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I. INTRODUCTION

One of the most important physical systems for both
classical and quantum mechanics is the harmonic oscillator.
In contrast to the nonrelativistic harmonic oscillator that is
discussed in most textbooks, the theory of the relativistic
harmonic oscillator is far from complete. The reason for this
is the complexity of the problem related to the nonlinearity
of differential equations of motion for the classical relativistic
oscillator. No wonder that even in the simple case of the mas-
sive one-dimensional relativistic oscillator there are problems
with the identification of periodic solutions to equations of
motion [1]. The problem of a quantum relativistic harmonic
oscillator is usually formulated in one of three different
frameworks: the Klein-Gordon, Dirac, or Salpeter equations.
The first one uses the spinless Klein-Gordon equation with
a Lorentz invariant oscillatory potential [2]. However, the
solutions of that equation are blamed by pathologies such as
the appearance of ghost states. The second approach, referred
to by Moshinsky [3] as the “Dirac oscillator” and describing
spin one-half particles utilizes the Dirac equation with an
appropriate combination of the scalar, vector, and tensor cou-
plings with an external field [4]. It can be successively applied
to the analysis of relativistic symmetries, which recently
were recognized experimentally in both nuclear and hadron
spectroscopy [5]. Unfortunately, this approach has no classical
relativistic counterpart. Finally, the third approach follows
from the relativistic Hamiltonian dynamics for a scalar particle
and on the quantum level it is based on the spinless Salpeter
equation [6]. The Salpeter equation [6–16] is a “square root”
of the Klein-Gordon equation [17] and can be regarded as its
alternative [16]. The serious advantages of the Salpeter scheme
are the lack of problems with probabilistic interpretation on the
quantum level as well as the classically well-defined physical
content of this theory. This last framework is frequently used as
a phenomenological description of the quark-antiquark-gluon
system as a hadron model.

Surprisingly, to our best knowledge, the simplest case of the
massless relativistic harmonic oscillator was not discussed in
the literature. In this work we perform a detailed analysis of the
massless relativistic harmonic oscillator. In particular, we find
the exact solutions to the classical Hamilton equations as well
as to the corresponding quantum Salpeter equation and discuss
their basic properties. The article is organized as follows. In
Sec. II, by integrating the corresponding Hamilton system we
identify all kinds of possible motion of the oscillator as well
as find its quantative characteristics. For an easy illustration of
the dynamics of the relativistic massless harmonic oscillator
we also provide a graphical presentation of the numerical inte-

gration of the equations of motion. Section III is devoted to the
quantization of the massless relativistic harmonic oscillator.

II. THE ANALYSIS OF THE CLASSICAL RELATIVISTIC
MASSLESS HARMONIC OSCILLATOR

The Hamiltonian of the relativistic massless particle subject
to the potential 1

2κ2x2 is given by

H = c| p| + 1
2κ2x2, (2.1)

where x and p are the position and the momentum of a particle,
| p| =

√
p2 is the norm of the vector p (so c| p| is the kinetic

energy of the particle), κ is a constant, and c is the speed of
light. Therefore, the Hamilton’s equations are

ẋ = c
p

| p| ,
(2.2)

ṗ = −κ2x.

We point out that an immediate consequence of Eq. (2.2) is
ẋ2 = c2, that is, the length of the velocity is c, as it should be
for a massless particle. The familiar integrals of the motion
in a central field [18] are the energy E and the angular
momentum J

E = c| p| + κ2

2
x2, (2.3)

J = x × p. (2.4)

As a result of the conservation of the angular momentum J the
motion is planar and we can restrict, without loss of generality,
to the case of a particle moving in the (x1, x2) plane. On passing
to the polar coordinates x = (x1, x2) = (r cos ϕ, r sin ϕ) and
p = (p1, p2) = (p cos θ, p sin θ ), where r = |x| and p = | p|,
we obtain from Eq. (2.2) the following system

ṙ = c cos(θ − ϕ),

ϕ̇ = c

r
sin(θ − ϕ),

(2.5)
ṗ = −κ2r cos(θ − ϕ),

θ̇ = κ2 r

p
sin(θ − ϕ).

The integrals of the motion take the form

E = cp + 1
2κ2r2, (2.6)

J ≡ J3 = rp sin(θ − ϕ). (2.7)

From Eqs. (2.5), (2.6), and (2.7) we find

r

√
r2

(
E − κ2

2
r2

)2

− (Jc)2 dϕ = ±|J |cdr. (2.8)
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We point out that the “+” and “−” signs correspond to the two
possible orientations of the angular momentum. We choose,
without loss of generality, the sign “+” and J > 0 throughout
this work. Now, from Eq. (2.8) we find that the trajectories
should satisfy

r

(
E − κ2

2
r2

)
� Jc, (2.9)

and we can classify the types of motion as follows. The first
two possibilities refer to J �= 0. Namely,

1. For r(E − κ2

2 r2) = Jc, we get

r = R =
√

2E

3κ2
, ϕ = ωt + ϕ0,

(2.10)
p = p0 = 2E

3c
, θ = ωt + ϕ0 + π

2
,

where ω = c
R

= κ2R
p0

= c

√
3κ2

2E
. So in this case we have

a uniform motion in a circle with the linear speed
|v| = ωR = c. This solution can also be obtained from
Eq. (2.2) by demanding x p = 0. Indeed, it can be easily
checked that Eqs. (2.2) and (2.3) imply the system

d

dt
x p = E − 3

2
κ2x2,

d

dt
p2 = −2κ2x p, (2.11)

d

dt
x2 = 2c

| p| x p.

From Eq. (2.11) it follows easily that the orthogonality
of x and p refers to the motion of a particle in a circle

with radius |x| = R =
√

2E

3κ2 .

2. For r(E − κ2

2 r2) > Jc, the path lies entirely within the
annulus bounded by the circles r = rmin and r = rmax,
that is, we have

rmin � r � rmax, (2.12)

where rmin and rmax are the real positive solutions of the
equation

κ2

2
r3 − rE + Jc = 0. (2.13)

We find after some calculation

rmin = 2

√
2E

3κ2
sin

α

3
, (2.14)

rmax =
√

2E

3κ2

(√
3 cos

α

3
− sin

α

3

)
, (2.15)

where sin α = Jc

κ2 ( 3κ2

2E
)

3
2 and 0 � α � π

2 .
We now return to Eq. (2.8). An immediate conse-

quence of the integration of Eq. (2.8) is the the relation

ϕ = ϕ0 + Jc

2

∫ r2

r2
0

dx

x

√
x
(
E − κ2

2 x
)2 − (Jc)2

. (2.16)

In the particular case of r0 = rmin �= 0 and r(t) >

rmin, t > 0, the integral from the right-hand side of

Eq. (2.16), can be expressed by means of the elliptic
integral of the third kind �(φ, n, k) (see Ref. [19],
3.137, Eq. (3)), namely we have

ϕ = ϕ0 + 2Jc

κ2r2
min

√
r2− − r2

min

�

(
arcsin

√
r2 − r2

min

r2
max − r2

min

,

1 − r2
max

r2
min

,

√
r2

max − r2
min

r2− − r2
min

)
, r0 = rmin, (2.17)

where r− is the negative root of the polynomial from
the left-hand side of Eq. (2.13) satisfying

rmin + rmax + r− = 0, r2
− > r2

max > r2
min.

(2.18)

Clearly Eq. (2.17) defines r as an implicit function of ϕ.
Furthermore, for r0 = rmax �= 0 and r(t) < rmax,

t > 0, the implicit equation for the trajectory can
be obtained from Eq. (2.16) with the help of the
elliptic functions of the third kind �(φ, n, k) and
first kind F (φ, k) (see Ref. [19], 3.137, Eq. (4)). It
follows that

ϕ = ϕ0 − 2Jc

κ2r2−r2
max

√
r2− − r2

min

[(
r2
− − r2

max

)

× �

(
arcsin

√(
r2− − r2

min

)(
r2

max − r2
)

(
r2

max − r2
min

)
(r2− − r2)

,

r2
max − r2

min

r2− − r2
min

r2
−

r2
max

,

√
r2

max − r2
min

r2− − r2
min

)

+ r2
maxF

(
arcsin

√(
r2− − r2

min

)(
r2

max − r2
)

(
r2

max − r2
min

)
(r2− − r2)

,

√
r2

max − r2
min

r2− − r2
min

)]
, r0 = rmax. (2.19)

Now, the four-dimensional system (2.2), where x =
(x1, x2) and p = (p1, p2) are completely integrable.
Indeed, it possesses two integrals in involution E and
J . Therefore, the motion between two circles with the
radius rmin and rmax can be only quasiperiodic and
periodic. Of course, the case of the periodic motion
refers to a closed path. This means that an angle 	ϕ

given by [see formula (2.17)]

	ϕ = Jc

2

∫ r2
max

r2
min

dx

x

√
x
(
E − κ2

2 x
)2 − (Jc)2

= 2Jc

κ2r2
min

√
r2− − r2

min

×�

(
π

2
, 1 − r2

max

r2
min

,

√
r2

max − r2
min

r2− − r2
min

)
, (2.20)
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FIG. 1. The periodic solution of the system (2.2) obtained by
numerical integration. The initial data are x0 = (0.479000, 0.000000)
m, p0 = (0.000000, 1.290805) Jsm−1, the parameter κ2 = 1 Jm−2,
and c = 1 ms−1.

should be a rational function of π (i.e., 	ϕ = πm/n,
where m and n are integers). An example of a periodic
motion between two circles is presented in Figs. 1 and 2.
It should be noted that the length of momentum (kinetic
energy of the particle c| p|) has maximum at r = rmin,
decreases (increases) as r approaches rmax (rmin), and
for r = rmax has minimum. Clearly such behavior of the
momentum of a massless particle is consistent with the

FIG. 2. The plot of the radius r = |x| (solid line) and the length
of momentum p = | p| (dotted line) versus time obtained by the
numerical integration of (2.11). The initial condition is the same
as in Fig. 1.

form of Eq. (2.6). The values of rmin and rmax as well
as the extrema of the length of the momentum can be
expressed as a function of the energy by means of the
implicit formulas (2.14) and (2.15). We finally remark
that the case of the uniform motion in a circle discussed
earlier [type 1) of the motion] refers to the condition

rmin = rmax = R =
√

2E

3κ2 .
The third type of the motion corresponds to J = 0,

so we have
3. r(E − κ2

2 r2) � 0. From this inequality we find

0 � r � rmax =
√

2E
κ

. On the other hand, taking into
account Eq. (2.7) we find that for J = 0 the system
(2.5) reduces to

ṙ = ±c,

ϕ̇ = 0,
(2.21)

ṗ = ∓κ2r,

θ̇ = 0,

where θ − ϕ = 0 or |θ − ϕ| = π . Therefore, a particle
motion is uniform in a segment [0,

√
2E
κ

], more

precisely, we have r = ±ct + r0, where 0 � r �
√

2E
κ

and the two signs correspond to two possible directions
of motion. Assuming that a particle moves in the
x-coordinate line, (i.e., x = x1) we get

x = ±ct + x0, −rmax � x � rmax, (2.22)

where the turning points are x = rmax and x = −rmax.
On setting x0 = −rmax, we can write the trajectory
explicitly as

x(t) = (−1)[ 2t
T

]c

{
t −

(
2

[
2t

T

]
+ 1

)
T

4

}
, (2.23)

where T = 4rmax
c

is the period of oscillations of a mass-
less particle between the turning points x = rmax and
x = −rmax and [a] is the biggest integer in a. The trajec-
tory (2.23) is illustrated in Fig. 3. Notice that, at the turn-
ing points, the momentum of a massless particle van-
ishes [see Eq. (2.6) for r = rmax] that is pmin = 0. The
maximum value of momentum pmax = E

c
is reached

for x = 0. The time development of the momentum for
p0 = 0 and x0 = −rmax can be written in the form

p = −κ2

2

(
x2(t) − c

T

4

)
, (2.24)

where x(t) is given by Eq. (2.23). The plot of p

versus t is shown in Fig. 3. Because the momentum
of a massless particle tends to zero as its position
approaches the turning point we deal with a “red shift”
similar to the gravitational one. It should also be
noted that the motion in the segment can be easily
obtained from Eq. (2.11) by setting x p

|x|| p| = ±1, that
is, x and p are parallel or antiparallel and therefore
satisfy x × p = 0. Evidently, in the case of the system
(2.2) this condition is equivalent to J = 0. We point
out that the motion in a segment corresponds to the
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FIG. 3. The plot of the coordinate (solid line) and the momentum
(dotted line) of a massless oscillating particle versus time given by
Eqs. (2.23) and (2.24), respectively, where c = 1 ms−1, κ2 = 1 Jm−2,
rmax = 1 m, and T = 4 s.

condition rmin = 0 and rmax =
√

2E
κ

for the nonnegative
solutions to Eq. (2.13). We finally remark that the type
of motion is completely determined by the values of
the energy E and the angular momentum J . Namely,
using the parametrization of rmin and rmax defined by
Eqs. (2.14) and (2.15) we find

0 � Jc

κ2

(
3κ2

2E

) 3
2

� 1, (2.25)

where Jc

κ2 ( 3κ2

2E
)

3
2 = 1 refers to the motion in a circle,

0 < Jc

κ2 ( 3κ2

2E
)

3
2 < 1 corresponds to the motion between

two circles, and Jc

κ2 ( 3κ2

2E
)

3
2 = 0, so J = 0 is the condition

for the motion in the segment.

III. QUANTUM MECHANICS OF THE RELATIVISTIC
MASSLESS HARMONIC OSCILLATOR

In relativistic quantum mechanics the massless harmonic
oscillator defined by the Hamiltonian (2.1) is described by a
massless version of the spinless Salpeter equation

ih̄
∂

∂t
ψ(x, t) =

(
ch̄

√
−	x + κ2

2
x2

)
ψ(x, t), (3.1)

where 	x = ( ∂
∂x )2. Therefore, the eigenvalue equation for the

Hamiltonian ĤψE = EψE takes the form of the pseudodiffer-
ential equation

(
ch̄

√
−	x + κ2

2
x2

)
ψE(x) = EψE(x). (3.2)

Performing the Fourier transformation

ψ(x) = 1

(2πh̄)
3
2

∫
d3kei kx

h̄ ψ̃(k), (3.3)

we get from Eq. (3.2) the following equation(
−	k + 2c

(κh̄)2
|k|

)
ψ̃E(k) = 2E

(κh̄)2
ψ̃E(k), (3.4)

where 	k = ( ∂
∂k )2. Finally, switching over to the spherical co-

ordinates k = (k sin α cos β, k sin α sin β, k cos α), where k =
|k| and making the ansatz

ψ̃E(k) = χ (k)

k
Ym

l (α, β), (3.5)

where Ym
l (α, β) are the spherical functions, we obtain the

“radial equation”(
− d2

dk2
+ l(l + 1)

k2
+ 2c

(κh̄)2
k

)
χ (k) = 2E

(κh̄)2
χ (k). (3.6)

To our best knowledge, in the case of l �= 0 the solution of
Eq. (3.6) is not known. For l = 0 the solution to Eq. (3.6) can
be expressed by means of the Airy function Ai(x) [20], namely

χ (k) = CAi

[
2c

(2cκh̄)
2
3

(
k − E

c

)]
, (3.7)

where C is constant. We point out that l = 0 was also the case
discussed in Ref. [6] where the recurrence was identified that is
satisfied by coefficients of the formal power expansion for the
solution to the spinless Salpeter equation corresponding to the
massive relativistic harmonic oscillator. Clearly l = 0 refers
to the vanishing angular momentum, therefore we deal in this
case with the quantization of the motion of a massless particle
in the segment 0 � r � rmax =

√
2E
κ

discussed in the previous
section and corresponding to the condition J = 0 (third type
of the motion). Furthermore, for l = 0 the ansatz (3.5) takes
the form

ψ̃E(k) = χ (k)

k
Y 0

0 (α, β) = 1√
4π

χ (k)

k
. (3.8)

Demanding that ψ̃E(k) is well defined for k = 0 we find
χ (0) = 0 (compare Ref. [21] Eq. (32.11)), which leads to
Ai(− 2E

(2cκh̄)
2
3

) = 0. This quantization condition means that the

values of the energy En, n = 1, 2, . . . , are given by the zeros
of the Airy function an. We have

En = − (2cκh̄)
2
3

2
an, n = 1, 2, . . . , . (3.9)

Using the fact that the functions Ai(x + an)/Ai′(an), n =
1, 2, . . . , where Ai′(x) designates the derivative of the Airy
function Ai(x), form an orthonormal basis on the interval
[0,∞) [16], we find that the normalized solutions (3.5) to (3.4)
in the Hilbert space L2(R3, d3k), with l = 0 can be written as

ψ̃n(k) ≡ ψ̃En
(k) =

√
c

2π

1

(2cκh̄)
1
3

1

Ai′(an)

1

k

× Ai

(
2c

(2cκh̄)
2
3

k + an

)
. (3.10)
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FIG. 4. The plot of the quantum probability density ρn(r) = |ψn(x)|2 (solid line), where ψn(x) is the wave function (3.12) and the classical
probability density ρcl(r) (dashed line) given by (3.13), where rmax = rmax(En) =

√
2En

κ
. We set c = 1 ms−1, κ2 = 1 Jm−2, and h̄ = 1 Js.

From Eqs. (3.10) and (3.3) we finally obtain the normalized
wave functions such that

ψn(x) =
√

c

h̄

1

π

1

(2cκh̄)
1
3

1

Ai′(an)

1

r

∫ ∞

0
dk sin

kr

h̄

× Ai

(
2c

(2cκh̄)
2
3

k + an

)
, (3.11)

where r = |x|.
As in the case of the nonrelativistic harmonic oscillator

with the probability density different from zero outside the
turning points, the probability density ρn(r) = |ψn(x)|2 does
not vanish for r > rmax(En), where rmax(En) =

√
2En

κ
, n =

1, 2, . . . ,. However, it follows from the numerical calculation
that ρn(r) has no maxima for r > rmax(En) (see Fig. 4).
Furthermore, taking into account all directions of the motion
in the segment [0, rmax] (the classical limit does not deal with

a single classical orbit but an ansamble of classical orbits [22])
and taking into account that the probability of finding a particle
in the spherical layer r , r + dr is inverse proportional to the
surface of the sphere with radius r , we find that the classical
probability density is given by the formula

ρcl(x) ≡ ρcl(r) = θ (rmax − r)

4πrmaxr2
, (3.12)

where rmax =
√

2E
κ

and θ (x) is the Heaviside step function.
Clearly, the normalization condition is of the form∫

d3xρcl(x) =
∫ ∞

0
ρcl(r)dµ(r) = 1, (3.13)

where dµ(r) = 4πr2dr . The comparison of the quantum
probability density ρn(r) and the classical one ρcl(r) for
rmax(En) is shown in Fig. 4. As expected the differences
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between the quantum and the classical descriptions decrease
as the quantum number n increases.

We now discuss the expectation values of both the kinetic
and potential energies. Using the identity [23]

1

[Ai′(an)]2

∫ ∞

0
xAi2(x + an)dx = −2

3
an, (3.14)

Eqs. (3.10), and (3.9) we get

〈ψn|cp̂ψn〉 = c

∫
d3k|k||ψn(k)|2 = 2

3
En, (3.15)

where p̂ =
√

p̂2. Hence, taking into account the form of the
Hamiltonian in Eq. (3.1), we find〈

ψn

∣∣∣∣∣κ
2

2
r̂2ψn

〉
= 1

3
En, (3.16)

where r̂ =
√

x̂2. We conclude that the virial theorem takes
the nonstandard form in the case of the massless relativistic
harmonic oscillator. More precisely, the roles of the kinetic
and potential energies are exchanged. Interestingly, we have
the same formulas on average kinetic and potential energies in
the classical case. Indeed, from Eq. (3.12) it follows easily that〈

κ2

2
r2

〉
cl

= κ2

2

∫ ∞

0
r2ρcl(r)dµ(r) = 1

3
E. (3.17)

Therefore, by virtue of the first equation of Eq. (2.3) we have

〈cp〉cl = 2

3
E. (3.18)

We finally write down the following approximate relation
obtained numerically

〈ψn|r̂ψn〉 ≈ rmax(En)

2
=

√
2En

2κ
, (3.19)

where the formula is exact in the limit n → ∞. The
approximation in Eq. (3.19) is very good. The maximal

relative error |[〈ψn|r̂ψn〉 − rmax(En)/2]/〈ψn|r̂ψn〉| arising in
the case with n = 1 is about 5% and is lesser than 1% for
n = 2. The fact that the limit n → ∞ [when we have the
exact equality in Eq. (3.19)] is the classical limit is confirmed
by the classical formula

〈r〉cl =
∫ ∞

0
rρcl(r)dµ(r) = rmax

2
=

√
2E

2κ
, (3.20)

following directly from Eq. (3.12).

IV. CONCLUSION

In this work we study the relativistic massless harmonic
oscillator in both classical and quantum cases. It seems
that the obtained results concerning the classical oscillator
are of importance not only from the physical point of
view. Indeed, Eq. (2.2) is one of the simplest examples
of a nonlinear Hamiltonian system with constant length of
velocity. As far as we are aware such an interesting class
of nonlinear dynamical systems was not discussed in the
literature. Referring to the observations of this work related to
the quantum mechanics of the relativistic massless harmonic
oscillator we wish to point out that Eq. (3.11) is, to our best
knowledge, the first example of the nontrivial exact solution
to the Salpeter equation. We also stress the good behavior
of the corresponding probability density and expectation
values of observables, which confirms the correctness of the
quantization based on the massless spinless Salpeter equation.
Furthermore, we obtain the exact formula (3.9) on the spectrum
of the Hamiltonian. It should be noted that for the Salpeter
equation only energy bounds were analyzed in the literature
so far (for the massive relativistic harmonic oscillator see
Ref. [10]). Finally, we have obtained the interesting form
of the virial theorem for the massless relativistic harmonic
oscillator with the exchanged roles of the kinetic and potential
energies.

[1] R. E. Mickens, J. Sound Vib. 212, 905 (1998); Z. Reut, ibid.
242, 194 (2001).

[2] I. Bars, Phys. Rev. D 79, 045009 (2009).
[3] M. Moshinsky and A. Szczepaniak, J. Phys. A 22, L817 (1989).
[4] R. Lisboa, M. Malheiro, A. S. de Castro, P. Alberto, and

M. Fiolhais, Phys. Rev. C 69, 024319 (2004).
[5] J. N. Ginocchio, Phys. Rep. 414, 165 (2005).
[6] Z. F. Li, J. J. Liu, W. Lucha, and F. F. Schöberl, J. Math. Phys.
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