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Nonclassical photon streams using rephased amplified spontaneous emission
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We present a fully quantum mechanical treatment of optically rephased photon echoes. These echoes exhibit
noise due to amplified spontaneous emission; however, this noise can be seen as a consequence of the entanglement
between the atoms and the output light. With a rephasing pulse one can get an “echo” of the amplified spontaneous
emission, leading to light with nonclassical correlations at points separated in time, which is of interest in the
context of building wide bandwith quantum repeaters. We also suggest a wideband version of DLCZ protocol
based on the same ideas.

DOI: 10.1103/PhysRevA.81.012301 PACS number(s): 42.50.Ex, 03.67.−a, 32.80.Qk

I. INTRODUCTION

In order to extend the range of quantum key distribution,
quantum networks, and tests of Bell inequalities, a method
for efficiently generating entanglement over large distances
is required. To achieve this goal a quantum repeater is
necessary [1]. Such repeaters are generally based on methods
for entangling one light field entangled with another at a later
point in time. This has led to increasing interest in quantum
memories for light, which in conjunction with pair sources
would achieve this. Many impressive experiments have been
performed in the area of quantum memories and repeaters.
The quantum state of a light field has been stored in a vapour
cell with high fidelity and then measured at a later time [2].
Single photons and squeezed states have been stored and
recalled [3–5], and nonclassical interference of the light from
distant ensembles has been observed [6]. Entanglement [7] of
and teleportation [8] between two distant trapped ions has been
achieved using an optical channel, using Duan-Lukin-Cirac-
Zoller- (DLCZ) type measurement-induced entaglement.

Photon echoes have a long history of use in classical
signal processing with light [9,10]. There are now a num-
ber of proposals and experiments [11–16] related to the
development of photon echo based quantum memories. A
distinct advantage of echo based techniques is that they are
multimode [17].

Current photon echo quantum memory techniques, all
involve some modification of the inhomogeneous broadening
profile. This imposes limits on the range of suitable materials.
It would be much more convenient to use something akin to
the standard two pulse echo as a quantum memory which does
not require such modification.

The article is arranged in three sections. In Sec. II we present
the quantum mechanical Maxwell-Bloch equations for atomic
and photonic fields. Then in Sec. III, as an example of this
formalism, we present an analysis of the standard two-pulse
photon echo and its applicability as a quantum memory.
The two-pulse echo as a quantum memory has already been
investigated by others [18]. We revisit the problem here and
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show that this protocol fails as a quantum memory due to
the strong rephasing pulse, which inverts the medium and
causes additional noise on the output photonic fields. Finally in
Sec. IV, after exploring the origin of this noise, we propose that
this noise can be rephased to lead to time separated, temporally
multimode, wide bandwith photon streams with nonclassical
correlations. So while a standard two pulse echo fails as a
quantum memory, rephased amplified spontaneous emission
(RASE) can be utilized in the DLCZ protocol [19]. With this
modified DLCZ protocol, the inhomogeneous broadening no
longer limits the time between the write and read pulses but
instead increases the bandwidth of the process. This is of
significance to current experiments, where the inhomogeneous
broadening is an issue [20–24].

II. QUANTIZED MAXWELL-BLOCH EQUATIONS

We shall model an inhomogeneously broadened collection
of two level atoms interacting with a 1D field propagating
in one direction, with the following quantum Maxwell-Bloch
equations:

∂

∂t
σ̂−(z,�, t) = i� σ̂−(z,�, t) − i â(z, t) σ̂z(z,�, t) (1)

∂

∂t
σ̂z(z,�, t) = i â(z, t) σ̂−(z,�, t) − i â†(z, t) σ̂+(z,�, t)

(2)
∂

∂z
â(z, t) = iα

2π

∫ ∞

−∞
σ̂−(z,�, t) d�, (3)

where σ̂+,−,z represent the quantum atomic spin operators, â

is the quantum optical field operator, and α is the optical depth
parameter, which depends on the coupling between the atoms
and the field and on the atom density. The parameter � is the
detuning from some chosen resonant frequency and z is the
distance along the propagation direction. The operators have
the following commutation relations:

[â(z, t), â†(z, t ′)] = δ(t − t ′) (4)

[σ̂i(z,�, t), σ̂j (z′,�′, t)]

= 2π

α
εijkσ̂k(z,�, t)δ(z − z′)δ(� − �′). (5)
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As can be seen from Eq. (3), we take the density of atoms
as a function of frequency to be a constant. In the case of
rare-earth ion dopants, the inhomogeneous broadening can be
many times larger than the homogeneous linewidths, and as a
result in most experiments without holeburnt features this is a
good approximation.

The above Maxwell-Bloch equations can be derived by
dividing the atomic ensemble into thin slices and then
modeling each slice as a small collection of atoms inside a
Fabry-Perot cavity, using standard input-output theory [25].
Taking the limit as reflectivity of the mirrors go to zero one
arrives at Eqs. (1–3), where â(z, t) is the input field at the
left-hand side of the cavity and â(z + d z, t) is the output field
at the right-hand side of the cavity.

III. THE TWO-PULSE PHOTON ECHO

The first application of our quantum Maxwell-Bloch equa-
tions will be in analyzing a memory based on a two pulse
photon echo. The Maxwell-Bloch equations are nonlinear and
in general difficult to solve analytically; however, following
work done with the semiclassical Maxwell-Bloch equations
[26] one can make reasonable approximations that simplify
the situation greatly. These approximations are illustrated in
Fig. 1. First we shall assume the input pulse is weak and is
much smaller than a π pulse. In this case all the atoms will
stay near their ground state (σz ≈ −1) and we can approximate
the atomic lowering operator σ− as a harmonic oscillator field
Dg . The result are linear equations that we shall refer to as the
ground-state Maxwell-Bloch equations,

∂

∂t
D̂g(z,�, t) = i� D̂g(z,�, t) + i â(z, t) (6)

∂

∂z
â(z, t) = iα

2π

∫ ∞

−∞
D̂g(z,�, t) d�. (7)

Equation (6) is just a first-order linear equation with
solution,

D̂g(z, t,�) = −i

∫ t

−∞
dt ′â(z, t ′)ei�(t−t ′) + ei�t D̂g0(z,�),

(8)

where D̂g0(z,�) is an initial condition. Taking the Fourier
transform of Eqs. (7) and (8) and substituting, one arrives at

FIG. 1. (Color online) A two-pulse photon echo sequence show-
ing the approximations made in the treatment, a weak first pulse is
applied to the system and is recalled using and ideal π pulse.

the following expression:

∂

∂z
â(z, ω) = −α

2π

∫ ∞

−∞
d� â(z, ω)

[
1

i(ω − �)
+ πδ(ω − �)

]

+ iα√
2π

∫ ∞

−∞
d� δ(ω − �)D̂g0(z,�),

= −α

2
â(z, ω) + iα√

2π
D̂g0(z, ω), (9)

where δ(ω) is the Dirac delta function. Solving Eq. (9) and
Fourier transforming back to the time domain we get

â(z, t) = â(0, t)e−αz/2 + iα√
2π

∫ z

0
dz′ eα(z′−z)/2 D̂g0(z′, t),

(10)

where â(0, t) denotes the input photonic field. Equations (8)
and (10) form the ground-state solutions for all input times.

After the π pulse the atoms are all very close to the excited
state (σz ≈ +1) in which case we can approximate σ+ by a
harmonic oscillator field De. This gives us the excited-state
Maxwell-Bloch equations.

∂

∂t
D̂†

e(z,�, t) = i� D̂†
e(z,�, t) − i â(z, t) (11)

∂

∂z
â(z, t) = iα

2π

∫ ∞

−∞
D̂†

e(z,�, t) d�. (12)

We treat the π pulse as being a perfect π leading to the
transformation D̂e ← D̂g . We will discuss the treatment of
the perfect π pulse later in the text.

Bringing Eqs. (11) and (12) through the same mathematical
process as Eqs. (6) and (7), we arrive at the excited-state
solutions:

D̂†
e(z, t,�) = i

∫ t

−∞
dt ′ â(z, t ′)ei�(t−t ′) + ei�t D̂

†
e0(z,�),

(13)

â(z, t) = â(0, t)eαz/2 + iα√
2π

∫ z

0
dz′ eα(z−z′)/2 D̂

†
e0(z′, t),

(14)

where â(0, t) and D̂
†
e0(z,�) are initial conditions for the

photonic and atomic excited fields, respectively.
Matching the ground [Eqs. (8) and (10)] and excited-state

solutions [Eqs. (13) and (14)] at the point the π pulse is applied
we get a complete solution. The efficiency is sinh2( αz

2 ) and in
the limit of large optical depths high efficiencies are possible.
Physically, this is because the photon echo is produced in the
first piece of the sample and then gets amplified as it propagates
through the inverted medium. The noise on the output can
be quantified by considering the case of no input pulse, and
then the output will be amplified spontaneous emission (ASE),
simply the vacuum noise amplified by the gain of exp(αz) of
the inverted ensemble. In the case of no input pulse, we get an
incoherent output field with 〈a†(t)a(t ′)〉 = δ(t − t ′)[exp(αl) −
1]. It is interesting to consider the source of this noise. In the
model we have no dissipation and so the total system evolves
through pure states.

Equation (8) is analogous the output of a beam splitter.
The input fields being light and atoms, with the output fields
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consisting of combinations of photonic and atomic excitations.
One can see that the addition of atomic excitations in the
solution is necessary for the conservation of the commutation
relations due to the input photonic field decaying away at large
αl. The excited-state solution is analogous to a nondegenerate
parametric amplifier [27], here the input field is amplified,
and the comutation relations are preserved by the addition of
atomic creation operators. The state of one output mode is
mixed only if the other is traced over; if the system is viewed
as a whole one has an entangled state. In the next section we
show that by applying a rephasing pulse to the ensemble we
can turn the excitation of the atoms back into light, leading
to streams of photons with highly nonclassical correlations
between two points separated in time.

IV. REPHASED AMPLIFIED SPONTANEOUS EMISSON

Now we consider the two π pulse sequence shown in Fig. 2.
For region 1 the atoms will be inverted due to the first π pulse
and hence Eqs. (11) and (12) will apply. For region 2 the atoms
will be near the ground state due to the refocusing π pulse,
hence Eqs. (6) and (7) describe the dynamics. We take the
second π pulse to occur at t = 0.

The solution for the light in region 1 is given by Eqs. (8)
and (10) and the solution in region 2 is given by Eqs. (13)
and (14). For boundary conditions we take the incident field,
â(0, t), to be in its vacuum state as we do for the initial
condition De0(z,�). The initial condition for region 2 we get
from the final condition for region 1:

D̂g0(z,�)

= ieαz/2
∫ 0

−∞
dt ′ â†(0, t ′) ei�t ′ + α√

2π

∫ 0

−∞
dt ′ ei�t ′

×
∫ z

0
dz′ eα(z−z′)/2 D̂e0(z′, t ′) + D̂e0(z,�) . (15)

These boundary and initial conditions substituted in
Eqs. (8)–(14) give a complete analytic solution of the linearised
Maxwell-Bloch equations.

To show that the photon streams described by these
solutions have nonclassical correlations we consider,

R ≡ p(t1, t2)2

p(t1, t1) p(t2, t2)
, (16)

where p(ti , tj ) = 〈 â†(l, ti) â(l, ti) â†(l, tj ) â(l, tj ) 〉. For clas-
sical fields the Cauchy-Schwartz inequality states that R � 1
[27]. Considering times equally separated about the second π

pulse, from the expression for the output fields derived above

FIG. 2. (Color online) Two-π -pulse photon echo sequence pro-
posed for generating rephased amplified spontaneous emission
(RASE).
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FIG. 3. (Color online) Plot of R(αl) showing the violations of the
Cauchy-Schwartz inequality for small optical depths.

we get

R(αl) =

⎡
⎢⎣1

2
+ αl + cosh(αl)

4 sinh
(αl

2

)
[eαl − 1]

⎤
⎥⎦

2

(17)

Figure 3 shows that for small optical depths (αl < 1) the
output at times equally separated from the refocusing π pulse
has nonclassical correlations. It should be pointed out that the
entanglement between times is not perfect because the echo
efficiency is not 100%. The detection of a photon in Region 2
at a particular time means that there must have been one in
Region 1 at the matching time; however, the converse is not
true.

An advantage that RASE has is its potential implementation
in a larger range of systems. This is in contrast with the
implementation of current photon echo quantum memories.
Current quantum memory echo techniques use very fine
spectral features prepared in the inhomogeneous line rather
than the natural inhomogeneous profile and optical rephasing
pulses. Indeed the fact that AFC [15] and CRIB [11,12] type
echoes ideally want homogeneously broadened ensembles has
led to their investigation in non-solid-state systems [28]. When
selecting a rare-earth ion system, one finds that the systems
long-lived spectral holes, such as europium or praseodymium,
have inconvenient wavelengths (≈580 nm and ≈606 nm), in
systems which are much more compatible with optical fibers
and diode lasers the holes are much more transient, making
high-fidelity operation difficult at best.

V. IMPERFECT π PULSES

So far we have treated the π pulses as ideal and the effect of
nonideal π pulses needs to be considered. It is feasible to make
a pulse such that afterward one can make the approximation
σz ≈ 1 especially as we are interested in optically thin samples.
The ability to do this in optically thick samples is also helped
by the area theorem, which states that a π pulse remains a
π pulse as it propagates through a medium [18,29]. In the
situation where σz ≈ 1 after the pulse, we can model our
nonideal π pulse as the combination of an ideal π pulse and
some excitation of the D̂e field. This excitation of the D̂e field
will be temporally brief, and if the inhomogeneous broadening
is flat the ensemble of atoms will quickly dephase leading to
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no net polarization in the ensemble shortly after the π pulse.
This means that the excitation produced by the imperfect
π pulse will no longer interact with the optical field (unless
it is rephased by another strong pulse). The ability to prepare
an ideal inverted medium for classical information processing
has been investigated experimentally [30].

VI. PHASE MATCHING

The treatment so far has involved only one spatial dimen-
sion. One way to consider the effect of phase matching is by
extending to a 3D treatment in the paraxial approximation. In
this case we replace a(z, t) → a(z, kt , t) and σ−(z,�, t) →
σ−(z, ρ,�, t), where kt = (kx, ky) is the transverse wave
vector and ρ = (x, y) is the transverse position. Our linearized
Maxwell Bloch equations for the ground state become

∂

∂t
D̂g(z, ρ,�, t) = i� D̂g(z, ρ,�, t)

+ i

4π2

∫
d2kt â(z, kt , t)e

ikt ·ρ (18)

∂

∂z
â(z, kt , t) = iα

2π

∫
d2ρ

∫ ∞

−∞
d� D̂g(z, ρ,�, t)e−ikt ·ρ .

(19)

Fourier transforming the atomic operators along the trans-
verse dimensions by defining

D̂g(z, kt , �, t) =
∫

d2ρ D̂g(z, ρ,�, t) exp(−ikt · ρ)
(20)

leads to Maxwell-Bloch equations that are diagonal in the
transverse wave vector

∂

∂t
D̂g(z, kt , �, t) = i� D̂g(z, kt , �, t) + iâ(z, kt , t) (21)

∂

∂z
â(z, kt , t) = iα

2π

∫ ∞

−∞
d� D̂g(z, kt�, t). (22)

For the excited-state Maxwell-Bloch equation, the same
procedure gives

∂

∂t
D̂†

e(z, kt , �, t) = i� D̂†
e(z, kt , �, t) − i â(z,−kt , t) (23)

∂

∂z
â(z, kt , t) = iα

2π

∫ ∞

−∞
D̂†

e(z,−kt , �, t) d�. (24)

In the situation where the π pulse is applied off axis the
phase of the π pulse depends on the transverse position leading
to the transformation

D̂e(z, ρ,�, t) ← D̂g(z, ρ,�, t) exp(2ikπ · ρ), (25)

or, after Fourier transforming,

D̂e(z, kt , �, t) ← D̂g(z, kt − 2kπ ,�, t). (26)

With the RASE pulse sequence described in Fig. 2, the
phase of the first π pulse does not matter. The atoms are all
in the ground state before the pulse and assuming a perfect π

pulse will end up in the excited state afterward regardless. Any
small coherent excitation caused by imperfect π pulses can be

ignored; it will quickly dephase because of the inhomogeneous
broadening and will not be rephased as an echo until after
the second π pulse that is outside the region of time of
interest. The ASE caused by the inversion due to this π pulse
will be spatially multimode, with the amount of ASE in a
particular mode determined by the gain experienced traversing
the sample.

Suppose we set a detection system to look at the ASE
produced with wave vector kASE, from Eqs. (23) and (24). We
can see that the light with this wave vector is entangled with
the atomic excitation with mode −kASE. The π pulse transfers
this to the wave vector −kASE + 2kπ according to Eq. (26).
Equations (21) and (22) connect atomic and optical modes
with the same wave vector so we have that the wave vector for
the RASE is kRASE = −kASE + 2kπ or

kASE + kRASE = 2kπ . (27)

This is the same phase-matching condition as a two-pulse
photon echo, kinput + kecho = 2kπ . While this phase-matching
condition is valid outside the paraxial regime, the only way to
achieve phase matching is with the beams collinear or close to
conlinear, because the ASE the RASE and the π pulse must
all be at the same frequency.

A. DLCZ Protocol

It is interesting to consider the relationship of the current
scheme with the DLCZ protocol [19]. The DLCZ proto-
col involves the creation of entanglement between distant
ensembles. The relevant energy level diagrams are shown
in Fig. 4(a). Once the level |3〉 has been adiabatically
eliminated, the write process is formally equivalent to a set
of excited-state atoms (|1〉) spontaneously emitting into the
level |2〉. The emitted optical field is then steered elsewhere for
entanglement generation with another ensemble of atoms [19].
Once entanglement is generated between two ensembles, one
wishes to read out one ensembles atomic field to a photonic
field in order to implement entanglement swapping [19]. For
the read process, state |2〉 becomes the excited state and state
|1〉 the ground state.

(a)

(b)

FIG. 4. (Color online) (a) DLCZ protocol showing write and read
process. (b) Modified protocol. The inhomogeneous broadening of
the |1〉-|2〉 transition now leads to an increase in bandwidth.
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One problem with this is the inhomogeneous broaden-
ing of the |1〉-|2〉 transition causes dephasing limiting the
time separation between the writing and reading process.
A modified DLCZ protocol, in close analogy with RASE,
would overcome this problem. A rephasing pulse on the
|1〉-|2〉 transition utilizes the inhomogeneous broadening, now
increasing the bandwidth of the process rather than reducing
the time separations. The sequence of events for this modified
DLCZ protocol are shown in Fig. 4(b). It is worth noting that
the modified DLCZ protocol does not have the same issue with
echo efficiency as the two-level scheme because the classical
coupling field can be altered meaning that the ensemble can
be optically thin for the writing process and thicker for the
reading process.

The phase-matching conditions for the modified DLCZ
protocol will be the same as given in Eq. (27) for RASE.

However, with a Raman transition it is the wave vector
difference for the two optical fields that is important. This
means that one has alot more freedom in the implementation
because one is not restricted by the requirement that ω = ck,
as one is in the two-level case.

VII. CONCLUSION

In conclusion we have shown that rephased amplified
spontaneous emission has strongly nonclassical correlations
with the original amplified spontaneous emission in the
optically thin regime. This leads to the possibility of a modified
DLCZ protocol, where the problem of dephasing due to inho-
mogeneous broadening of the hyperfine transitions is solved
by a rephasing pulse, increasing the bandwidth of the process.
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