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Information-transferring ability of the different phases of a finite XXZ spin chain
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We study the transmission of both classical and quantum information through all the phases of a finite XXZ
spin chain. This characterizes the merit of the different phases in terms of their ability to act as a quantum wire.
As far as quantum information is concerned, we need only consider the transmission of entanglement as the
direct transmission of a quantum state is equivalent. The isotropic AFM spin chain is found to be the optimal
point of the phase diagram for the transmission of quantum entanglement when one considers both the amount of
transmitted entanglement and the velocity with which it is transmitted. However, this optimal point in the phase
diagram moves to the Néel phase when decoherence or thermal fluctuations are taken to account. This chain
may also be able to transfer classical information even when, due to a large magnitude of the noise, quantum
information is not transmitted at all. For a certain range of anisotropies of the model, a curious feature is found in
the flow of quantum information inside the chain, namely, a hopping mode of entanglement transfer which skips
the odd-numbered sites. Our predictions will potentially be testable in several physical systems.
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I. INTRODUCTION

Recently, condensed-matter many-body systems have been
viewed in the light of quantum information. For example, the
entanglement inherent in these systems has been investigated
[1]. One can, however, ask a different question: How does
information placed on one part of a many-body system pass
through such a system? Aside from its fundamental interest,
this question may lead to mechanisms for moving information
over small distances. The idea is to use a finite many-body
system such as a spin chain (a chain of perpetually interacting
stationary spins—a one-dimensional magnet) as a data bus
[2]. Many-body dynamics transports information placed on
a spin at one end of the chain to the spin at its other end
with a certain efficiency. This is an “all solid-state” bus
whose spins and interactions, except for those at its very
ends, are never controlled. Applications could be in moving
information between quantum registers or for moving classical
bits in nanoscale spintronics. This idea has several benefits
for practical applications: (i) since quantum registers are
expected to be solid-state systems, using a solid-state wire
for their communication avoids the complexity of converting
the information from one carrier to another; (ii) any external
control on a quantum system demands some macroscopic
devices which potentially destruct the fragile entanglement
coherence, so minimal control on just two ends of an spin chain
minimizes the decoherence. This area, reviewed in [3], has
mainly focused on perfecting the information transfer (infor-
mation transmission) by clever means: special couplings [4],
encoding [5], pulsing [6], etc. The inevitable destructive effects
of, for example, thermal fluctuations [7] and decoherence [8]
also have been taken to account. The memory effect in these
kinds of quantum channels has been studied to decrease the
hardware complexity and increase the rate [9]. However, most
of the former spin-chain quantum communication studies are
focused on ferromagnetic systems; the AFM systems have
been introduced as even better and faster alternatives [10].

An interesting question from a condensed-matter angle is
how the above process of information transmission varies with
the phase of the spin chain. By “phase” we mean both the

form of the spin-spin interactions and the relevant ground
state resulting from that interaction. In this context, only one
study has been performed, which involves spin-1 chains [11].
Additionally, gapless phases have been shown to be generically
bad for a “slow” information transmission process that can
take place between two spins coupled weakly to a many-body
system [12]. The same slow information transmission process
between spins coupled weakly to an anti-ferromagnetic (AFM)
chain has also been studied [13]. However, there has been no
investigation yet of information transmission as a function
of the phases of the simplest case, namely the spin-1/2
chain, when all spins are coupled with equal strength, so that
information transmission is fast. Instead, a majority of the
work has simply assumed a fully polarized (symmetry broken)
ferromagnetic (FM) initial state of the spin chain [3]. Here we
study the process of information transfer through all phases
of an S = 1/2 XXZ Heisenberg-Ising chain, which models
a range of realistic materials and, according to Ref. [14], is
the most important paradigm in low-dimensional quantum
magnetism. Using finite chains (the case relevant for infor-
mation transmission) and exact diagonalization, we identify
the point in the phase diagram which provides the optimal
data bus in absence of any encoding, engineering, control, etc.
Interestingly, this turns out to be the “isotropic” AFM phase,
which is the most interesting phase [14] of the XXZ model.
Here the ground state has complete SU(2) symmetry and
contains significant “quantum” correlations or entanglement.
This phase is, perhaps, also the most common, as it appears
in the ubiquitous Hubbard model at strong repulsion and half
filling. Additionally, most solid-state spin chains such as the
famous KCuF3 [14], engineered atomic-scale spin chains [15],
and doped fullerine Sc@C82 chains [16] are naturally AFM.

This study is an example of nonequilibrium dynamics in
many-body systems, currently a topic of intense activity [17].
Our dynamics is induced by suddenly coupling a single spin
(the one bearing the information) with one end of a finite spin
chain. For a range of phases, certain spin correlation functions
behave curiously in this dynamics so that the initial state of
the added spin hops through the chain skipping alternate sites.
Additionally, information transmission exhibits contrasting
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behavior in the FM and AFM parts of the so-called XY phase
and has a sharp jump at the boundary of the XY and FM phases.

The structure of this article is as follows: In Sec. II we show
that entanglement distribution through an arbitrary channel
is equivalent to the process of transferring a quantum state
through the channel. In Sec. III we introduce our model, that
is, an XXZ Hamiltonian, and in Sec. IV we consider the entan-
glement distribution via whole phase diagram of an XXZ chain.
This is followed by an explanation in Sec. V. In Sec. VI we
characterize the effect of the channel. In Secs. VII and VIII, the
thermal fluctuations and interactions with a bath, respectively,
are investigated. Classical communication through this system
is the subject of Sec. IX, which is followed by considering the
information flow “inside the chain” in Sec. X. In Sec. XI, we
give some potential physical realizations which might test our
results, while we summarize our results in Sec. XII.

II. EQUIVALENCE OF STATE TRANSFERRING AND
TELEPORTATION MODELS OF INFORMATION

TRANSMISSION

In order to transfer information from one place to another,
we have to transfer a state (say the state of a spin) which
encodes some information. In particular, when we are thinking
about quantum information transmission, to quantify the
quality of transmission, we compute the fidelity between the
sent and the received state. Since this fidelity is dependent on
the initial state, it is preferable to take the average value of the
fidelity over all possible equiprobable initial states. This aver-
age fidelity makes it possible to compare transmission quality
of different channels and different schemes of information
transmission. To send quantum information from sender to
receiver, one can think about two different strategies. In the
first strategy, which is called “quantum state transferring,” the
quantum state is sent through the channel directly. Because
of the interaction between the channel and the quantum state,
they become entangled and state transferring is imperfect in the
sense that the fidelity between the received state and the initial
state is less than one. On the other hand, instead of using state
transferring, one can use teleportation for sending quantum
information. Teleportation is based on a shared entangled
pair between sender and receiver which plays the role of
the resource [18]. In this second strategy of sending quantum
information, the sender generates a maximally entangled pair,
keeps one part, and sends the other one to the receiver through
the channel. This shares an entangled pair between both sides
of the channel and teleportation between sender and receiver
can be used for information transmission. However, this fact
that the entanglement of the shared pair is not maximal makes
the teleportation imperfect. The importance of the second
strategy is that we send just one part of the singlet state through
the channel and it is not necessary to study the effect of the
channel on an arbitrary state. What we show in this section
is that the average fidelity in both strategies are the same.
This was already shown in [19] using a different technique for
arbitrary dimensions of the Hilbert spaces and here we prove
it again, just for qubits, using a much simpler language.

Let’s start with the state transferring. In this case, quantum
state goes through the channel. An arbitrary quantum channel
ξ is completely determined by a set of Kraus operators {Km}

such that the output of the channel is

ρST
r = ξ (ρs) =

∑
m

KmρsK
†
m,

∑
m

K†
mKm = I, (1)

where ρs is the input state of the channel, ρr is the output
state received by the receiver, and ST stands for “state
transferring.” Here we start from the most general form of
a qubit state |ψs〉 = cos θ/2|0〉 + eiφ sin θ/2|1〉 as the input.
After interacting the pure input state ρs = |ψs〉〈ψs | with the
channel, the output state ρST

r [given by Eq. (1)] is generally
a mixed state. Fidelity between the received and the sent
states is easily computed as F ST(θ, φ) = 〈ψs |ρST

r |ψs〉, which
is dependent on input parameters θ and φ. To get an input
independent quantity, we average the fidelity over all possible
input states, that is, the surface of the Bloch sphere, with
uniform weight. With a straightforward computation we end
up with

F ST
av = 1

4π

∫
F ST(θ, φ) sin θdθdφ = 1

3
+ 1

6

∑
m

|Tr(Km)|2,
(2)

where Tr(·) = Trace(·).
Now, we try to use the teleportation strategy for sending

quantum information. To achieve this strategy we prepare a
pair of singlet state,

|ψ−〉 = |01〉 − |10〉√
2

. (3)

Then we keep one part of the pair in the sender and send the
other part through the channel ξ . Since the first part in the
sender does not interact with the channel, the whole effect of
the channel is explained by

ρout = I ⊗ ξ (|ψ−〉〈ψ−|) =
∑
m

I ⊗ Km|ψ−〉〈ψ−|I ⊗ K†
m.

(4)
Generally, the output state ρout is not a maximally entangled
state, so when it is used as the resource of the standard
teleportation scheme [18], it gives an imperfect teleportation
in the sense that the final achievable fidelity is less than one.
In [20] it has been shown that teleporting ρs using noisy
resource ρout generates the following state as the output of
the teleportation:

ρTP
r =

3∑
m=0

Tr(ρoutEm)σmρsσm, (5)

where TP stands for “teleportation,” Em = σm|ψ−〉〈ψ − |σm,
and σm are Pauli matrices (σ0 = I, σ1,2,3 = σx,y,z). Similar to
the first strategy, fidelity of the received and the sent states is
defined as F TP(θ, φ) = 〈ψs |ρTP

r |ψs〉 and average fidelity for
input states is easily computed over the surface of the Bloch
sphere. The average fidelity of the teleportation scheme is

F TP
av = 1

4π

∫
F TP(θ, φ) sin (θ )dθdφ

= Tr(E0ρout) + 1

3

3∑
m=1

Tr(Emρout)

= 1 + 2Tr(E0ρout)

3
. (6)
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The parameter Tr(E0ρout) = 〈ψ−|ρout|ψ−〉 is called a singlet
fraction and as it is clear from Eq. (6) that it completely
captures the quality of the transmission. It is also clear from
Eq. (6) that to have an average fidelity above 2/3, which
is accessible to the classical teleportation, a singlet fraction
should exceed 1/2. Using the form of ρout in Eq. (4) and
expanding the singlet as in Eq. (3), one gets Tr(E0ρout) =
1
4

∑
m |Tr(Km)|2. Substituting this value in Eq. (6) shows that

F TP
av = F ST

av .
Getting identical average fidelity in both strategies is a very

important result in quantum communication, which shows the
average effect of a channel can be captured just by transferring
one part of the singlet state through the channel and computing
the singlet fraction. However, sharing an entangled pair
between sender and the receiver has an advantage, namely
that after a few transmissions the total (generally noisy)
entanglement can be converted by local actions [21] to nearly
a pure singlet. This can be used to transmit any state near
perfectly using quantum teleportation. So, because of the
importance of the amount of entanglement shared between
the sender and the receiver and its proven equivalence to
the more straightforward transmission of quantum states, we
mainly focus on the entanglement distribution through the
phase diagram of the XXZ Hamiltonian.

III. INTRODUCING THE MODEL

We consider a spin chain as a channel for information
transferring and we study the property of each phase of the
chain on the quality of information transmission. We take one
of the most well-known models in condensed-matter physics,
namely a XXZ spin chain. The Hamiltonian of the open XXZ
chain of length Nch is

Hch = J

Nch−1∑
i=1

{
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �σz
i σ z

i+1

}
, (7)

with J being a coupling constant, � being the anisotropy, and
σ

x,y,z

k being Pauli matrices for site k. This Hamiltonian has
a rich phase diagram. For � = 1 and J < 0, this interaction
is the FM Heisenberg chain widely discussed in the context
of quantum communication [2–4]. More interesting regimes
exist for J > 0 and different values of � [14]. � < −1 is
the FM phase with a simple separable biased ground state
with all spins aligned to the same direction. −1 < � � 1 is
called XY phase, which is a gapless phase and consists of two
different legs, the FM half (−1 < � < 0) and the AFM part
(0 � � � 1). 1 < � is called Néel phase, where the spectrum
is gapped and we get nonzero staggered magnetization. In the
limit � � 1 it takes the form of Néel states (|010101 . . . 01〉).

IV. INFORMATION TRANSMISSION THROUGH A
WHOLE-PHASE DIAGRAM OF THE XXZ

HAMILTONIAN

Though information transmission can be investigated ei-
ther classically or quantum mechanically, we will primarily
examine quantum information transmission and devote one
section later to classical information transmission in the same
systems. Of course, the most natural setting would be sending

the state of a single spin through the chain. However, because of
previous “equivalency” discussions in Sec. II, we will examine
the transmission of one part of a two-spin maximally entangled
state of the form (3) while a spin-chain channel (spins 1 to Nch)
is in its ground state of some Hamiltonian Hch. At time t = 0,
the interaction of the 0th and the 1st spin is suddenly switched
on while 0′ is kept isolated from the rest. The ensuing dynamics
transports the initial state of the 0th spin through the chain
to the Nchth spin with some efficiency, so that after a while
0′ will be entangled with Nch. As the singlet has the same
representation in any basis, the above entanglement transfer
already subsumes within it “state transfer in arbitrary basis”
and is thus very general.

The reader may naturally question how general the above
physical setting (couplings, etc.) of transferring entanglement
through a spin-chain channel is. Indeed, one could have taken
weaker or stronger or different couplings at the sending
and receiving ends. However, weaker couplings generally
lead to “slow” transfer schemes which will be susceptible
to decoherence. On the other hand, if we really do have
stronger couplings or different couplings available at our
disposal, we could just use them for the whole chain for
faster and potentially better transfer, rather than using those
special couplings only at the ends. So we think that the most
natural way to investigate this question is to simply place
a spin encoding the unknown state to be transmitted at one
end of the chain and couple it with the same coupling as
present in the rest of the chain (which, as we know from the
previous section, is equivalent to the type of entanglement
transmission considered by us). In any case, without putting
some restrictions on the coupling model at the ends, there is
too much freedom in the problem, and it may not be possible
to give a precise answer to the effectiveness of a phase to
transfer quantum information. Moreover, also note that we are
not considering the generation of entanglement from inside the
spin chain, which is an altogether different problem [22], but
merely the transmission of entanglement through the chain.

Note that for our scheme we require the chain initially in
a unique ground state |ψg〉ch and this may have to be selected
out by applying an arbitrarily small magnetic field (for odd
Nch AFM chain and the FM chain). The interaction between
the 0th and the 1st spins (the interaction turned on at t = 0)
of the channel is assumed to be of the same form and strength
as the rest of the interactions, namely,

HI = J
(
σx

0 σx
1 + σ

y

0 σ
y

1 + �σz
0 σ z

1

)
. (8)

With the 0′0 singlet, the total length of the system
considered is thus N = Nch + 2, with the initial state being

|ψ(0)〉 = |ψ−〉0′0 ⊗ |ψg〉ch (9)

and the total Hamiltonian being

H = I0′ ⊗ (Hch + HI ), (10)

so that 0′ never interacts with the rest. Also note that H

is simply a Hamiltonian of a single spin chain 0 . . . Nch of
length N + 1. As the aim is entanglement distribution, we are
interested at the times at which the entanglement between spins
0′ and Nch peaks. By turning on the interaction between spin
0 and spin 1 of the channel, the initial state evolves to the state
|ψ(t)〉 = e−iH t |ψ(0)〉 and one can compute the density matrix
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ρij = trîj {|ψ(t)〉〈ψ(t)|}, where the meaning of trîj is the trace
over whole of the system except sites i and j . (We fix i = 0′ in
this article.) The general form of a two spin density matrix ρij

in XXZ systems in the computational (|00〉, |01〉, |10〉, |11〉)
basis is [23]

ρij =

⎛
⎜⎜⎜⎜⎝

u+ 0 0 0

0 w+ z 0

0 z w− 0

0 0 0 u−

⎞
⎟⎟⎟⎟⎠ , (11)

where all the elements of the matrix are real and they can be
written in terms of one- and two-point correlations,

u± = 1
4

{
1 + 〈

σ z
i (t)σ z

j (t)
〉 ± 〈

σ z
i (t)

〉 ± 〈
σ z

j (t)
〉}

,

w± = 1
4

{
1 − 〈

σ z
i (t)σ z

j (t)
〉 ∓ 〈

σ z
i (t)

〉 ± 〈
σ z

j (t)
〉}

, (12)

z = 1
4

{〈
σx

i (t)σx
j (t)

〉 + 〈
σ

y

i (t)σy

j (t)
〉}

,

where σα
j (t) = eiHtσ α

j e−iH t (for all α = x, y, z) is the Heisen-
berg picture of σα

j and 〈〉 means expectation value according
to the initial state (9). The concurrence as a measure of
entanglement [24] for this general density matrix (11) is E =
2max(0, |z| − √

u+u−), which is a function of time-dependent
correlators and expectation values. Noteworthy is that for
� > −1, when the initial state of the channel is not symmetry
broken, symmetry considerations and the fact that 0 and 0′ are
initially anti-correlated in a singlet imply that the entanglement
between 0′ and j can be written as

E0′j = max
[
0,

∣∣〈σx
0 (0)σx

j (t)
〉∣∣ − 1

2

〈
σ z

0 (0)σ z
j (t)

〉 − 1
2

]
, (13)

which is solely written in terms of the two-time correlation
functions of the spin chain 0 . . . Nch. It should be noticed that
though two-point correlations of the XXZ Hamiltonian have
been studied intensively in the literature and their asymptotic
behavior is known, the correlations here are different since
they are computed in terms of the initial state (9), which is not
the ground state of H . In addition, if one ignores (traces out)
spin 0′, our study can be regarded as an analysis of two-time
correlation functions during the nonequilibrium dynamics that
ensues when the interaction of a spin in a random state with one
end of a spin chain is switched on. Singlet fraction of the state
ρ0′N , which was shown to be directly related to the average
fidelity of state transferring, can be computed also from ρ0′N
easily:

F = 〈ψ−|ρ0′N |ψ−〉 = 1
2 (w+ + w− − 2z). (14)

In Fig. 1 we plot both entanglement and singlet fraction of
ρ0′N in terms of time for a particular point in the phase diagram,
namely � = 1. As can be seen from figure, singlet fraction
always oscillates while the entanglement just peaks at certain
times, which we call optimal time topt. When entanglement
peaks, singlet fraction also has a peak, which shows that final
state is more similar to singlet than other Bell states. The time
that one can afford to wait for the entanglement between 0′ and
Nch to attain a peak is restricted by practical considerations,
such as the decoherence time, required speed of connections
in a quantum network, etc. So we restrict ourselves to the first
peak of the entanglement in time. To compare the performance
of different phases of the Hamiltonian (7) in transferring the
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FIG. 1. (Color online) Entanglement and singlet fraction in terms
of time for a chain of length N = 20 and � = 1. Both axes in this
figure and all other figures in this article are dimensionless.

entanglement, we plot the amount of entanglement in its
first peak (t = topt) in terms of anisotropy � for the chains
with different lengths in Fig. 2(a) and the associated singlet
fraction at the same time in Fig. 2(b). One interesting feature
is that the entanglement transmitted dips on the XY side of
� = −1 and sharply rises on its FM side, which captures the
first-order phase transition at this point. (That such a change
in behavior is seen despite the finite size is interesting.) In
addition, this transition is also marked by a steep rise in
the time required to reach the first peak in entanglement.
This is shown in the inset to Fig. 2(a), which also shows
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FIG. 2. (Color online) (a) Attainable entanglement in the first
peak in terms of � for different lengths (J = 1). (Inset) The optimal
time topt that the peak happens during the evolution. (b) Singlet
fraction F at topt in a whole-phase diagram.
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that the speed at which entanglement is propagated increases
monotonically in the XY regime as one goes from � = −1 to
� = 1. This fact is commensurate with the spin-wave velocity
increasing with � as sin(cos−1 �)/ cos−1 � in this regime [25],
which we will discuss it in more detail later. In the XY phase
we can recognize two distinct regimes. In its FM sector
(−1 < � < 0), entanglement falls rapidly by decreasing �,
while in its AFM sector (0 � � � 1), the entanglement is
always good and increases by increasing �. After � = 1,
when the transition from the XY to the Néel phase happens,
the entanglement starts falling with increasing �, as the Ising
term σ z

j σ z
j+1 dominates, which by itself does not transfer

entanglement. Note also a subtle feature that even outside the
XY regime, for � > 1, entanglement falls much slower with
|�| than for � < −1. In general, AFMs are thus better, even
with similar degrees of anisotropy. Figure 2(a) also shows that
the isotropic AFM Heisenberg interaction (� = 1) not only is
the best for transferring the highest amount of entanglement
in the entire phase diagram, but also it has the highest speed in
the XY phase. In Fig. 2(b), where singlet fraction F is plotted in
the whole-phase diagram, in the FM phase (� < −1) singlet
fraction is always less than 1/2, which shows that, despite the
fact that entanglement is nonzero, quantum communication
has no benefit over classical communication. The same thing
will happen in the Néel phase when F becomes less than 1/2
for quite large �’s.

The effect of the length of the chain on the quality of
transmission is shown in Fig. 3. We only concentrate on the
best � = 1 (isotropic AFM) point, as it is the best point in the
phase diagram, and we compare the results with FM chains
which have been predominantly studied so far. In Fig. 3(a)
we plot the time at which the first peak in entanglement for
different lengths. It is clear that the speed of entanglement
transmission through the AFM (J > 0) chain is higher than
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FIG. 3. (Color online) (a) Optimal time topt for both FM (J = −1)
and AFM (J = +1) in terms of length N . (b) Entanglement at the first
peak versus the length N for both FM (J = −1) and AFM (J = +1)
chains when � = 1.

that for the FM (J < 0) chain independent of the length.
In Fig. 3(b) the amount of entanglement in the first peak is
compared for both the AFM and the FM cases, from which it is
clear that the entanglement transmitted in the case of the AFM
chain has a distinctly higher value irrespective of length. Note
also a visible even-odd effect on the amount of entanglement
transmitted (and hence on two-time correlations), which will
be interesting to observe in finite chains.

We have shown that in the absence of any of the sophisti-
cated techniques for perfecting spin-chain communications,
which come at a price and may be hard to implement,
especially if one wanted to transfer information fast (i.e, refrain
from very weak couplings), the isotropic AFM is the best
channel in the entire phase diagram of the XXZ chain. We
now estimate the efficiency with which local processing at the
opposite ends of the spin chain and classical communication
between them (a process called entanglement distillation [21])
can establish a nearly perfect singlet for an isotropic AFM
channel. For instance, by using the recurrence algorithm for
distillation [21] in a chain of length 10, for which entanglement
E = 0.8638, starting from 9 impure pairs on average leads
to a nearly singlet state with entanglement E = 0.9920 after
seven iterations, and for a chain of length 20, for which
entanglement E = 0.7162, we need to start with 17 impure
pairs to get a singlet state with entanglement E = 0.9926
after nine iterations. This perfect singlet can then be used
for sending quantum states perfectly through teleportation. It
is worth pointing out that in different phases the spin chains
represent different types of quantum channels. While in the
FM phase, it is known to be an amplitude-damping channel
(transmits |0〉 and |1〉 asymmetrically [2]), the � = 1 point
affects a so-called depolarizing channel (also noted in [13]),
where ρ0′Nch is the mixture of the singlet state and the identity.
Such ρ0′Nch is particularly suited for distillation protocols [21].

V. EXPLANATION

When the phase of the system changes, not only does the
Hamiltonian causing the time evolution vary, but the ground
state, and consequently the initial state (9), also vary, and
we have a different behavior for information transmission
through the chain. The results in Fig. 2(a) show a dramatic
and discontinuous change of entanglement at � = −1 which
is related to a first-order phase transition at this point and two
completely different classes of ground states of the XY and the
FM phases. At point � = +1 entanglement falls continuously
when we go from the XY phase to the Néel phase. This
continuous change represents a second-order phase transition
at this point. Beside these two phase transition points, there is
a sharp drop of entanglement around � = −0.5, which is very
peculiar since there is no phase transition at this point. Also
from the inset of Fig. 2(a) it is clear that the optimal time which
one has to wait to get a peak goes up drastically for � < −0.5.
This strange property inside the XY phase is certainly not
because of a phase transition. The reason for this slow
dynamics and bad transmission is hidden behind an intrinsic
property of the spin chain, namely, the spin-wave velocity.

Field theoretic techniques have been used to capture the
asymptotic behavior of correlation functions in spin chains
[26]. For the general XXZ Hamiltonian, it fails to get all
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prefactors and exact solutions, but it is able to get the qualitative
behavior of correlations successfully in the thermodynamic
limit. Correlation functions in our problem are different from
those obtained by field theory in at least two ways. First of
all, we consider very finite chains, since the idea of using
spin chains as quantum channels is valuable only for a finite
distance. Second, all the dynamical correlations which are
computed asymptotically are associated with the ground state
of the system while in our problem correlations are computed
for the initial state (9) which is not the ground state. Despite
these differences, we still can use some well-known results of
the field theoretic techniques. For example, the dynamical cor-
relation functions in the XY phase (−1 < � < 1) in the asymp-
totic thermodynamical limit have the following form [26]:〈

σα
j (0)σα

k (t)
〉 ∼ (−1)|j−k| 1(|j − k|2 − v2

F t2
)1/2ηα

, (15)

where α = x, y, z and

ηx = ηy = 1/ηz = 1 − cos−1�

π
. (16)

Moreover, vF in Eq. (15) is the spin-wave velocity (this
quantifies the propagation velocity of excitations in the chain),
which has the following form:

vF ∝ sin(cos−1 �)

cos−1 �
. (17)

Unfortunately, the aforementioned asymptotic forms of
〈σα

j (0)σα
k (t)〉, valid for |j − k| >> vF t , are singular specific-

ally at |j − k| ∼ vF t , which is the regime relevant to optimal
quantum communication from the j th to the kth site (i.e., when
the information, possibly traveling at a velocity vF , reaches
its destination). So one can only use some aspects reliably
from the previous formulas. One of these is the velocity vF

of propagation of the correlations (and hence information).
In Fig. 4 we plot 1/vF (which is for an infinite chain) and topt

(for a chain of length N = 20) in terms of �. As Fig. 4 clearly
shows, both of these quantities behave in a strikingly similar
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FIG. 4. (Color online) 1/vF (for an infinite chain) and topt (for a
chain of length N = 20) versus �.

way (the gap between two curves is not important since one
can multiply them by some constants). As a consequence, for
� < −0.5 the propagation velocity is very slow, and one has
to wait a long time to receive some information at the other
side of the chain. This very slow dynamics also means that
we will get a sharp fall in the entanglement as well as all other
quantities which propagate through the chain unless we are
willing to wait for very, very long times.

As far as the question of why the isotropic (� = 1 point)
is the best point in the phase diagram in terms of a maximum
of entanglement, recall that entanglement is given in terms
of some dynamical correlation functions as in Eq. (13).
Remember, though, that these correlations are not evaluated
for the ground state and so cannot be strictly substituted
by the known dynamical correlation functions to get any
quantitative information, but perhaps only a qualitative picture,
as we discuss. One can see from Eq. (15) that the � = 1
point is the best for the propagation of correlations along
the z direction. At points with � < 1 the z component of
correlations does not propagate as well as the x component,
and, in fact, near to � = −1 it is expected not to propagate at
all (ηz ≈ ∞). Thus, the term − 1

2 〈σ z
0 (0)σ z

j (t)〉 in Eq. (13) for
entanglement, which is positive, contributes more and more
as we approach � = 1 and gives a higher entanglement. It is
true that as we approach the isotropic point from � < 1 side,
the ηx rises (i.e., propagation of correlations in the x direction
deteriorates somewhat). However, it must be that the gain from
the better propagation of correlations in the z direction more
than compensates for the deterioration of the propagation
of correlations along the x direction. The reason is that ηz

changes from ∞ to 1 (huge gain), while ηx only goes from
0 to 1.

As far as the intriguing dip after � = −0.5 is concerned, we
are not yet in a position to explain it. It seems that the behavior
expected at � → −1, where both the velocity of correlations
and their propagation quality along the z direction are worst,
starts to happen quite a bit before the actual point.

VI. CHANNEL CHARACTERIZATION AND EVEN-ODD
EFFECT

As is clear from Fig. 3(b), in the case of the AFM chain,
entanglement has a zigzag behavior when N varies, while it
behaves uniformly for FM chains. This even-odd effect for
AFM chains has a fundamental reason. In even chains when
� > −1, the total magnetization of the ground state is always
zero and because of the rotational symmetry in the ground
state one can exchange all |0〉’s and |1〉’s while the ground
state remains unchanged. In other words, in even chains for
� > −1 we always have

σ⊗Nch
x |ψg〉ch = |ψg〉ch. (18)

This symmetry, which is absent in FM chains and also in each
of the doubly degenerate ground states of the odd chains, has a
profound effect on the transmission characteristics of the chain.
In even chains, the effect of the chain is completely recog-
nized by the Kraus operators {√pI I,

√
pxσx,

√
pyσy,

√
pzσz},

where pI,x,y,z are positive and their summation is equal to 1,
so one can explain the effect of this channel such that it applies
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one of the Pauli operators (including identity) with some
probability to the input state. Obviously, these probabilities
are dependent on the length N , time t , and anisotropy �. So
using the aforementioned Kraus operators we get the following
form for the state ρ0′Nch :

ρ0′Nch = pI (t)|ψ−〉〈ψ−| + px(t)|φ−〉〈φ−|
+py(t)|φ+〉〈φ+| + pz(t)|ψ+〉〈ψ+|, (19)

where

|ψ±〉 = |01〉 ± |10〉√
2

,

|φ±〉 = |00〉 ± |11〉√
2

(20)

are Bell states. Thus, it means that ρ0′Nch is diagonalized in
the Bell basis. This channel is called a Pauli channel in the
literature. Since in the Hamiltonian (10) there is no difference
between x and y directions, we always have px = py for an
XXZ chain. At the point � = 1 where all directions become
identical we have px = py = pz and the channel is the famous
depolarizing channel.

For the case of odd N , characterization of the channel is not
yet known and one can just consider it numerically. Since in
odd chains the ground state of the system is degenerate, to take
one of them we apply a small magnetic field in the z direction to
break the symmetry. In this case, the total magnetization is ±1
(dependent on the direction of the magnetic field: ±z) and the
symmetry (18) does not hold anymore.

For � < −1, since the ground state is FM and all spins
are aligned, the type of the channel is amplitude damping
[2], so then the even-odd effect vanishes and the channel
behaves uniformly for all N . It is worth mentioning that
in entanglement distillation procedures [21], Werner states,
which are a mixture of Bell states, are distilled more easily
than the other states [21], so transferring the singlets through a
Pauli channel has the advantage that the final state is very close
to a Werner state (at � = 1 it is exactly a Werner state) and
one can distill them more easily than those which are gained
through the transmission of other channels such as amplitude
damping.

VII. THERMAL FLUCTUATIONS

Generally, when a system is in nonzero temperature, the
state of the channel before evolution is described by a thermal
state e−βHch

Z
, instead of the ground state, where β = 1/KBT

and Z is the partition function. So in this case the initial state
of the system is

ρ(0) = |ψ−〉〈ψ−| ⊗ e−βHch

Z
. (21)

We assume that the thermalization time scale of the system is
large so that one can consider the unitary dynamics starting the
initial state (21). So, after time t the system evolves to ρ(t) =
Uρ(0)U † and the target state ρ0′Nch (t) can be gained as before
by tracing out the bulk of the chain ρ0′Nch (t) = tr ˆ0′Nch

{ρ(t)}. En-
tanglement of the state ρ0′Nch (t) at its optimal time is plotted in
Fig. 5(a) in terms of initial temperature for both FM (J = −1)
and AFM chains (J = +1). As is clear from the figure,
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FIG. 5. (Color online) (a) Entanglement in terms of temperature
in a chain of length N = 10 for the isotropic case (� = 1) in both
FM (J = −1) and AFM (J = +1) phase. (b) Entanglement in a
whole-phase diagram for different temperatures in the chain of length
N = 10.

increasing the temperature always destroys the entanglement
but it has less effect on the AFM chain.

In Fig. 5(b) the entanglement in the whole-phase diagram
is plotted for different temperatures. When temperature rises,
entanglement survives more for a fully symmetric Heisenberg
point (� = 1). Specially, the FM phase is highly sensitive to
thermal fluctuations, and entanglement is destroyed rapidly
when temperature rises. Furthermore, we found that the
optimal time topt at which the entanglement peaks is almost
independent of the temperature and varies very slowly in the
whole-phase diagram.

VIII. INTERACTION WITH BATH AND DECOHERENCE
EFFECT

In practical situations it is impossible to isolate a quantum
system from its environment. In the case of Markovian inter-
action between the system and the environment, a Lindblad
equation describes the evolution of the system

ρ̇ = −i[H, ρ] + �(ρ), (22)

where �(ρ) is the Markovian evolution of the state ρ. Let
us assume an environment which has no preferred direction.
Eventually, the interaction should have the form

�(ρ) = −γ

3

∑
i

∑
α

{
ρ − σα

i ρσα
i

}
, (23)

where index i takes 0′, 0, . . . , Nch, α gets x, y, z, and the
coefficient γ stands for the rate of decoherence. In Fig. 6(a)
we plot the entanglement in terms of noise strength γ for
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FIG. 6. (Color online) (a) Entanglement in terms γ in a chain of
length N = 8 for the isotropic case (� = 1) in both FM (J = −1) and
AFM (J = +1) phase. (b) Entanglement in a whole-phase diagram
for different noise strength γ in a chain of length N = 8.

both FM (J = −1) and AFM (J = +1) chains. The figure
clearly shows that entanglement decays exponentially by
increasing γ , but like the thermal effect the AFM chain is
more resistive against Markovian noise. In Fig. 6(b), we plot
the attained entanglement for when � varies in whole-phase
diagram. As the figure shows, the noise effect always kills the
entanglement and, similar to the thermal fluctuations, optimal
time is almost independent of noise parameter γ . Surprisingly,
the best point in the phase diagram is not the case of � = 1
and it moves down inside the Néel phase. The reason for this
interesting phenomena comes from the velocity of dynamics.
Since the evolution in the Néel phase is faster [see the inset
of Fig. 2(a)] and entanglement peaks earlier, decoherence has
less opportunity to interfere and shows its destructive effect.

IX. CLASSICAL COMMUNICATION

We now comment on the classical information transmission
through spin chains, which may be interesting for spintronics.
To quantify the amount of classical information which each
channel can transmit, the concept of the classical capacity
has been introduced. The classical capacity of the channel
ξ [introduced by the Kraus operators (1) in a very general
case] gives the maximum amount of classical information that
can be reliably transmitted per channel use. In calculating the
classical capacity it is necessary to perform a maximization
over multiple uses of the channel,

C = maxn

Cn

n
, (24)

where Cn is the classical capacity of the channel ξ which can be
achieved if the sender is allowed to encode the information on
codewords which are entangled only up to n-parallel channel
uses. The value of Cn is obtained by maximizing the Holevo

information [27] at the output of n parallel channel uses, over
all possible input ensembles {pi, ρi}; that is,

Cn = max{pi ,ρi }Hn(ξ⊗n, {pi, ρi}), (25)

where Hn(ξ⊗n, {pi, ρi}) is the Holevo information which is
defined as

Hn =
{

S

[
ξ⊗n

(∑
i

piρi

)]
−

∑
i

piξ
⊗n(ρi)

}
. (26)

Here pi’s are probabilities, ρi’s are n-qubit codewords (either
entangled or separable) and S is the von Neumann entropy. Un-
fortunately, computing the classical capacity is an extremely
hard task since it needs a very difficult maximization. However,
recently the classical capacity of the depolarizing channel has
been computed [28] and it was shown that this capacity can be
achieved by encoding messages as products of pure states
belonging to an orthogonal basis and using measurements
which are products of projections onto this same orthogonal
basis. So due to the fact that entanglement does not increase the
capacity of the depolarizing channel, all maximization shrinks
to compute the single-shot capacity C1 as the real capacity of
the channel.

As we discussed in Sec. IV, for even chains the XXZ
Hamiltonian is a Pauli channel. At isotropic point (� = 1)
it is a depolarizing channel, for which C1 is the real capacity
and entangled inputs do not increase it. This motivates us to
study single-shot classical capacity of the XXZ Hamiltonian for
pure orthogonal input states. However, the single-shot capacity
which is computed over pure orthogonal input states is not
necessarily the real capacity of the channel (except at the point
� = 1) but at least it gives us a lower bound of the classical
capacity. To have the form of a Pauli channel, we also restrict
our study just to the even chains.

We start with the most general form of the orthogonal pure
qubit states,

|ψ1〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉

(27)

|ψ2〉 = sin
θ

2
|0〉 − eiφ cos

θ

2
|1〉,

where 0 � θ � π and 0 � φ � 2π . For the input ensemble,
we associate the probability p1 to the input state ρ1 = |ψ1〉〈ψ1|
and similarly probability p2 to the state ρ2 = |ψ2〉〈ψ2|. When
each of these states goes through the channel, we get

ξ (ρi) = pIρi + pxσxρiσx + pyσyρiσy + pzσzρiσz,

i = 1, 2, (28)

where pI,x,y,z are dependent on time t and anisotropy �.
It is easy to see that S(ξ (ρ1)) and S(ξ (ρ2)) are equal and
independent of φ. Thus, the second term in the Holevo in-
formation (26) is p1S(ξ (ρ1)) + p2S(ξ (ρ2)) = S(ξ (ρ1)), which
is independent of p1 and p2 and it is just dependent on
θ . We can easily maximize the first term in the Holevo
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FIG. 7. (Color online) (a) Holevo information H1 in terms of �

for different lengths. (b) Optimal angle θopt for input set of states in
terms of �.

information (26) for all values of θ by choosing p1 = p2 =
1/2 such that S(ξ (p1ρ1 + p2ρ2)) = 1, so to maximize the
Holevo information H1 one should just find θ = θopt such that
minimize S(ξ (ρ1)).

Our analytic computation shows that

θopt =

⎧⎪⎨
⎪⎩

0 or π if pz > px,

π/2 if pz < px,

arbitrary if pz = px,

(29)

where the situation pz = px is associated to the depolarizing
channel (� = 1) which for any value of 0 � θ � π the
classical capacity is achieved. An important point is that the
optimal input ensemble is independent of phase φ, which gives
us a lot of degrees of freedom for input states. This also was
expected due the symmetry of the x and the y directions in our
Hamiltonian (10).

In Fig. 7(a), we plot the classical capacity in terms of �.
This figure clearly shows that H1 is quite flat in the XY phase
and it suddenly falls for � < −0.5. A more interesting result is
shown in Fig. 7(b), where optimal θ is plotted in a whole-phase
diagram. It shows that when we cross the point � = 1 from
the XY phase to the Néel phase, suddenly the optimal ensemble
changes from orthogonal states on the equator (θ = π/2) of the
Bloch sphere to the states on the poles (θ = 0). Within the XY
phase, around � = −0.35 the optimal input ensemble changes
such that optimal states for −1 < � < −0.35 are gained by
θ = 0 and for −0.35 < � < 1 are obtained by θ = π/2. In
the the FM phase (� < −1) the transmission is completely
different and it is explained as an amplitude-damping channel
[2]. For this channel it was shown that C1 is achieved by the
inputs given as Eq. (28) for θ = π/2 [29].

It is interesting to check the classical capacity of the channel
when it cannot transmit quantum information. So for a chain of
length N = 8 with the noise parameter γ = 0.3, entanglement
cannot be transferred because of the large noise (quantum

information transmission is impossible), but at optimal times
for isotropic case (� = 1), one gains C1 = 0.3931 for the
AFM chain (J = +1) and C1 = 0.1453 for the FM chain
(J = −1).

X. ENTANGLEMENT PROPAGATION THROUGH
THE CHAIN

A curious feature emerges in the propagation of entangle-
ment through chains with even numbers of spins. For � � 0,
there is never any entanglement at any time between site 0′
and odd sites, and entanglement seems to hop through the
chain. If one takes an approach whereby one draws a solid
line for the presence of strong entanglement and a dashed line
for very weak entanglement (<0.1), the open-ended ground
state will be depicted as a dimer (remember it is not an
exact dimer) [30]. Appending a singlet of spins 0 and 0′
at one end of the chain makes the total system look like a
series of strongly entangled pairs next to each other (with
weaker links between) and this is shown for the N = 6 case
in Step 1 of Fig. 8(a). When the system evolves, the state
of the system takes the form of Step 2 in Fig. 8(a) and
after a while it goes to the form of Step 3 in Fig. 8(a). To
explain this curious effect, without losing the generality, we
consider the isotropic AFM. Clearly, the structure shown in
Fig. 8(b), where a singlet between 0′ and an odd site breaks
three strong bonds, is energetically not favored in course of a
unitary dynamics starting as Step 1 of Fig. 8(a). So, despite a
finite (but small) overlap between the state shown in Fig. 8(b)
and that in Fig. 8(a), this state does not emerge through the
dynamics in the sense that its overlap with the state |ψ(t)〉
never becomes higher than a certain value. Quantitatively,
all moments of Hamiltonian are conserved [12] during the
evolution: ∀n, 〈Hn〉 = 〈ψ(t)|Hn|ψ(t)〉 = 〈ψ(0)|Hn|ψ(0)〉,
so energy (E = 〈H 〉) and its variance (η =

√
〈H 2〉 − 〈H 〉2)

are constant during the evolution. It means that only states
with energy expectation Ē for which E − η < Ē < E + η,
such as in Fig. 8(a), can contribute in evolution, while those
as in Fig. 8(b) cannot play a role. Note also that this curious
phenomena, when recast in terms of two-time correlations,
states that 〈σ z

0 (0)σ z
j (t)〉 should be less than −1/3 only for the

even sites j . Thus, in potential physical systems where such

FIG. 8. (Color online) (a) Entanglement between site 0′ and other
sites in the chain during the evolution in an AFM chain (� = 1)
of length N = 6. (b) One configuration of the states which are not
accessible energetically.
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dynamical correlations is measurable, the hopping mode of
transfer should be testable.

XI. POTENTIAL PHYSICAL REALIZATIONS

We now mention some systems in which our results can be
potentially tested, though there is some way to go for some of
these systems, as local addressing of the spin to be suddenly
coupled to the chain may be required. Recently, there has
been extensive interest in finite spin chains such as fabricated
AFM nanochains [15], and especially even-odd effects in such
systems [31]. This can be one potential system where recently
developed sensitive magnetometers [32] can perhaps be used
for verifying the correlations and hence entanglement. Perhaps
an STM tip encoding the spin to be transmitted can be brought
close to one end of a finite array. Finite chains of doped
fullerines in nanotubes [33] (such as AFM Sc@C82 [16]) is the
other alternative for developing this idea. Spins in such systems
have already been measured, and perhaps local electrical gates
can give local control to couple in the input qubit [33]. Optical
superlattices with atoms can realize an ensemble of finite spin
chains [34], as well as the switching on their interactions [35].
Barrier heights at regular intervals may be raised to create
arrays of small lattice segments (cells) of sizes 2 and Nch with
the repeating pattern 2, Nch, 2, Nch, . . . . The 0′0 singlet and the
finite chain ground states can be created in the cells of sizes 2
and Nch, respectively, as ground states (in fact, the former has
already been accomplished [34]). Next, again through global
methods, the barriers between the 2 site cells and the Nch

site cells to their right have to be lowered (simultaneously the
barrier between the two sites of the cell of length 2 has to be
raised) so as to form superlattices with cells of size Nch + 2
each. The subsequent dynamics will then be exactly as we
have predicted and can potentially be verified through global
time-of-flight correlation measurements [34]. One can use ion
traps where small spin systems are being realized [36], as well
as implementing spin chains with trapped electrons [37] where
initializing individual spins and controlling the interaction at
one end are both simple. NMR is another fruitful avenue for
testing communication through spin chains [38].

XII. SUMMARY

We have studied the transmission of both classical and
quantum information through the all phases of the XXZ
Hamiltonian. This quantifies the ability of each phase for
information transmission through its natural dynamics. We
found that in the absence of noise and thermal fluctuation
isotropic Heisenberg Hamiltonian (� = 1) is the best point
of the phase diagram for information transmission, in terms
of both its amount and its speed. This is indeed important
since the natural interaction of many spin-chain realizations
is the fully symmetric Heisenberg interaction. The speed of
propagation of the information, despite our finite open-ended
case, fits strikingly well with the spin-wave velocities known
from continuum limit field theoretic studies of the XXZ spin
chain. When decoherence and thermal fluctuations are taken to
account, the best point of the phase diagram moves to the Néel
phase, which due to a faster evolution, is less sensitive to these
sources of noise. This clearly shows why faster dynamics are
more encouraging to minimize the destruction effects such
as the thermal fluctuations and decoherence. Furthermore,
we showed that the transmission through an even chain is
characterized by the Pauli channel, which has benefits in terms
of immediate applicability of entanglement distillation. We
also studied the transmission of classical information through
this channel. Optimal states for single-shot classical capacity
were identified and we realized that even when system is so
noisy, such that quantum information is completely destroyed,
some classical information can be transferred. Studying the
entanglement propagation through the chain showed that
entanglement skips odd-numbered sites and manifests as a
curious behavior of two-time correlation functions during
the nonequilibrium dynamics. It remains an open problem to
explain well the mysterious behavior of the dynamics which
entanglement suddenly drops around the point � = −0.5.
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