωt .
Then, we expand the wave function as a Fourier series

|�(t)〉 =
∞∑

n=−∞
|ψn(t)〉einωt . (8)

Finally, substituting this series into the Schrödinger equation
ih̄d|�〉/dt = H |�〉, with H = H0 + AX cos ωt , we match
terms proportional to einωt on each side. The resulting
equations to be solved are

ih̄
d|ψn〉

dt
= (H0 + nh̄ω)|ψn〉 + 1

2
AX(|ψn−1〉 + |ψn+1〉). (9)

Letting |ψn(t)〉 = e−iĒt/h̄|ψn(0)〉, we find that these coupled
equations are equivalent to a time-independent Schrödinger
equation HF |�〉 = Ē|�〉 for the infinite state |�〉 =∑∞

n=−∞ |ψn〉 ⊗ |n〉 with the Floquet-Hamiltonian matrix

(HF )n,m = (H0 + nh̄ω)δn,m + 1
2AX(δn,m−1 + δn,m+1). (10)

The labels n and m can be interpreted as photon numbers for
the driving field and the overall state as that of the combined
system and field.

In general, this approach has replaced a finite-dimensional
time-dependent problem with an infinite-dimensional time-
independent problem. To solve the latter we can approximate
the infinite matrix by one of its sub-blocks. For the problem
at hand, the lowest-order approximation is to include only
three states: |0, 0〉, |1,−1〉, and |2,−2〉, where we are using
the notation of the form |s, n〉 to indicate the system in
state s = 0, 1, and 2 with n = 0, −1, and −2 photons,
respectively. Negative photon numbers are allowed here as
these are differences from the average photon number in a
semiclassical state [30]. After removing an overall constant
energy E0, the resulting Floquet matrix takes the form

HF = h̄

⎛
⎝ 0 �01/2 0

�01/2 ω01 − ω �12/2
0 �12/2 ω02 − 2ω

⎞
⎠ , (11)

where h̄�01 = Ax01, h̄ω01 = E1 − E0, and h̄ω02 = E2 − E0.
For convenience we also define h̄ω12 = E2 − E1; note that
ω02 = ω12 + ω01. Note also that this approach reproduces
the rotating-wave approximation exactly, while including
more states allows for systematic corrections due to strong
multiphoton processes such as the Bloch-Siegert shift [30]. The
resulting dynamics can be found by diagonalizing the Floquet
matrix. For this Hamiltonian exact results are available [12,32];
here we will adopt a perturbative approach.

To simplify the following, we consider the case of
near resonance with δ = ω − ω01 � �01 and approximate
�12 ≈ √

2�01. For weak driving, the largest scale in the
problem is � = 2ω − ω02 ≈ ω01 − ω12 ≈ 5ω0/(36Ns). This
corresponds to the anharmonicity of the system being inversely
proportional to Ns . For Rabi frequencies near this value
three-level effects become important [12,32]. Therefore, to
see deviations from two-level behavior we use perturbation
theory in the small parameters δ/�01 and �01/�, starting
from the zeroth-order eigenstates (|0, 0〉 ± |1,−1〉)/√2 and
|2,−2〉. Using standard methods of perturbation theory, we
compute the (normalized) eigenstates |v	〉 and eigenvalues Ē	,
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from which we calculate the time-dependent amplitudes

as(t) =
2∑

	=0

e−iĒ	t/h̄〈s,−s|v	〉〈v	|ψ(0)〉, (12)

where we assume that ψ(0)〉 = |0, 0〉. This calculation is best
done using a computer, as the required order of perturbation
theory is second order for the wave function and fourth
order for the energy. Alternatively, one can expand the exact
eigenvalues using the roots of a cubic polynomial. In either
case we find that the amplitudes satisfy

a0(t) ≈ cos(�t/2) − i sin(�t/2)

(
δ

�01
− �01

2�

)
, (13)

a1(t) ≈ − i sin(�t/2)

[
1 − �2

01

4�2
− 1

2

(
δ

�01
− �01

2�

)2
]

,

(14)

and

a2(t) ≈ −i

√
2�01

2�
sin(�t/2), (15)

where the Rabi frequency � is given by

� = �01

(
1 − �2

01

4�2

)
+ �01

2

(
δ

�01
− �01

2�

)2

. (16)

There are many things to note about this solution. First, we
observe that both a1(t) and a2(t) are proportional to sin(�t/2).
Thus, transitions from the ground to the first excited state leak
out to the second excited state, with probability

p2(t) = |a2(t)|2 ≈ �2
01

2�2
sin2(�t/2). (17)

Avoiding this leakage through pulse shapes was the subject
of much investigation [11–13,16]. In addition to this error,
however, is the reduction of p1(t) = |a1(t)|2 by the factor
depending on δ/�01. This is due to the fact that, when coupled
to the second excited state, the 0 → 1 transition is no longer
located at δ = ω − ω01 = 0, but rather at δ = �2

01/(2�), that
is,

ω ≈ ω01 + �2
01

2(ω01 − ω12)
. (18)

This is the effective ac Stark shift measured in experiments
[23,32]. As shown in the following, it must be compensated
for high-fidelity qubit rotations. Finally, the on-resonance Rabi
frequency is given by

�R ≈ �01

(
1 − �2

01

4(ω01 − ω12)2

)
. (19)

Its reduction is due to the dressed eigenstates of the system
and was also measured experimentally [21–23,32].

IV. TWO-MODE FLOQUET THEORY: OPTIMIZED RABI
OSCILLATION

In the presence of a control field of the form

f (t) = A1 cos ω1t + A2 cos(ω2t + φ), (20)

the Floquet method can be generalized [29] to include two
sets of photon states for the two oscillatory components of the

field. That is, by performing the double Fourier expansion

|�(t)〉 =
∞∑

{n1,n2}=−∞
|ψn1,n2 (t)〉ein1ω1t ein2ω2t , (21)

the Schrödinger equation leads to the set of coupled equations

ih̄
d|ψn1,n2〉

dt
= (H0 + n1h̄ω1 + n2h̄ω2)|ψn1,n2〉

+ 1

2
A1X(|ψn1−1,n2〉 + |ψn1+1,n2〉) + 1

2
A2X

× (eiφ|ψn1,n2−1〉 + e−iφ |ψn1,n2+1〉). (22)

This is equivalent to a time-independent Schrödinger equa-
tion for the infinite state |�〉 = ∑

n1,n2
|ψn1,n2〉 ⊗ |n1〉 ⊗ |n2〉

with the Floquet-Hamiltonian matrix

(HF )n,m = (H0 + n1h̄ω1 + n2h̄ω2)δn,m

+ 1
2A1X(δn,m−e1 + δn,m+e1 )

+ 1
2A2X(eiφδn,m−e2 + e−iφδn,m+e2 ), (23)

where n = {n1, n2}, m = {m1,m2}, e1 = {1, 0}, and e2 =
{0, 1}. To obtain the state amplitudes, one sums over the
intermediate photon states

as(t) =
∑
n1,n2

ei(n1ω1+n2ω2)t 〈s, n1, n2| exp

(
−i

HF t

h̄

)
|ψ(0)〉,

(24)

where, in the following, we will assume that |ψ(0)〉 = |0, 0, 0〉.
The structure of these equations is well described elsewhere
[29]. Here we make the following observations. First, to
obtain accurate numerical results, one must include several
photon states in the sum—including too few results in a
loss of both accuracy and unitarity. Second, one can still use
perturbation theory to obtain useful analytical results, provided
one identifies the appropriate states of the combined system.

To illustrate this method we consider a particular example.
Figure 1 shows the probability p1(t) = |a1(t)|2 of the first
excited state as a function of time for the system controlled
by different control fields. The dashed curve is the result of
a numerical simulation of the time-dependent Schrödinger
equation for a phase qubit with ω0/(2π ) = 6 GHz and Ns = 4
subject to a control field with A1 = 0.02h̄ω0 and ω1 = ω01. For
this single-frequency pulse the maximum transition probabil-
ity is approximately 90%. The solid curve is the result of a two-
frequency control pulse with A2 = 0.0035h̄ω0, φ = 11.44,
ω1 = ω01 + �2

01/[2(ω01 − ω12)], and ω2 = ω12. The values
of A2 and φ were found by a numerical search to optimize
the 0 → 1 transition. This pulse yields a maximum transition
probability of nearly 99.9%, a significant improvement over
the A2 = 0 dynamics. This search was inspired by the general
arguments given in Ref. [28] and demonstrates that the use
of two frequencies can improve the control of this quantum
system.

In addition to these time-dependent simulations, Fig. 1
also includes the result of a time-independent Floquet cal-
culation performed by numerically diagonalizing HF in a
basis of 22 states, including up to three photons for each
frequency. Here we provide an analytical approximation to
explain this improved transition. Simulations suggest that a
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FIG. 1. Three-level Rabi oscillation. The probability p1(t) =
|a1(t)|2 to be in state 1 is shown as a function of time. The solid
curve is a numerical simulation using an optimized control field
with A1 = 0.02h̄ω0, A2 = 0.0035h̄ω0, and φ = 11.44 rad, while
the dots are calculations using the two-mode Floquet formalism.
The dashed curve is a numerical simulation with A2 = 0. Here, the
system parameters were chosen to be ω0/(2π ) = 6 GHz and Ns = 4.
Other relevant parameters are �1/(2π ) = 86 MHz, �2/(2π ) =
15 MHz, ω1/(2π ) = 5.785 GHz, ω01/(2π ) = 5.77 GHz, and
ω2/(2π ) = ω12/(2π ) = 5.5 GHz.

minimal model for this transition involves the states |0, 0, 0〉,
|1,−1, 0〉, |1, 0,−1〉, |2,−2, 0〉, and |2,−1,−1〉. The Floquet
Hamiltonian, in this basis, reads

HF

= h̄

⎛
⎜⎜⎜⎜⎝

0 �1/2 �2e
iφ/2 0 0

�1/2 −δ 0 �1/
√

2 �2e
iφ/

√
2

�2e
−iφ/2 0 � 0 �1/

√
2

0 �1/
√

2 0 −�2 0
0 �2e

−iφ/
√

2 �1/
√

2 0 −δ

⎞
⎟⎟⎟⎟⎠,

(25)

where h̄�1 = A1x01, h̄�2 = A2x01, δ = ω1 − ω01, � =
ω01 − ω2, �2 = 2ω1 − ω02, and we let x12 = √

2x01. By
carefully normalizing and expanding out the terms found
through perturbation theory we find

a0(t) ≈ cos(�1t/2)

(
1 − �2

2

�2
1

[1 + cos(2φ)]

)
+ 2

�2
2

�2
1

ei2δt ,

(26)

a1(t) ≈ −i sin(�1t/2)

(
1 − �2

1

4�2
− �2

2

�2
1

cos(2φ)

)

+ �2

2�
e−iφ(1 + 2ei(�+3δ)t − 3ei(�+δ)t ), (27)

and

a2(t) ≈ −i sin(�1t/2)

√
2�1

2�

(
1 − 5�2

2�1
e−iφei(�+δ)t

)

− cos(�1t/2)

(
3�2

1

4
√

2�2
−

√
2�2

�1
e−iφei(�+δ)t

)

−
√

2�2

�1
e−iφei(�+3δ)t + �2

1

2
√

2�
ei(�+3δ)t . (28)

We see that, in addition to the Rabi oscillation terms seen
previously, there are terms that oscillate at the frequencies
δ = ω1 − ω01 = �2

1/(2�) and � = ω01 − ω12. The former
oscillations are slow and can typically be ignored, but the
latter oscillations become important near the peaks of the Rabi
oscillations. One can, in fact, use this to optimize the transition.

At time T = π/�1, many terms drop out of these ampli-
tudes and by looking at the leading order terms of a2, one finds
that it will vanish provided

�2e
−iφ = �2

1

2�
e−iπ/2e−i(�+3δ)T . (29)

This condition, in turn, specifies the optimal amplitude and
the phase of the second microwave drive. Thus, we identified
a procedure to optimize the 0 → 1 transition by a controlled
interference through the Floquet state dynamics. Using this
value for φ and �2, we find that the residual error scales
as �4

1/�
4, much better than the �2

1/�
2 scaling found for a

single-frequency transition.

V. NUMERICAL OPTIMIZATION

The analysis of the preceding section was motivated by
optimizing numerically the amplitude and phase of the second
frequency for the 0 → 1 transition. As shown, it was found
that, by choosing the amplitude and phase appropriately, one
can obtain significant improvement in the transition probability
using control fields with constant amplitude, called square
pulses. Here we compare the analytical results with the
numerically optimized parameters and show how this approach
can be used to generate optimized Gaussian pulses [11].

First, in Fig. 2, we show the numerically optimized �2 =
A2x01/h̄ as a function of the bare Rabi frequency �1 =
A1x01/h̄ for a phase qubit with ω0/(2π ) = 6 GHz and Ns = 4,
comparable to recent experiments [10]; other parameters can
be found in Fig. 1. For this system, the anharmonicity is
�/2π ≈ 260 MHz. We see that the analytical result

�2,opt ≈ �2
1

2�
, (30)

FIG. 2. Numerically optimized �2 as a function of the primary
Rabi frequency �1. The dashed curve is the approximation �2 ≈
�2

1/(2�) (see text).
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FIG. 3. Numerically optimized phase as a function of overall
pulse time T . The dashed curve is the approximation φ ≈ π/2 + �T

(see text).

provides an excellent approximation for the optimized ampli-
tude. Similarly, the optimized phase φ is plotted as a function
of the pulse time T in Fig. 3. As with the amplitude, the
analytical result

φopt ≈ π

2
+ �T, (31)

provides an excellent approximation. As � = ω01 − ω12 is
the difference in frequencies between the two transitions, we
see that this value of φ ensures that the two transitions are
combined with the appropriate phase at the final time.

As a further test of this method, we compare the error
pE = 1 − p1(T ) for this two-frequency pulse with that of
a single-frequency pulse. This is displayed in Fig. 4. The
single-frequency pulse is seen to have an error that scales as
�2

1/�
2. The corresponding transition probability is between

90%–99%, improving only slowly for longer pulse times. The
two-frequency pulse achieves a transition probability greater

FIG. 4. Error of 0 → 1 transition using square pulses. The upper
points (squares) are the error of a pulse using a single frequency
with ω1 = ω01. The lower points (dots) are the error of an optimized
two-frequency pulse with ω1 = ω01 + �2

1/(2�) and ω2 = ω12. The
upper dashed curve is 3�2/(4�2), while the lower dashed curve is
�4/(16�4) (see text).

than 99.99% for pulses greater than 10 ns, a reduction of error
by several orders of magnitude over the single-frequency pulse.
The remaining error scales as �4

1/16�4, with oscillations of
frequency �.

Finally, using this approach, one can design pulse shapes to
further optimize the transition. We consider a Gaussian pulse
shape

f (t) = s(t) [A1 cos(ω1t) + A2 cos(ω2t + φ)], (32)

with

s(t) = Nα(e−α(1−2t/T )2 − e−α), (33)

where α specifies the shape of the pulse and Nα is chosen such
that

∫
s(t)dt = T [11,16]. These pulses are optimized using

the bare Rabi frequency

�1 = π

T

(
1 + cα

π2

(�T )2

)
, (34)

and drive frequency

ω1 = ω01 + dα

π2

�T 2
, (35)

where the dimensionless coefficients cα and dα are varied to
obtain the best transition. These coefficients correct for the
reduction in Rabi frequency and the ac Stark shift discussed
previously and depend on the pulse shape parameter α. For
Ns = 4 and α = 2, we find that cα=2 = 0.58 and dα=2 = 1.245
are required. The error using Gaussian pulses with and
without the Stark-shift correction is displayed in Fig. 5. We
see that the single-frequency pulse is not effective without
these corrections. To incorporate the two-frequency pulse, we
numerically optimize for A2 and φ and find that it provides a
significant advantage. Note, however, that the two-frequency
square pulse outperforms all of the Gaussian pulses for small
pulse times.

FIG. 5. Error of 0 → 1 transition using Gaussian pulses. The
upper dotted curve is the error of a pulse using a single frequency
with ω1 = ω01. The dashed curve is the error of a single-frequency
pulse with ω1 = ω01 + d2�

2
1/(2�). The lower solid curve is the error

of an optimized two-frequency pulse with ω2 = ω12 (see text).
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VI. THREE-STATE OSCILLATIONS

Recently, multifrequency control of multiple levels of
a superconducting circuit was experimentally demonstrated
[10]. This phase qudit was used to emulate spin-1 and
spin-3/2 quantum systems. Here we look at the spin-1
case and show how the two-mode Floquet theory explains
the nature of the three-state oscillations at high microwave
power.

Figure 6 shows the state-2 probability p2(t), when the
control field is chosen with A1 = 0.01h̄ω0, ω1 = ω01, ω2 =
ω12 and h̄� = A1x01 = A2x12. Using the rotating-wave ap-
proximation, one expects the dynamics to emulate the ro-
tation of a spin-1 system, yielding a probability to be in

state 2 of

p2(t) = sin4

(
�t

2
√

2

)
. (36)

While it is expected that there may be Stark shifts, corrections
to the Rabi frequencies, and off-resonant transitions for this
square pulse a qualitatively new effect is seen in the numerical
simulation. This is a beating at the frequency � = ω1 − ω2.

Using the Floquet formalism, one finds that the domi-
nant effect is a coupling between three photon blocks of
the three-level system or a total of nine states: |0,−1, 1〉,
|1,−2, 1〉, |2,−2, 0〉, |0, 0, 0〉, |1,−1, 0〉, |2,−1,−1〉,
|0, 1,−1〉, |1, 0,−1〉, and |2, 0,−2〉. In this basis the effective
Hamiltonian is

HF = h̄

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−� �/2 0 0 1
2�/

√
2 0 0 0 0

�/2 −� �/2 0 0 0 0 0 0
0 �/2 −� 0 �/

√
2 0 0 0 0

0 0 0 0 �/2 0 0 1
2�/

√
2 0

1
2�/

√
2 0 �/

√
2 �/2 0 �/2 0 0 0

0 0 0 0 �/2 0 0 �/
√

2 0
0 0 0 0 0 0 � �/2 0
0 0 0 1

2�/
√

2 0 �/
√

2 �/2 � �/2
0 0 0 0 0 0 0 �/2 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (37)

Note that one three-level block is isomorphic to a spin operator
for a spin-1 system.

By performing the lowest order of perturbation theory for
the coupling between blocks of HF , one finds that the relevant

FIG. 6. Effective spin rotation from 0 → 2. The probability
p2(t) to be in state 2 is shown as a function of time. The
solid curve is a numerical simulation using A1 = 0.01h̄ω0 and
A2 = A1x01/x12 with parameters of Fig. 1. The dashed curve
is the expected rotation obtained by using the rotating-wave
approximation.

transition amplitude is

a2(t) ≈− sin2

(
�t

2
√

2

)
− i

�

4�
sin

(
�t√

2

)
(1 + 2e−i�t ). (38)

This provides an excellent approximation to the beating
observed in Fig. 6. Note that the perturbation, which is
proportional to �/�, happens to vanish precisely when the
unperturbed oscillation reaches its maximum (t = √

2π/�).
Thus, it is likely that additional effects limit this approach
to a 0 → 2 transition. By extending the matrix to 15 states
and higher orders in perturbation theory, one finds a state-3
population proportional to �2/�2.

VII. CONCLUSION

In this article we analyze a set of multilevel effects found in
superconducting circuits such as the phase or transmon qubit
when controlled by pulses with two microwave frequencies.
These involve a combination of resonant, off-resonant, and
interference effects that are of importance for future qubit
(or qudit) superconducting implementations of quantum in-
formation processors. Indeed, we demonstrate that the many-
mode Floquet formalism for multiple frequencies is a useful
generalization of the standard rotating-wave approximation.

First, we use the single-mode formalism to recover compact
analytical results for corrections to Rabi oscillations in a three-
level system, finding corrections to both the resonance condi-
tion and the oscillation frequency of relative order �2/�2.
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These are the ac Stark shift and reduction in Rabi frequency
seen in existing experiments and predicted previously.

Second, we show that simultaneously controlling the qubit
with two frequencies, one resonant with the 0 → 1 transition
(after compensating for the ac Stark shift) and the other reso-
nant with the 1 → 2 transition, leads to a useful interference
effect. This insight was inspired by numerical results on square
pulses and found to be in excellent agreement. This approach
was further extended numerically to show that two-frequency
Gaussian pulses can be developed for the 0 → 1 transition
with significant improvements over single-frequency pulses.

Finally, we use the Floquet method to explain off-resonant
couplings that emerge when using the phase qudit to emulate
a spin system. Here we find and explain a beating that is
proportional to �/� and should be observable in recent
experiments, provided it is not masked by the effects of
decoherence.

For these effects to be genuinely useful, one would like to
extend the optimization of a transition between two (or more)
states to the optimization of a unitary operation acting an a
superposition of these states. Here, however, an interesting
difficulty emerges. For the single-frequency pulse with square
or Gaussian shapes this is immediate: This control pulse is
symmetric under time reversal: f (−t) = f (t). Consequently,
the transition from 0 → 1 and its time reverse from 1 → 0
are both optimized for a single f (t). For the two-frequency
pulse, however, f (−t) 	= f (t), and in fact, the optimization
developed in Sec. III does not perform as well for the 1 → 0
transition. Note that this observation sheds some light on the
two-quadrature approach of Ref. [16]: The class of control
pulses advocated there is time-reversal symmetric. We expect
that combining multiple quadratures and multiple frequencies
will significantly expand the control techniques for future
experiments. Developing simple, accurate control pulses for
multilevel quantum systems remains a challenging problem
for theory and experiment.

APPENDIX

In this Appendix we summarize the perturbative results for
the cubic oscillator

H = h̄ω0
(

1
2p2 + 1

2x2 − λx3
)
. (A1)

We use Rayleigh-Schrödinger perturbation theory for the
Hamiltonian H = H0 + λV . First, one expresses the nth
energy eigenstate, |�n〉, in powers of λ

|�n〉 =
∞∑

k=0

λk|n, k〉. (A2)

In this expansion, |n, 0〉 = |n〉 is the nth energy eigenstate of
H0 and |n, k〉 are the kth order perturbative corrections. We
also expand the energy eigenvalue in powers of λ,

En =
∞∑

k=0

λkEn,k, (A3)

where H0|n, 0〉 = En,0|n, 0〉. Substituting (A2) and (A3) in the
eigenvalue equation

(H0 + λV )|�n〉 = En|�n〉, (A4)

equating like powers of λk and projecting onto 〈m, 0| allows
one to solve for the energies and eigenfunctions:

En,k = 〈n, 0|V |n, k − 1〉, (A5)

and

|n, k〉 =
∑
m	=n

〈m, 0|V |n, k − 1〉 − ∑k−1
j=1 En,j 〈m, 0|n, k − j 〉

En,0 − Em,0

× |m, 0〉. (A6)

These results for the eigenstates and eigenvalues can be
evaluated using the matrix elements of x3, where x = (a +
a†)/

√
2 is the dimensionless position operator in terms of

creation and annihilation operators. Extending this calculation
for the energy to λ8 one finds

En/h̄ω0 = (n + 1/2) − 1

8
λ2(30n2 + 30n + 11)

− 15

32
λ4(94n3 + 141n2 + 109n + 31)

− 1

128
λ6(115755n4 + 231510n3 + 278160n2

+ 162405n + 39709) − 21

2048
λ8(2282682n5

+ 5706706n4 + 9387690n3 + 8374830n2

+ 4244573n + 916705). (A7)

This procedure was implemented in MATHEMATICA to
calculate the eigenvalues up to λ6; the λ8 in expression (A7)
was found using a more efficient recursion-relation method
[33] and agrees with Ref. [34] (provided one lets 4N → 42N ).
These results, when compared with numerical results found
by complex scaling [35], are found to have an accuracy better
than 1% for states n = 0 → 2 when Ns > 3.

In addition to the energy levels, perturbation theory also
provides expressions for the wave functions. For reference,
we list the third-order expression

|�n〉 = |n〉 + λ

+3∑
k=−3

ak(n)|n + k〉 + λ2
+6∑

k=−6

bk(n)|n + k〉

+ λ3
+9∑

k=−9

ck(n)|n + k〉, (A8)

where |n〉 = |n, 0〉 are the eigenstates of the purely harmonic
oscillator Hamiltonian and the nonzero expansion coefficients
are

a−3(n) = − 1

6
√

2
[n(n − 1)(n − 2)]1/2 , (A9)

a−1(n) = − 3

2
√

2
n3/2, (A10)

a+1(n) = − 3

2
√

2
(n + 1)3/2, (A11)

a+3(n) = 1

6
√

2
[(n + 1)(n + 2)(n + 3)]1/2 , (A12)

b−6(n) = 1

144
[n(n − 1)(n − 2)(n − 3)(n − 4)(n − 5)]1/2 ,

(A13)
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b−4(n) = 1

32
[n(n − 1)(n − 2)(n − 3)]1/2 (4n − 3), (A14)

b−2(n) = 1

16
[n(n − 1)]1/2 (7n2 − 19n + 1), (A15)

b+2(n) = 1

16
[(n + 1)(n + 2)]1/2 (7n2 + 33n + 27), (A16)

b+4(n) = 1

32
[(n + 1)(n + 2)(n + 3)(n + 4)]1/2 (4n + 7),

(A17)

b+6(n) = 1

144
[(n + 1)(n + 2)(n + 3)

× (n + 4)(n + 5)(n + 6)]1/2, (A18)

and

c−9(n) = − 1

2592
√

2
[n(n − 1)(n − 2)(n − 3)(n − 4)

× (n − 5)(n − 6)(n − 7)(n − 8)],1/2 (A19)

c−7(n) = − 1

192
√

2
[n(n − 1)(n − 2)(n − 3)(n − 4)

× (n − 5)(n − 6)]1/2(2n − 3), (A20)

c−5(n) = − 1

960
√

2
[n(n − 1)(n − 2)(n − 3)

× (n − 4)]1/2(80n2 − 305n + 164), (A21)

c−3(n) = − 1

1728
√

2
[n(n − 1)(n − 2)]1/2(488n3

− 2175n2 + 4018n − 825), (A22)

c−1(n) = − 3

64
√

2
n1/2(20n4 + 81n3 + 326n2 + 81n + 44),

(A23)

c+1(n) = 3

64
√

2
(n + 1)1/2(20n4 − n3

+ 203n2 + 408n + 228), (A24)

c+3(n) = 1

1728
√

2
[(n + 1)(n + 2)(n + 3)]1/2(488n3

+ 3639n2 + 9832n + 7506), (A25)

c+5(n) = 1

960
√

2
[(n + 1)(n + 2)(n + 3)(n + 4)

× (n + 5)]1/2(80n2 + 465n + 549), (A26)

c+7(n) = 1

192
√

2
[(n + 1)(n + 2)(n + 3)(n + 4)

× (n + 5)(n + 6)(n + 7)]1/2(2n + 5), (A27)

c+9(n) = 1

2592
√

2
[(n + 1)(n + 2)(n + 3)(n + 4)(n + 5)

× (n + 6)(n + 7)(n + 8)(n + 9)]1/2. (A28)

One application of these expressions is to calculate
the (properly normalized) matrix elements of the position
operator

xn,m = 〈�n|x|�m〉
(〈�n|�n〉〈�m|�m〉)1/2

. (A29)

Using the wave functions (A8) and matrix elements of x, we
find

x0,0 = 3

2
λ + 33

2
λ3, (A30)

x0,1 =
√

2

2
+ 11

√
2

8
λ2, (A31)

x0,2 = −
√

2

2
λ − 243

√
2

16
λ3, (A32)

x0,3 = 3
√

3

8
λ2, (A33)

x1,1 = 9

2
λ + 213

2
λ3, (A34)

x1,2 = 1 + 11

2
λ2, (A35)

x1,3 = −
√

6

2
λ − 405

√
6

16
λ3, (A36)

x2,2 = 15

2
λ + 573

2
λ3, (A37)

x2,3 =
√

6

2
+ 33

√
6

8
λ2, (A38)

x3,3 = 21

2
λ + 1113

2
λ3, (A39)

with corrections of order λ4.
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