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Magic wavelengths for terahertz clock transitions
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Magic wavelengths for laser trapping of boson isotopes of alkaline-earth metal atoms Sr, Ca, and Mg are
investigated while considering terahertz clock transitions between the *P,, 3Py, and *P, metastable triplet states.
Our calculation shows that magic wavelengths for laser trapping do exist. This result is important because those
metastable states have already been used to make accurate clocks in the terahertz frequency domain. Detailed
discussions for magic wavelengths for terahertz clock transitions are given in this article.
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I. INTRODUCTION

Frequency standards have achieved unprecedented success
in experiments, demonstrating accuracies of 4 x 107!¢ with
a cesium microwave-fountain clock [1] and 1.9 x 10~!7 with
an ion optical clock [2,3]. For optical frequency standards
based on neutral atoms, in order to effectively increase the
interrogation time, Katori proposed using an optical lattice
trap formed with a magic-wavelength trapping laser [4,5]. This
clever technique greatly enhanced established high-accuracy
optical frequency standards with neutral Sr atoms to an
accuracy of 1 x 10~'¢ [6-8]. Different optical-clock schemes
based on Ca [9] and Yb [10,11] atoms trapped with magic-
wavelength lasers have been proposed.

An optical trap with a far-off-resonant laser is a very useful
tool for the confinement of cold atoms. Nevertheless, for the
precision of clock transitions in frequency standards, light shift
due to laser trapping has to be avoided. Thus, the wavelength
of the trapping laser should be tuned to a region where
the light shift for the clock transition is eliminated, which
means the light shifts of the two clock transition states cancel
each other out. The wavelength X is called the magic wave-
length [4,5]. Recently, a cesium primary frequency standard
with atoms trapped in an optical lattice with a magic wave-
length was suggested [12,13], and possible magic wavelengths
for clock transitions in aluminium and gallium atoms were also
calculated [14].

In contrast to the aforementioned magic wavelengths for
optical-clock transitions and microwave-clock transitions,
here we investigate magic wavelengths for terahertz-clock
transitions. Absolute frequency standards in the terahertz
domain with fine structure transition lines of the Mg and
Ca metastable triplet states were first proposed in 1972
by Strumia [15]. After more than 20 years of continuing
improvement, a frequency standard based on the 3P,—3Py Mg
transition and thermal atoms in a beam has reached an
uncertainty of 1 x 10~'2 [16,17]. However, these potential
terahertz transitions for high-resolution clock references have
never been experimentally investigated with laser-cooled or
laser-trapped atoms.

In this article, we present our most recent calculation of
trapping-laser magic wavelengths for Sr, Ca, and Mg atoms,
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considering different possible clock transitions between
metastable triplet states > P. Accurate terahertz clocks could
then be built based on such atoms that are cooled and trapped
in an optical lattice.

II. THEORETICAL DESCRIPTION

For alkaline-earth metal atoms, two valence electrons result
in two series of atomic energy levels as the electron spins can be
parallel (triplet states) or antiparallel (singlet state). The energy
diagram can be simplified as shown in Fig. 1. The ground state
is 1Sy, and the lowest excited states nsnp are 1P, and 3P;, which
can be divided into three fine-structure sublevels: 3Py, 3Py, 3P,.
For the 3P; state, transitions to higher states can be divided
into three groups: P;—3S;, 3P;—P;, and *P;,—D;.

By second-order perturbation theory, the energy shift
Uij(w, p, m;) of atomic state |i) with energy E; and Zeeman
sublevel m;, which is induced by a trapping laser field with
frequency v = w/2m, polarization p, and irradiance intensity
1, can be expressed as U;(w, p, m;) = —a;(w, p, m;)I /2¢yc,
with the induced polarizability ;.

The polarizability can be calculated by summing up the
contributions from all dipole interactions between the fine-
structure states |{) and |k) with the Einstein coefficient A j;
(spontaneous emission rate for E; > E;), Zeeman sublevels
m;, my, and transition frequency v, = wyi; /27 [18,19],
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Here e is the electron charge, hwj;; is the energy difference
between fine-structure states |k) and [|i), B denotes other
quantum numbers of the state, and (B Ji || D || B; J;) is the dipole
reduced matrix element. The expression in large parentheses
in Eq. (1) denotes a 3j symbol which describes the selection
rules and relative strength of the transition depending on
the involved angular momenta J, the projection m, and the
polarization p.

If we know wy;; and Ay in Eq. (1), we can get
the polarizability «;. However, the literature typically gives
the total transition rate Ay from a given excited state to

A = BTk IDIB TN (2)
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FIG. 1. (Color online) Simplified diagram of the lowest energy (B DIBi Ji) = (=1) 8515 \/(2Jk + D@4+ 1D

levels. for alkaline-earth metal atoms and some possible laser J]f 1‘ Ji (B Ly DI B:Ls) (4)
couplings. L; S; Ly

TABLE 1. Strontium: Transition wave numbers (WN) (cm™!) corresponding to wy;;, Einstein coefficients for fine structure states A;
(10°% s71), total A7 (10° s~1) for fine-structure states, and correction factors ¢. The wave-number data originate from [21].

Upper state 552 1S, Ay
WN A, ¢
5s5p P, 21698.48 190.01 1.000 190.01°
5s6p p 34098.44 1.87 1.000 1.87¢
5s7p'P 38906.90 5.32 1.000 5.324
5s8p P, 41172.15 14.9 1.000 14.92
4d5p p, 41184.47 12 1.000 12
559p 'P, 42462.36 11.6 1.000 11.6*
5510p 'P, 43327.94 7.6 1.000 7.6*
5s511p'P 43938.26 4.88 1.000 4.88*
Upper state 5s5p 3P, 555p 3P, 555p 3P, Ar
WN A, ¢ WN A, ¢ WN A, ¢
556538, 14721.275 10.226 1.0828 14534.444 29.526 1.0421 14140.232 45.314 0.9596 85¢
557538, 23107.193 1.402 1.0517 22920.362 4.106 1.0264 22526.15 6.495 0.9743 12¢
558535, 26443.920 0.954 1.0450 26257.089 2.803 1.0230 25862.877 4.464 0.9776 8.22%
559538, 28133.680 0.525 1.0422 27946.849 1.543 1.0216 27552.637 2.464 0.9790 4.53¢%
5510538, 29110.080 0.320 1.0408 28923.249 0.943 1.0208 28529.037 1.508 0.9797 2.77*
5p? 3P, 0.000 20689.119 117.64 0.9803 0.000 120¢
5p% 3P, 21082.618 41.492 1.0373 20895.787 30.297 1.0099 20501.575 47.690 0.9538 120¢
5p2 3P, 0.000 21170.317 31.509 1.0503 20776.105 89.343 0.9927 120¢
5s4d 3D, 3841.536 0.290 1.2660 3654.705 0.187 1.0901 3260.493 0.009 0.7740 0.412f
5s4d 3D, 0.000 3714.444 0.354 1.1444 3320.232 0.084 0.8174 0.412f
5s4d3Ds 0.000 0.000 3420.704 0.368 0.8938 0.412f
5s5d 3D, 20689.423 35.732 1.0544 20502.592 26.080 1.0261 20108.38 1.640 0.9681 618
5s5d°D, 0.000 20517.664 47.049 1.0284 20123.452 14.796 0.9702 618
555d3Ds 0.000 0.000 20146.492 59.390 0.9736 618
5s6d 3D, 25368.383 14.303 1.0457 25181.552 10.492 1.0228 24787.34 0.667 0.9755 24.62f
5s6d°D, 0.000 25186.488 18.897 1.0234 24792.276 6.008 0.9761 24.62f
556d3Ds 0.000 0.000 24804.591 24.069 0.9776 24.62f
5s7d 3D, 27546.88 8.223 1.0424 27360.049 6.043 1.0213 26965.837 0.386 0.9778 14.2%
5s7d°D, 0.000 27364.969 10.883 1.0219 26970.757 3.473 0.9783 14.22
5s7d3Ds 0.000 0.000 26976.337 13.902 0.9790 14.2%
5s8d 3D, 28749.18 4.920 1.0407 28562.349 3.619 1.0206 28168.137 0.231 0.9789 8.51%
5s8d°D, 0.000 28565.959 6.517 1.0210 28171.747 2.083 0.9793 8.512
558d3Ds 0.000 0.000 28176.207 8.337 0.9797 8.51%
559d 3D, 29490.28 3.184 1.0400 29303.449 2.342 1.0203 28909.237 0.150 0.9797 5.51%
559d°D, 0.000 29303.449 4.216 1.0203 28909.237 1.350 0.9797 551
559d3Ds 0.000 0.000 28914.037 5.401 0.9802 5.51¢%

1[22], ®[23], ©[24], ¢[25], ¢[26], T [27], ¢ [28].
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TABLE II. Calcium: Transition wave numbers (WN) (cm™!) corresponding to wyy;, Einstein coefficients for fine structure states A;
(10 s71), total A7 (10° s71) for fine-structure states, and correction factors ¢. Besides the updated values listed in Ref. [19] for Ay, the others

originate from [29].

Upper state 45218, A

WN A, ¢
4s4p'P 23652.304 218 1.000 218
4s5p'P; 36731.615 0.27 1.000 0.27
456p 'P; 41679.008 16.7 1.000 16.7
4snp 'P, 43933.477 30.1 1.000 30.1
457p'P, 45425.358 15.3 1.000 15.3
458p 'P; 46479.813 6.1 1.000 6.1
Upper state 4s*p 3P, 4s54p 3P 4s54p3P,

WN A, ¢ WN A, ¢ WN A, ¢ Ar
455535, 16381.594 9.855 1.0195 16329.432 29.278 1.0096 16223.552 47.845 0.9899 87°
456535, 25316.340 3.488 1.0126 25264.178 10.397 1.0062 25158.298 17.110 0.9935 31
457s3S, 28822.866 1.573 1.0110 28770.704 4.692 1.0054 28664.824 7.733 0.9943 14
458535, 30580.783 1.033 1.0102 30528.621 3.083 1.0052 30422.741 5.084 0.9947 9.2
459535, 31590.382 0.606 1.0099 31538.220 1.809 1.0050 31432.340 2.985 0.9950 5.4
4510538, 32224.147 0.370 1.0097 32171.985 1.105 1.0049 32066.105 1.824 0.9951 3.3
4p?3p, 0.000 23207.480 179.046 0.9947 0.000 180
4p?3p 23306.907 60.474 1.0079 23254.745 45.045 1.0010 23148.865 74.033 0.9871 180
4p?3p, 0.000 23341.495 45.563 1.0125 23235.615 134.784 0.9984 180
3d? 3P, 0.000 33314.030 110.231 1.0021 0.000 110
3d% 3P, 33379.722 36.971 1.0083 33327.560 27.594 1.0034 33221.680 45.540 0.9936 110
3d%3p, 0.000 33353.459 27.662 1.0059 33247.579 82.178 0.9961 110
4s54d3D, 22590.296 48.981 1.0134 22538.134 36.471 1.0061 22432.254 2.396 0.9916 87
454d°D, 0.000 22541.804 65.687 1.0067 22435.924 21.580 0.9922 87
454d3D; 0.000 0.000 22441.506 86.400 0.9931 87
4s55d3D, 27585.101 20.786 1.0112 27532.939 15.498 1.0053 27427.059 1.021 0.9934 37
455d°D, 0.000 27534.653 27.905 1.0056 27428.773 9.192 0.9937 37
455d3D; 0.000 0.000 27431.444 36.782 0.9941 37
456d3D, 29891.172 13.472 1.0104 29839.010 10.049 1.0049 29733.130 0.663 0.9940 24
456d°D, 0.000 29840.356 18.094 1.0052 29734.476 5.965 0.9942 24
456d3D; 0.000 0.000 29736.431 23.868 0.9945 24
457d3D, 31144.072 8.417 1.0100 31091.910 6.279 1.0047 30986.030 0.414 0.9942 15
457d°D, 0.000 31093.586 11.306 1.0050 30987.706 3.729 0.9944 15
457d3D; 0.000 0.000 30990.116 14.922 0.9948 15
4s58d3D, 31878.324 4.318 1.0094 31826.162 3.221 1.0041 31720.282 0.213 0.9940 7.7
4584d°D, 0.000 31829.944 5.803 1.0048 31724.064 1.915 0.9946 7.7
458d3D; 0.000 0.000 31729.298 7.663 0.9952 7.7
4s53d3D, 5177.459 0.502 1.0503 5125.297 0.365 1.0188 5019.417 0.023 0.9570 0.86"
453d°D, 0.000 5139.197 0.663 1.0272 5033.317 0.207 0.9650 0.86%
453d3D; 0.000 0.000 5055.057 0.841 0.9775 0.86*
a[19].

and combining Egs. (2) and (3), we can get

A = A (o) Ri. &)

Here
S (i) = wiki/w;ki (6)

is the energy-dependent correction [20], reflecting the alter-
ation on the transition rate due to the effects such as the
orbit-spin interaction and the spin-spin interaction, which
causes the fine-structure splitting. And

2
Je 1 J;
Yo L } ™)

Rki = (2Lk + 1)(2Jl + 1) X {Ll Si Lk

gives the fraction of the coupling strength between an excited
state |k) and a lower state |i). Since the total transition rate A ry;
is usually available in the literature, this geometric ratio tells
us how to scale the interaction for a particular fine-structure
state of interest.

To calculate the wavelength-dependent polarizability, we
combine Eq. (1) with Eq. (5) and use the known transition
frequencies and spontaneous emission rates in the literature.
This light polarizability is very sensitive to the Einstein
coefficient. However, theoretical and experimental values of
magic wavelength for the optical-clock transition obtained in
the past can be used to confirm our calculation.
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In this article, we use this method to calculate the light
shift for the terahertz-clock transition from 3P, to *P;, m = 0
levels and from 3P;, m = 0 to 3P, m = 0 levels for boson
isotopes with the nuclear spin I = 0. After calculating magic
wavelengths for Sr and Ca optical-clock transitions and
comparing them to the experimental values, we calculate
the polarizability of terahertz transition with data collection
mainly from Refs. [21-29].

III. CALCULATION OF MAGIC WAVELENGTH

A. Strontium

Using the method above, for strontium, we first calculate
the magic wavelengths of two optical-lattice-clock transitions
with the data listed in Table I and compare the results
with experimental values. Then, we calculate the crossing
points for terahertz-clock transitions where the difference of
polarizability is zero. Table I shows transition wave numbers,
Einstein coefficients, and correction factors for the 5s2 'S,
555p 3Py, 5s5p 3Py, and 5s5p 3P states for Sr element. For
Einstein coefficient A7y, first we choose the available updated
experimental values in Refs. [23,25,28], then we use updated
theoretical data in Refs. [24,27], and for the rest we mainly
use theoretical values in Ref. [22].

PHYSICAL REVIEW A 81, 012115 (2010)
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FIG. 2. (Color online) The wavelength dependence of the differ-
ence of atomic polarizability for strontium around 400 nm.

According to our calculation, the crossing point for the 'S,
to 3P transition occurs at 813.1 nm, while the crossing point for
the 'Sy to 3P, (m; = 1) transition with linear polarized light
takes place at 915.4 nm. Both of those results are in agreement
with the experimental values of 813.428(1) nm [30-33] and
914(1) nm [24]. This confirms our calculation procedure.

Figures 2 and 3 display the wavelength dependence of the
atomic polarizability difference A« for Sr with trapping-laser
wavelength around 400 and 1650 nm, respectively. The result

TABLEIII. Magnesium: Transition wave numbers (WN) (cm™!) corresponding to w,;, Einstein coefficients for fine structure states A ; (10°
s71), total A7 (10° s~1) for fine-structure states, and correction factors ¢ for magnesium. The wave-number and A7 data originate from [29].

Upper state 35218, Ar
WN A, ¢
3s3p P, 35051.264 491 1.000 491
3sdp P 49346.729 61.2 1.000 61.2
3s5p'P 54706.536 16.0 1.000 16.0
3s6p P 57214.990 6.62 1.000 6.62
3s7p P 58580.230 3.28 1.000 3.28
3s8p P, 59403.180 1.88 1.000 1.88
Upper state 3s3p3P, 3s3p3P 353p3P, A
WN A, ¢ WN A, ¢ WN A, ¢
35453, 19346.998 11.293 1.0063 19326.939 33.774 1.0032 19286.225 55.932 0.9968 101
35558, 30022.121 3.380 1.0041 30002.062 10.120 1.0020 29961.348 16.800 0.9980 30.3
35658 34041.395 1.372 1.0036 34021.336 4.107 1.0018 33980.622 6.821 0.9982 12.3
3p23p, 0.000 35942.306 537.085 0.9983 0.000 538
3p23p, 35982.995 179.638 1.0017 35962.936 134.500 1.0000 35922.222 223.405 0.9966 538
3p23p, 0.000 36003.476 134.957 1.0034 35962.762 403.500 1.0000 538
3s3d°D, 26106.653 89.865 1.0047 26086.594 67.244 1.0024 26045.880 4.462 0.9977 161
353d°D, 0.000 26086.563 121.028 1.0023 26045.849 40.157 0.9977 161
353d°D; 0.000 0.000 26045.867 160.630 0.9977 161
354d 3D, 32341.930 28.106 1.0038 32321.871 21.040 1.0019 32281.157 1.397 0.9981 50.4
3s4d D, 0.000 32321.830 37.872 1.0019 32281.116 12.576 0.9981 50.4
354d*D; 0.000 0.000 32281.078 50.304 0.9981 50.4
3s5d°D, 35117.866 13.101 1.0035 35097.807 9.808 1.0017 35057.093 0.652 0.9983 23.5
355d°D, 0.000 35097.784 17.655 1.0017 35057.070 5.865 0.9983 23.5
355d°D; 0.000 0.000 35057.040 23.460 0.9983 23.5
356d 3D, 36592.473 6.967 1.0033 36572.414 5.217 1.0017 36531.700 0.347 0.9983 12.5
356d°D, 0.000 36572.381 9.391 1.0017 36531.660 3.120 0.9983 12.5
356d°D; 0.000 0.000 36531.657 12.479 0.9983 12.5
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FIG. 3. (Color online) The wavelength dependence of the differ-
ence of atomic polarizability for strontium around 1650 nm.

is scaled by a factor of 1/ (47180613) and the polarizability is
given in atomic units. In Fig. 2, for linear polarized light, A«
between *P; and 3 Py and A« between 3 P, and 3 P; are given in
solid and dash dotted lines, respectively. In Fig. 3, A« between
3P, and 3 P, for linear polarized light and A« between 3P,
and 3 P, for circular polarized light are presented. The cross
markers are the crossing points where Ac is zero. From Figs.
2 and 3, we can know that the magic wavelengths for 3P, to
3P, m = 0 with linear polarized light are 381.2, 413.6, 419.3,
1714, and 3336 nm, while for *P;, m = 0 to 3P,, m = 0 they
are 384.5, 441.9, and 511.0 nm. On the other hand, form = 0
and circular polarization of light, the magic wavelengths for
3Py to 3Py, m = 0 transition are 511.8 and 662.8 nm, while for
3P, m =0 to 3P,, m = 0, the magic wavelengths are 717.7
and 1591 nm.

B. Calcium

We calculate the polarizabilities using the data in Table II
with the same method. Table II shows transition wave numbers,
Einstein coefficients, and correction factors for the 4s2'Sy,
454 p 3Py, 4s4p 3P, and 454 p 3P, states for Ca. For the Einstein
coefficient, we use the updated theoretical values according to
Ref. [19], and others are from the data listed in Ref. [29]. In
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FIG. 4. (Color online) Wavelength dependence of the difference
between excited-state and ground-state atomic polarizability around
350 nm for calcium.
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FIG. 5. (Color online) Wavelength dependence of the difference
between excited-state and ground-state atomic polarizability around
1350 nm for calcium.

order to check the accuracy of our calculation and the data
used, we get the magic wavelength 799.2 nm for the 'Sy, m =
0 to 3Py, m = 0 optical transition with circularly polarized
trapping light, which agrees well with the experimental value
800.8(22) nm [19].

The wavelength dependence of the atomic polarizability
difference A« around 350 and 1350 nm are shown in atomic
units in Figs. 4 and 5, respectively. The crossing points
where the Ao« is zero are marked with crosses. The magic
wavelengths for linear polarization occur at 1361 and 2066 nm
for clock transition 3Py—3P;, while for the transition between
level Py, m = 0 and 3P, m = 0 they occur at 312.2, 316.2,
325.4,344.0, and 393.4 nm.

The laser polarization has no effect on the polarizability
for the ground state (J = 0) because the ac Stark shift is
identical with any polarizations. It is also true for the 3P,
state. However, the influence of circular polarized laser light
is worth studying for other states. For m = 0, we can obtain
the magic wavelengths for the Py to 3P clock transitions at
301.0 and 310.0 nm, while for 3P; to 3P, one finds 1318 and
2254 nm.

A ofa.u.) for Mg

340 360
wavelength A (nm)

FIG. 6. (Color online) The wavelength dependence of the differ-
ence of atomic polarizability around 400 nm for magnesium.
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TABLE IV. Magic wavelengths for the terahertz region. L1 is the
linear laser for the 3P, to 3P, clock transition, while C1 is for the
circular laser; L2 is the linear laser for the 3P, to 3P, clock transition,
while C2 is for the circular laser. « is the slope of the shift difference
of two clock transition levels at the corresponding trapping laser
wavelength in Hz/nm. The sign denotes the direction of the change
with the shift for the high level minus that of the lower level. The
data are given in the reasonable experiment condition with input
power 150 mW focused to a waist of 65 um with light intensity of
1.1301 x 10* W/cm?.

Mg Ca Sr
3P0,112 A K A K A K
(nm) (Hz/nm) (nm) (Hz/nm) (nm) (Hz/nm)
L1 3356 —1125 1361 —3.201 381.2 —615.7
399.5 —103.5 2066 5494  413.6 32.22
419.3 —31.4377
1714 —5.590
3336 9.122
L2 308.6 —26574 3122 8319 3845 1792
336.5 1905 316.2 5879 4419 5759
406.1  220.7 3254 1641 511 1697.63
344.0 542.9
3934 1787
C1 307.7 -=-3174 301.0 8610 511.8 252.8
336.4  469.9 310.0 —4072 662.8 —1068
407.8 54.76
C2 1318 —3.365 717.7 2692
2254 13.39 1591 —5.551

C. Magnesium

With the completion of the National Institute of Standards
and Technology database, the atomic polarizability of the Mg
triplet states in the presence of linear and circular polarized
light can also be calculated. Table III presents transition
wave numbers, Einstein coefficients, and correction factors
for the 3s%'Sy, 3s3p 3Py, 3s3p 3Py, and 3s3p3 P, states for
Mg element. Using the data presented in Table III, the magic
wavelengths of the 3Py to 3Py, m = 0 transition with linear
polarization are 335.6 and 399.5 nm. The magic wavelengths
are 308.6, 336.5, and 406.1 nm for the transition between 3P,
m = 0 and 3P, m = 0.

For circular polarization of light, the magic wavelengths for
the transition 3P, to °P;, m = 0 are 307.7, 336.4, and 407.8 nm.
However, we cannot find any magic wavelength for circular
laser between level 3P, m = 0 and 3P, m = 0.

For Mg atoms, several optical transitions between the
energy levels of terahertz-clock transition states and other
levels exist, such as 456.5 nm (35> 'S-3s3p 3P), 383.6 nm
(3s3p *P-353d°D), 309.6 nm (3s3p *P-354d *D), 333.2 nm
(3s3p 3P-35553S), and 517.4 nm (3s3p 3P-3s4sS). Hence,

PHYSICAL REVIEW A 81, 012115 (2010)

not all the magic wavelengths are good enough for clock
transitions, because the slope of the light-shift difference with
the wavelength is too large (shown in Table IV). To some
extent, a possible magic wavelength near 400 nm is shown in
Fig. 6 in atomic units. In Fig. 6, A« for 3 P;—3 P, transition
and 3 P,—3 P; transition with different polarization are given.
The cross markers reflect the crossing points where the atomic
polarizability difference is zero.

IV. DISCUSSION AND CONCLUSIONS

In summary, we have calculated magic wavelengths for
terahertz-clock transitions for alkaline-earth metal atoms. The
calculation results are presented in Table IV along with the
slopes of the difference of polarizabilities at corresponding
magic wavelengths. Depending on the calculation and current
laser development, we recommend 1714 and 1591 nm for
a Sr terahertz clock, 1361 and 1318 nm for a Ca terahertz
clock, 399.5 and 407.8 nm for a Mg terahertz clock, because
the difference of polarizabilities have small slopes at these
magic wavelengths, where we ignore the effect of highly
excited states and continuum states which can only make little
contribution to the wavelength-dependent polarizabilities in
the terahertz region.

In this article, we are only focusing on the study of possible
magic wavelengths of trapping lasers for these terahertz-clock
transitions of Sr, Ca, and Mg atoms. These terahertz-clock
transitions were first proposed as early as 1972 [15] and
recently have been proposed to be applied in active optical
clocks [34]. These clock transitions of alkaline-earth metal
atoms correspond to a 0.6- to 11.8-THz frequency region. After
the successful developments of microwave-fountain frequency
standards, optical clocks with trapped ions, and optical lattice
trapped neutral atoms, it is interesting to study clock transitions
at terahertz wavelengths. The advantages and disadvantages of
a terahertz magic atomic clock will be discussed elsewhere.
The wavelength range studied in this article (from 500 to
25 pm) corresponding to THz frequency standards fills the
gap between microwaves and optical waves.
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