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It is known that an interacting bipartite system evolves as an entangled state in general, even if it is initially in
a separable state. Due to the entanglement of the state, the geometric phase of the system is not equal to the sum
of the geometric phases of its two subsystems. However, there may exist a set of states in which the nonlocal
interaction does not affect the separability of the states, and the geometric phase of the bipartite system is then
always equal to the sum of the geometric phases of its subsystems. In this article, we illustrate this point by
investigating a well-known physical model. We give a necessary and sufficient condition in which a separable
state remains separable so that the geometric phase of the system is always equal to the sum of the geometric
phases of its subsystems.
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I. INTRODUCTION

The notion of geometric phase was first addressed by
Pancharatnam for the comparison of the phases of two
beams of polarized light in 1956 [1]. It was later shown
to have important consequences for quantum systems. In
1984, Berry demonstrated that quantum system undergoing
a cyclic adiabatic evolution acquires a phase with geometric
nature [2]. Since then, geometric phase has attracted great
interest. The original notion of Berry phase has been extended
to nonadiabatic cyclic evolution by Aharonov and Anandan
in 1987 [3], and to nonadiabatic and noncyclic evolution by
Samuel and Bhandari in 1988 [4].

Although all these extensions of quantum systems are in
pure states, another line of development has been toward
extending the geometric phase to mixed states. The early
extension to mixed states was given by Uhlmann within the
mathematical context of purification [5]. In 2000, Sjöqvist
et al. introduced an alternative definition of geometric phases
for mixed states under unitary evolution based on quantum
interferometry [6], and subsequently Singh et al. gave a
kinematic description of the mixed state geometric phase
and extended it to degenerate density operator [7]. The
generalization of mixed geometric phases to quantum systems
in nonunitary evolution was given by Tong et al. in 2004
[8]. Other discussions or experimental demonstrations of
geometric phases for mixed states may be found in Refs.
[9–24].

Another interesting issue of geometric phase is the relation
of the bipartite or multipartite system with its subsystems.
Sjöqvist calculated the geometric phase of a pair of entangled
spin-half particles precessing in a time-independent uniform
magnetic field [25], and the relative phase for polarization-
entangled two-photon systems was considered by Hessmo
et al. [26]. Tong et al. calculated the geometric phase of a
bipartite entangled spin-half system in a rotating magnetic
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field [27] and investigated entangled bipartite systems with
local unitary evolutions [28]. The effect of entanglement on the
mutual geometric phase was recently studied by Williamson
et al. [29]. Other discussions on geometric phases of composite
systems and its applications may be found in Refs. [30–35].

All the previous discussions concerning the relation of the
geometric phase of the composite system with its subsystems
were of the systems under local unitary evolutions, U (t) =
Ua(t) ⊗ Ub(t). It was shown that the geometric phase of the
composite system, γab, does not equal the sum of the geometric
phases of its subsystems, γa and γb, in general [28,29]. The
expression γab = γa + γb is valid only if the initial state is a
separable one. This is because the entanglement of the state
leads to an indecomposable geometric phase of the composite
system. Since the interaction between two subsystems can
lead to an entanglement of the subsystems, it is usually
deemed that the geometric phase of the composite system
in nonlocal unitary evolution does not equal the sum of the
geometric phases of its subsystems in general, even if the
initial state of the system is separable. In the present article,
we investigate a well-known physical model, two interacting
spin-half particles in a rotating magnetic field. We aim to
show that there may exist a set of states in which the nonlocal
interaction does not affect the separability of the states, and
therefore the geometric phase of the bipartite system is always
equal to the sum of the geometric phases of its subsystems. A
necessary and sufficient condition for the set of separable states
is given.

II. THE INTERACTING TWO–SPIN-HALF MODEL

Consider the system of two interacting spin-half particles
in a rotating magnetic field, the Hamiltonian of which is
described as

Ĥ (t) = Ĥa(t) ⊗ I + I ⊗ Ĥb(t) + Ĥab(t), (1)

where Ĥµ(t) = �B(t) · �σµ (µ = a, b), Ĥab(t) = J �σa · �σb.
Here, �B(t) = B(sin θ cos ωt, sin θ sin ωt, cos θ ) is the rotating
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magnetic field. �σa and �σb are the Pauli operators of spins a

and b, respectively. J denotes the interaction strength between
a and b, and J > 0 describes antiferromagnetic coupling and
J < 0 describes ferromagnetic coupling.

The state of the system, |ψ(t)〉, satisfies the Schrödinger
equation,

i
d

dt
|ψ(t)〉 = Ĥ (t)|ψ(t)〉, (2)

with initial state being |ψ(0)〉. |ψ(t)〉 may be expressed as

|ψ(t)〉 = f1(t)|00〉 + f2(t)|01〉 + f3(t)|10〉 + f4(t)|11〉, (3)

where |ij 〉 (i, j = 0, 1) are the abbreviations of |i〉 ⊗ |j 〉
with |0〉 = (

1
0 ) and |1〉 = (

0
1 ), and fk(t)(k = 1, 2, 3, 4) are

functions of t to be determined, satisfying
∑4

k=1 |fk(t)|2 = 1.
Substituting Eq. (3) into Eq. (2), we have

i
d

dt

⎛
⎜⎜⎜⎝

f1(t)

f2(t)

f3(t)

f4(t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

J + 2B cos θ B sin θe−iωt B sin θe−iωt 0

B sin θeiωt −J 2J B sin θe−iωt

B sin θeiωt 2J −J B sin θe−iωt

0 B sin θeiωt B sin θeiωt J − 2B cos θ

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

f1(t)

f2(t)

f3(t)

f4(t)

⎞
⎟⎟⎟⎠ , (4)

that is,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iḟ1 = (J + 2B cos θ )f1 + (B sin θ )e−iωtf2 + (B sin θ )e−iωtf3,

iḟ2 = (B sin θ )eiωtf1 − Jf2 + 2Jf3 + (B sin θ )e−iωtf4,

iḟ3 = (B sin θ )eiωtf1 + 2Jf2 − Jf3 + (B sin θ )e−iωtf4,

iḟ4 = (B sin θ )eiωtf2 + (B sin θ )eiωtf3 + (J − 2B cos θ )f4.

(5)

To resolve the above differential equations, we further
let f1(t) = f̄1(t)e−iωt , f2(t) = f̄2(t), f3(t) = f̄3(t), f4(t) =
f̄4(t)eiωt . Then, Eq. (5) becomes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

i ˙̄f 1 = (J + 2B cos θ − ω)f̄1 + B sin θf̄2 + B sin θf̄3,

i ˙̄f 2 = B sin θf̄1 − J f̄2 + 2J f̄3 + B sin θf̄4,

i ˙̄f 3 = B sin θf̄1 + 2J f̄2 − J f̄3 + B sin θf̄4,

i ˙̄f 4 = B sin θf̄2 + B sin θf̄3 + (J − 2B cos θ + ω)f̄4.

(6)

Equation (6) is a set of first-order linear ordinary differential
equations. Its solution can be obtained by solving the charac-
teristic equation. The four characteristic roots are

λ1 = 3J,

λ2 = −J,
(7)

λ3 = −J +
√

4B2 sin2 θ + (2B cos θ − ω)2,

λ4 = −J −
√

4B2 sin2 θ + (2B cos θ − ω)2,

each of which corresponding to a characteristic solution with
respect to f̄k(t). With the help of the solutions of f̄k(t), which
directly give the solutions of fk(t), the general solution of
Eq. (2) can be expressed as

|ψ(t)〉 = c1|ψ1(t)〉 + c2|ψ2(t)〉 + c3|ψ3(t)〉 + c4|ψ4(t)〉,
(8)

where the time-independent coefficients ck (k = 1, 2, 3, 4),∑4
k=1 |ck|2 = 1, are to be determined by the initial condition,

and the four particular solutions read

|ψ1(t)〉 = eiλ1t
1√
2

⎛
⎜⎝

0
1

−1
0

⎞
⎟⎠ ,

|ψ2(t)〉 = eiλ2t
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

− 2B sin θ√
4B2 sin2 θ+(2B cos θ−ω)2

e−iωt

2B cos θ−ω√
4B2 sin2 θ+(2B cos θ−ω)2

2B cos θ−ω√
4B2 sin2 θ+(2B cos θ−ω)2

2B sin θ√
4B2 sin2 θ+(2B cos θ−ω)2

eiωt

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

|ψ3(t)〉 = eiλ3t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

4B2 sin2 θ+(2B cos θ−ω)2−(2B cos θ−ω)

2
√

4B2 sin2 θ+(2B cos θ−ω)2
e−iωt

B sin θ√
4B2 sin2 θ+(2B cos θ−ω)2

B sin θ√
4B2 sin2 θ+(2B cos θ−ω)2

−
√

4B2 sin2 θ+(2B cos θ−ω)2+(2B cos θ−ω)

2
√

4B2 sin2 θ+(2B cos θ−ω)2
eiωt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

|ψ4(t)〉 = eiλ4t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
4B2 sin2 θ+(2B cos θ−ω)2+(2B cos θ−ω)

2
√

4B2 sin2 θ+(2B cos θ−ω)2
e−iωt

B sin θ√
4B2 sin2 θ+(2B cos θ−ω)2

B sin θ√
4B2 sin2 θ+(2B cos θ−ω)2√

4B2 sin2 θ+(2B cos θ−ω)2−(2B cos θ−ω)

2
√

4B2 sin2 θ+(2B cos θ−ω)2
eiωt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(9)
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III. THE GEOMETRIC PHASES OF THE
TWO–SPIN-HALF SYSTEM

If the two–spin-half system is initially in state |ψ(0)〉, the
geometric phase obtained by the quantum system during the
time t ∈ [0, τ ] can be calculated by using the formula [36,37],

γab(τ ) = arg〈ψ(0)|ψ(τ )〉 + i

∫ τ

0
〈ψ(t)|ψ̇(t)〉dt. (10)

However, both the subsystems a and b are generally in mixed
states due to the nonlocal interaction, even if the initial state
|ψ(0)〉 is separable. The mixed states of the subsystems can be
expressed as density operators,

ρa(t) = trb|ψ(t)〉〈ψ(t)|, ρb(t) = tra|ψ(t)〉〈ψ(t)|. (11)

The geometric phases of the mixed states in nonunitary
evolutions are calculated by using the formula [8]

γµ(τ ) = arg

(
2∑

m=1

√
ω

µ
m(0)ωµ

m(τ )
〈
φµ

m(0)|φµ
m(τ )

〉

× e− ∫ τ

0 〈φµ
m(t)|φ̇µ

m(t)〉dt

)
, (12)

where ω
µ
m(t) and |φµ

m(t)〉 are the eigenvalues and eigenstates
of the density operators ρµ(t) (µ = a, b), respectively.

By substituting Eqs. (8) and (9) into Eqs. (10) and (11), and
further using Eq. (12), one can calculate the geometric phase
of the two–spin-half system and the geometric phases of its
two subsystems. It is easy to show that γab is not equal to the
sum of γa and γb in general, even if the initial state |ψ(0)〉 is a
separable one.

To illustrate this point, we take |ψ(0)〉 = |01〉 as an
example. In this case, the state of the system at time t reads

|ψ(t)〉 = 1√
2
|ψ1(t)〉 + 1√

2
cos η|ψ2(t)〉

+ 1

2
sin η|ψ3(t)〉 + 1

2
sin η|ψ4(t)〉, (13)

and the geometric phase obtained by the system during the
time t ∈ [0, τ ] is

γab = arctan
sin 4Jτ

cos2 η + sin2 η cos ατ + cos 4Jτ
− 2Jτ, (14)

where

α =
√

4B2 sin2 θ + (2B cos θ − ω)2, (15)

and

tan η = 2B sin θ

2B cos θ − ω
. (16)

The reduced density operators of the subsystems a and b are

ρµ =
(

ρ
µ

11 ρ
µ

12

ρ
µ

21 ρ
µ

22

)
, µ = a, b, (17)

where

ρa
11 = 1 − ρa

22 = 1
2 [1 + (cos2 η + sin2 η cos αt) cos 4J t],

ρa
12 = ρa

21
∗ = 1

2 [sin η cos η(1 − cos αt) (18)

+ i sin η sin αt]e−iωt cos 4J t ;

ρb
11 = 1 − ρb

22 = 1
2 [1 − (cos2 η + sin2 η cos αt) cos 4J t],

ρb
12 = ρb

21
∗ = − 1

2 [sin η cos η(1 − cos αt) (19)

+ i sin η sin αt]e−iωt cos 4J t.

The geometric phases obtained by the subsystems during the
time t ∈ [0, τ ] are, respectively,

γa(τ ) = arctan
− cos η

√
1 − cos ατ√

1 + cos ατ
+ ω sin2 η

2α
sin ατ

+ 1

2
ατ cos η − 1

2
ωτ sin2 η, (20)

and

γb(τ ) = arctan
(

cos η tan
ατ

2

)
− ω sin2 η

2α
sin ατ

− 1

2
ατ cos η + 1

2
ωτ sin2 η. (21)

Clearly, the geometric phase of the large system is not equal
to the sum of the geometric phases of the two subsystems,
γab �= γa + γb, even if the initial state |ψ(0)〉 is a separable
one.

IV. CONDITION FOR GEOMETRIC PHASE OF THE
SYSTEM BEING EQUAL TO THE SUM OF THOSE

OF ITS SUBSYSTEMS

Geometric phase is useful in quantum calculation, but a
real quantum system may comprise two or more subsystems
with interactions between them. In this case when interactions
appear, the geometric phase of the composite system is not
equal to the sum of the geometric phases of its subsystems.
The relations among the geometric phases of the large system
and the subsystems are complicated, and therefore they are
not easy to be synchronously controlled. It is interesting
to find a condition in which the geometric phase of the
composite system equals the sum of the geometric phases of its
subsystems.1 The formulas (10) and (12) show that the value
of the geometric phase of a quantum system not only depends
on the initial state |ψ(0)〉 and the final state |ψ(τ )〉 but also
depends on all the instantaneous states |ψ(t)〉(t ∈ [0, τ ]). It is
determined completely by the path traced by the states. If we
require that the geometric phase of the composite system is
equal to the sum of the geometric phases of its subsystems
for all time, the sufficient condition is that |ψ(t)〉 remains
separable at all time, that is

|ψ(t)〉 = |φa(t)〉 ⊗ |φb(t)〉. (22)

One may demonstrate this point by substituting expression
(22) into geometric phase formulas. Indeed, if there is

1If it is only required that the geometric phase of the composite
system equals the sum of those of its subsystems at some special
time t = τ , there should be no difficulties in choosing initial states.
However, here we require that the geometric phase of the composite
system is always equal to the sum of those of its subsystems at all the
time t ∈ τ .
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|ψ(t)〉 = |φa(t)〉 ⊗ |φb(t)〉 for t ∈ [0, τ ], one then has

arg〈ψ(0)|ψ(τ )〉 = arg〈φa(0)|φa(τ )〉〈φb(0)|φb(τ )〉
= arg〈φa(0)|φa(τ )〉

+ arg〈φb(0)|φb(τ )〉(mod2π ), (23)

and

i

∫ τ

0
〈ψ(t)|ψ̇(t)〉dt = i

∫ τ

0
〈φa(t)|φ̇a(t)〉dt

+ i

∫ τ

0
〈φb(t)|φ̇b(t)〉dt, (24)

where the normalized relations 〈φµ(t)|φµ(t)〉 = 1(µ = a, b)
are used. Substituting them into Eq. (10), one further has

γab(τ ) = γa(τ ) + γb(τ ), (25)

where

γµ(τ ) = arg〈φµ(0)|φµ(τ )〉 + i

∫ τ

0
〈φµ(t)|φ̇µ(t)〉dt,

µ = a, b, (26)

are 2π -modular geometric phases of the subsystems.
With the above knowledge that the geometric phase of the

system is equal to the sum of those of its subsystems if the time-
dependent state is always separable, we may now calculate the
condition for the two interacting spin-half particles. To this
end, we rewrite the general solution expressed by Eq. (8), with
the bases {|00〉, |01〉, |10〉, |11〉}, as

|ψ(t)〉 =
(

− 1√
2
c2 sin ηeiλ2t e−iωt − c3 sin2 η

2
eiλ3t e−iωt

+ c4 cos2 η

2
eiλ4t e−iωt

)
|00〉 +

(
1√
2
c1e

iλ1t

+ 1√
2
c2 cos ηeiλ2t + 1

2
c3 sin ηeiλ3t

+ 1

2
c4 sin ηeiλ4t

)
|01〉 +

(
− 1√

2
c1e

iλ1t

+ 1√
2
c2 cos ηeiλ2t + 1

2
c3 sin ηeiλ3t

+ 1

2
c4 sin ηeiλ4t

)
|10〉 +

(
1√
2
c2 sin ηeiλ2t eiωt

− c3 cos2 η

2
eiλ3t eiωt + c4 sin2 η

2
eiλ4t eiωt

)
|11〉. (27)

Noting that the concurrence of a quantum state provides
a criterion for distinguishing between separable states and
entangled states [38,39], we may obtain the necessary and
sufficient condition for the separable states by calculating the
concurrence of the above state. The concurrence of the state
reads

C(t) =
√

2[1 − tr[trb|ψ(t)〉〈ψ(t)|]2]

= ∣∣c2
2 + 2c3c4 − c2

1e
i8J t

∣∣. (28)

The above equation shows that the concurrence is, if J �= 0,
dependent on the time t . The separability of an initial state
does not guarantee separability of the state at time t . If the
system is initially in a separable state, satisfying c2

2 + 2c3c4 −
c2

1 = 0 with c1 �= 0, it will evolve to an entangled state at

the late time and then go back to a separable state at each
time t = nπ/4J, n = 1, 2, . . .. If we require that the geometric
phase of the composite system is always equal to the sum
of the geometric phases of its subsystems for all time, the
sufficient condition is that |ψ(t)〉 is separable for all time. This
requirement is fulfilled if and only if the concurrence C(t) is
zero for all time, that is

c2
2 + 2c3c4 − c2

1e
i8J t = 0, (29)

which further leads to

c1 = 0,
(30)

c2
2 + 2c3c4 = 0.

Equation (30) is the necessary and sufficient condition in which
an initial separable state of the system keeps in a separable one.
The nonlocal interaction between the two spins does not affect
the separability of the states in the set defined by condition
(30). In this case, the geometric phase of the composite system
is always equal to the sum of the geometric phases of its
subsystems.

To illustrate the above result, we consider an exam-
ple. Let c1 = 0, c2 = − 1√

2
sin η, c3 = − sin2 η

2 , c4 = cos2 η

2 ,
which means that the system is initially in the stats |ψ(0)〉 =
|00〉. At time t , the instantaneous state reads

|ψ(t)〉 = − 1√
2

sin η|ψ2(t)〉 − 1
2 (1 − cos η)|ψ3(t)〉

+ 1

2
(1 + cos η)|ψ4(t)〉, (31)

where α and η have been defined in Eqs. (15) and (16), respec-
tively. The states of the subsystems a and b can be calculated

by using Eq. (11), which gives ρµ = (
ρ

µ

11 ρ
µ

12
ρ

µ

21 ρ
µ

22
), µ = a, b,

with the elements

ρ
µ

11 = 1 − ρ
µ

22 = 1
2 (1 + cos2 η + sin2 η cos αt),

ρ
µ

12 = ρ
µ

21
∗ = 1

2 (sin η cos η(1 − cos αt) + i sin η sin αt)e−iωt .

(32)

By using the formulas (10) and (12), we can calculate the
geometric phases of the system and the subsystems, and we
have

γab(τ ) = arctan
−2 cos η sin ατ

sin2 η + (1 + cos2 η) cos ατ

+ ω sin2 η

α
sin ατ + ατ cos η − ωτ sin2 η, (33)

and

γa(τ ) = γb(τ ) = arctan
− cos η

√
1 − cos ατ√

1 + cos ατ

+ ω sin2 η

2α
sin ατ + 1

2
ατ cos η − 1

2
ωτ sin2 η. (34)

By comparing Eq. (33) with Eq. (34) we see that the geometric
phase of the subsystem is half of the large system.

In passing, we would like to point out that all the states
in the set defined by condition (30) are the eigenstates
of the interaction Hamiltonian. There is no time-dependent
state that is always separable but not an eigenstate of the
interaction Hamiltonian. This is easy to be understood,
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since the interaction does not change the entanglement of
an eigenstate but changes that of a noneigenstate. Noting
that the time-dependent state of the system, initially in a
separable state with c1 �= 0, will be cyclically separable with
the period t = π/4J , one may argue whether the geometric
phase holds the additivity cyclically, too, in the case where
c2

2 + 2c3c4 − c2
1 = 0 but c1 �= 0. A further discussion can show

that the additivity is not valid for the geometric phase in the
case. This is because that geometric phase is equal to total
phase minus dynamic phase, and dynamic phase is not only
dependent on the initial and final states but also dependent on
the states at all the evolutional time t ∈ [0, τ ]. The additivity is
invalid for dynamic phase, although it is valid for total phase,
which is only dependent on the initial and final states. Besides,
it is worth noting that the form of condition (30) is based on the
expression of the basis states |ψk(t)〉(k = 1, 2, 3, 4) in Eq. (9).
It is not gauge invariant. For example, if a π phase difference is
introduced between |ψ3(t)〉 and |ψ4(t)〉, the coefficients c3 and
c4 would acquire a relative sign and the condition would then
read c2

2 − 2c3c4 = 0. In general, there could be an arbitrary
phase factor between c2

2 and 2c3c4 in Eq. (30) if an alternative
expression of basis states are taken. The form of the condition
depends on the choice of phase convention between the basis
states.

V. SUMMARY AND REMARKS

An interacting bipartite system evolves into an entangled
state in general, even if it is initially in a separable state. Due
to the entanglement, the geometric phase of the system is not
equal to the sum of the geometric phases of its two subsystems.
However, there may exist a set of states in which the nonlocal
interaction does not affect the separability of the states, and
the geometric phase of the bipartite system is equal to the sum
of the geometric phases of its subsystems. By considering a
well-known physical model, two interacting spin-half particles
in a rotating magnetic field, we illustrate this point. Indeed, our
calculation shows that the geometric phase of the system is not

equal to the sum of the geometric phases of the subsystems
in general. They are not equal even if the system is initially
in separable states, due to the nonlocal interaction between
the subsystems. Yet, there is such a set of states for which
the nonlocal interaction does not affect the separability of the
states, and the geometric phase of the bipartite system is always
equal to the sum of the geometric phases of its subsystems. We
give a necessary and sufficient condition for an initial separable
state to remain separable.

The geometric property of the geometric phase has stimu-
lated many applications. It has been found that the geometric
phase plays important roles in quantum phase transition,
quantum information processing, etc. [40–42]. The geometric
phase shift can be fault tolerant with respect to certain
types of errors, thus several proposals using nuclear magnetic
resonance (NMR), laser-trapped ions, etc. have been given
to use geometric phase to construct fault-tolerant quantum
information processor [43–45].

The geometric phase is useful in quantum computation, but
real physical systems are usually composite and therefore the
relations among the geometric phase of the large system and
those of the subsystems are complicated. It is very difficult to
control each of the values of them. Our result shows that it is
possible to make the phases’ relations simple if the initial
states are properly chosen. In this sense, our finding may
be useful both in the theory itself and in the applications of
the geometric phase. The investigation on the current bipartite
system involving two–spin-half particles implies that such
kinds of states may exist in other interacting physical systems.

ACKNOWLEDGMENTS

This work is supported by NSF China with Grant Nos.
10875072 and 10675076. Tong acknowledges the support of
the National Basic Research Program of China (Grant No.
2009CB929400). Kwek acknowledges financial support from
the National Research Foundation & Ministry of Education,
Singapore.

[1] S. Pancharatnam, Proc. Indian Acad. Sci. A 44, 247 (1956).
[2] M. V. Berry, Proc. R. Soc. London A 392, 45 (1984).
[3] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987);

J. Anandan and Y. Aharonov, Phys. Rev. D 38, 1863 (1988).
[4] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).
[5] A. Uhlmann, Rep. Math. Phys. 24, 229 (1986); Lett. Math. Phys.

21, 229 (1991).
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(2009).

012116-5



NIU, XU, LIU, KANG, TONG, AND KWEK PHYSICAL REVIEW A 81, 012116 (2010)

[22] J. Du, P. Zou, M. Shi, L. C. Kwek, J.-W. Pan, C. H. Oh,
A. Ekert, D. K. L. Oi, and M. Ericsson, Phys. Rev. Lett. 91,
100403 (2003).

[23] M. Ericsson, D. Achilles, J. T. Barreiro, D. Branning, N. A.
Peters, and P. G. Kwiat, Phys. Rev. Lett. 94, 050401 (2005).

[24] Sun Yin and D. M. Tong, Phys. Rev. A 79, 044303 (2009).
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