PHYSICAL REVIEW A 81, 012114 (2010)

Probing macroscopic quantum states with a sub-Heisenberg accuracy
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Significant achievements in high-sensitivity measurements will soon allow us to probe quantum behaviors of
macroscopic mechanical oscillators. In a recent work [Phys. Rev. A 80, 043802 (2009)], we formulated a general
framework for treating preparation of Gaussian quantum states of macroscopic oscillators through linear position
measurements. To outline a complete procedure for testing macroscopic quantum mechanics, here we consider
a subsequent verification stage which probes the prepared macroscopic quantum state and verifies the quantum
dynamics. By adopting an optimal time-dependent homodyne detection in which the phase of the local oscillator
varies in time, the conditional quantum state can be characterized below the Heisenberg limit, thereby achieving
a quantum tomography. In the limiting case of no readout loss, such a scheme evades measurement-induced
back action, which is identical to the variational-type measurement scheme invented by Vyatchanin et al.
[JETP 77, 218 (1993)] but in the context for detecting gravitational waves. To motivate macroscopic quantum
mechanics experiments with future gravitational-wave detectors, we mostly focus on the parameter regime where
the characteristic measurement frequency is much higher than the oscillator frequency and the classical noises
are Markovian, which captures the main feature of a broadband gravitational-wave detector. In addition, we
discuss verifications of Einstein-Podolsky-Rosen-type entanglement between macroscopic test masses in future
gravitational-wave detectors, which enables us to test one particular version of gravity decoherence conjectured

by Diési [Phys. Lett. A120, 377 (1987)] and Penrose [Gen. Rel. Grav. 28, 581 (1996)].
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I. INTRODUCTION

Due to recent significant advancements in fabricating
low-loss optical, electrical, and mechanical devices, we will
soon be able to probe behaviors of macroscopic mechanical
oscillators in the quantum regime. This will not only shed
light on quantum-limited measurements of various physical
quantities, such as a weak force, but also help us to achieve
a better understanding of quantum mechanics on macroscopic
scales.

As a premise of investigating macroscopic quantum me-
chanics (MQM), the mechanical oscillator should be prepared
close to being in a pure quantum state. To achieve this, there
are mainly three approaches raised in the literature: (i) The first
and the most transparent approach is to cool down the oscillator
by coupling it to an additional heat bath that has a temperature
T.qqa much lower than that of the environment 7y. As a result,
the oscillator will achieve an effective temperature given
by Tegt = (TOVm + Taddradd)/(ym + laaa) with Vm and T'yqq
denoting the damping due to coupling to the environment and
the additional heat bath, respectively. In the strong-damping
regime with I'ygq > ¥4, we achieve the desired outcome with
Teir = T,a4- Since the typical optical frequency wy can be much
higher than kg Ty /%, a coherent optical field can be effectively
served as a zero-temperature heat bath. Indeed, by coupling an
oscillator parametrically to an optical cavity, many state-of-
the-art experiments have demonstrated significant cooling of
the oscillator, achieving a very low thermal occupation number
[1-16]. A similar mechanism also applies to electromechanical
systems, as demonstrated in several experiments [17-19].
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(ii) The second approach is to introduce additional damping
via feedback (i.e., so-called cold-damping). The feedback loop
modifies the dynamics of the oscillator in a way similar to
the previous cooling case. Such an approach has also been
realized experimentally [20-22]. If the intrinsic mechanical
and electrical/optical qualities of the coupled system are high,
those cooling and cold-damping experiments can eventually
achieve the quantum ground state of a mechanical oscillator
[23-28]. (iii) The third approach is to construct a conditional
quantum state of the mechanical oscillator via continuous
position measurements. Quantum mechanically, if the os-
cillator position is being continuously monitored, a certain
classical trajectory in phase space can be mapped out,
and the oscillator is projected into a posteriori state, [29]
which is also called a conditional quantum state [30-35].
Given an ideal continuous measurement without loss, the
resulting conditional quantum state of the oscillator is a pure
state.

Recently, we theoretically investigated the third approach
for general linear position measurements in great detail [35].
The analysis of this work is independent of the scale and
mass of the oscillator—these parameters will only modify
the structure of arising noises. In particular, we applied our
formalism to discuss MQM experiments with macroscopic
test masses in future gravitational-wave (GW) detectors. We
demonstrated explicitly that given the noise budget for the
design sensitivity, next-generation GW detectors such as the
Advanced LIGO [36] and Cryogenic Laser Interferometer
Observatory (CLIO) [37] can prepare nearly pure Gaussian
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FIG. 1. (Color online) A schematic plot of a Wigner function
W(x, p) (left) and the corresponding uncertainty ellipse (right) for the
covariance matrix V™ (which can be viewed as a projection of the
Wigner function). The center of the plot is given by the conditional
mean (x<°", p®d) The Heisenberg limit is shown in a unit circle
with radius given by the zero-point fluctuation /%i/(2mw,,). For
a pure Gaussian conditional quantum state, the area of the ellipse
[i.e., 7 det V" /(2maw),,)?] is also equal to that of the Heisenberg
limit. Therefore, the uncertainty product det V™ can serve as an
appropriate figure of merit for quantifying purity of a quantum state.

quantum states and create Einstein-Podolsky-Rosen-type
entanglement between macroscopic test masses. In addition,
we showed that the free-mass standard quantum limit (SQL)
[38—40] for the detection sensitivity,

2n

mQ2’
where m is mass of the probing test mass and €2 is the detection
frequency, also serves as a benchmark for MQM experiments
with GW detectors.

More concretely, a Gaussian conditional quantum state is
fully described by its Wigner function as shown schematically
in Fig. 1. It is given by

S5(Q) = (1

e e
W(x, p) = [—EXVC"“C‘ IXT:|. )

1
———————¢X
27~/ det Veord P
Here X = [x — x°d p — pcnd]with x<°™ and p°°d denoting
conditional means of oscillator position x and momentum
p, and V<4 ig the covariance matrix between position and
momentum. Purity of the conditional quantum state can be
quantified by the uncertainty product, which is defined as

U= ;l«/det yeond — ;l\/ Veondy cond V;;;ndz, 3)

which is also proportional to square root of the area of
the uncertainty ellipse as shown in Fig. 1. In Ref. [35],
this uncertainty product is related to the SQL-beating ratio
of the classical noises of the measurement device. In addition,
the amount of entanglement between test objects is related to
the size of the frequency window (ratio between upper and
lower ends of that frequency window) in which the classical
noise goes below the SQL.

A state-preparation stage alone does not provide a complete
test of MQM. This is because the measurement data in the
state-preparation process only allow us to measure a classical
trajectory of the oscillator—quantum fluctuations are only
inferred from the noise budget; they are not directly visible.
Therefore, the resulting conditional quantum state critically
relies on the noise model of the measurement device. If such
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a noise model is imprecise, it will yield severe discrepancies
between the actual quantum state and the conditional one.
Therefore, it calls for a second measurement stage, which has
to follow the preparation stage. In this paper, we will address
this issue by considering a subsequent state-verification proce-
dure, in which we establish the tomography of the conditional
quantum state obtained during the preparation stage. On the
one hand, this verification stage can serve as a check of the
specific noise model to verify the prepared quantum state.
On the other hand, if we insert an evolution stage with the
oscillator evolving freely before the verification, the quantum
dynamics of the oscillator can also be probed, which allows us
to study different decoherence effects and also check whether
a macroscopic mechanical oscillator does evolve in the same
way as a quantum harmonic oscillator or not.

Since the conditional quantum state undergoes a random
walk in phase space as shown schematically in Fig. 2, classical
information of the conditional mean, obtained by the preparer
from the measurement data, needs to be passed onto the verifier
who will then proceed with the tomography. Suppose the state
preparation stage ends at t = 0 and the preparer obtains a
conditional quantum whose Wigner function is W[x(0), p(0)].
The task of the verifier is to try to reconstruct this Wigner
function by synthesizing marginal distributions of different
mechanical quadratures X ¢(0) from ensemble measurements
att > 0, and

p0)
mawy,

X, (0) = £(0)cos ¢ + sin¢, 4)
where X(0) and 5(0) denote oscillator position and momentum,
respectively, at # = 0 and w,, is the oscillation frequency. This
process is similar to the optical quantum tomography where
different optical quadratures are measured with homodyne
detections [41]. However, there is one significant difference—
mechanical quadratures are not directly accessible with linear
position measurements, which measure

N
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FIG. 2. (Color online) A schematic plot of the random walk of the
conditional quantum state (i.e., its Wigner function) in phase space.
Its center is given by the conditional mean [x¢°"(¢), p=°"(¢)], with
its uncertainty given by conditional variances Vf;’f‘;j‘p,xp, To verify
the prepared conditional quantum state, the only knowledge that the
verifier needs to know is classical information of the conditional mean

provided by the preparer if the noises are Markovian.
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rather than X ¢ To probe mechanical quadratures, we propose
the use of a time-dependent homodyne detection with the local-
oscillator phase varying in time. Given a measurement duration
of Tin, we can construct an integral estimator, which reads

p(0)

m wﬂ]

Tint
X = / dtg(1)i(t) oc £(0)cos ¢ + sin¢’ (6)
0
with cos¢’ = fOTi“‘ dtg(t)cosw,t and sin¢’' = fOT‘“' dtg(t)
sinw,,t. Therefore, a mechanical quadrature X ¢ is probed
[cf. Eq. (4)]. Here g(¢) is some filtering function, and it is
determined by the time-dependent homodyne phase and also
the way in which data at different time are combined.

The ability to measure mechanical quadratures does not
guarantee success of a verification process. In order to recover
the prepared quantum state, it requires a verification accuracy
below the Heisenberg limit. Physically, the output of the
verification process is a sum of the mechanical-quadrature
signal and some uncorrelated Gaussian noise. Mathematically,
it is equivalent to applying a Gaussian filter onto the original
Wigner function W(x, p) of the prepared state [42], and thus
the reconstructed Wigner function is
o0

Wrecon(xa P) = f dx/dp/l/f(x - X/, 2 P/)W(X,, P/),

- )
where the Gaussian filter ¥ (x, p) is given by

1 1
27 +/det Vadd [ 2
with € = [x, p] and V¥ denoting the covariance matrix for
the added verification noise. If the prepared quantum state is

Gaussian, by using the property of Gaussian integration, the
reconstructed Wigner function reads

Y(x, p) = évadd“.s;ﬂ ®)

W, (x, p) = 1 exp [_lgvreconlgT}
T 2 fdet Vreeon 2 ’

and the covariance matrix V™" is

yrecon Vcond + Vadd' (10)

(€))

In Fig. 3, we show schematically the effects of different levels
of verification accuracy given the same prepared conditional
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FIG. 3. (Color online) A schematic plot of the uncertainty ellipses
of reconstructed states with the same prepared Gaussian quantum
state but different levels of verification accuracy, which shows the
necessity of a sub-Heisenberg accuracy. The center of the plot is
given by the conditional mean (x°, p<°d) The shaded regimes
correspond to the verification accuracy. The Heisenberg limit is shown
by a unit circle. The dashed and solid ellipses represent the prepared
state and the reconstructed states, respectively.
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FIG. 4. (Color online) Values of reconstructed Wigner functions
on the p = O plane [i.e., Wiecon(x, p = 0)] for a single-quantum state,
obtained at different levels of verification accuracy. The solid curve
shows the ideal case with no verification error. Dashed and dotted
curves correspond to cases with verification errors of 1/4 and 1/2
of the Heisenberg limit, respectively. The negative regime (shaded)
or the nonclassicality vanishes as the verification error increases.
This again manifests the importance of a sub-Heisenberg verification
accuracy.

quantum state. A sub-Heisenberg accuracy, with an error
area smaller than the Heisenberg limit, is essential for us to
obtain a less distorted understanding of the original prepared
quantum state. In addition, if the prepared quantum state
of the mechanical oscillator is non-Gaussian [43—47], sub-
Heisenberg accuracy is a necessary condition for unveiling the
nonclassicality of the quantum state, as shown schematically
in Fig. 4 and proved rigorously in Appendix A.

Verifications of quantum states below the Heisenberg
limit also naturally allow us to test whether entanglement
between two macroscopic test masses in GW detectors can
indeed be established, as predicted in Ref. [34,35], and
how long such an entangled state can survive. Survival of
macroscopic entanglement can test one particular version of
gravity decoherence conjectured by Didsi [48] and Penrose
[49]. For an individual object, it is not entirely clear into what
classical superposition of pointer states gravity decoherence
will drive it. For an entangled state among multiple objects,
even though Gaussian, it would naturally have to decay into
the one that is not entangled, within the gravity decoherence
time scale.

As we will show, in order to achieve sub-Heisenberg
accuracy, we need to optimize the local-oscillator phase of
the time-dependent homodyne detection as well as the weight
with which data collected at different time will be combined.
If there is no readout loss, this optimization automatically will
give a detection scheme that evades measurement-induced
back action, the same as the variational-type measurement
scheme proposed by Vyatchanin and Matsko [50] for detecting
gravitational-wave signals with known arrival time. Since
in a single measurement setup different quadratures do not
commute with each other, namely
ih

(X, Xl = sin(¢ — ¢"), (11)

maw,,

one needs multiple setups and each makes ensemble measure-
ments of one particular quadrature X, with a sub-Heisenberg
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accuracy; the synthesis of these measurements yields a
quantum tomography.

As a sequence to Ref. [35] and to motivate MQM exper-
iments with future GW detectors, we will also focus on the
same parameter regime where the characteristic measurement
frequency is much higher than the oscillator frequency and
the oscillator can be treated as a free mass. In addition, we
will consider situations where the spectra of the classical
noise can be modeled as being white. Non-Markovianity of
noise sources—although they certainly arise in actual GW
detectors [35] and will be crucial for the success of a real
experiment—is a rather technical issue. The non-Markovianity
will not change the results presented here significantly, as we
will show and address in a separate paper [51].

This paper is organized as follows: In Sec. II, we will
formulate the system model mathematically by writing down
the Heisenberg equations of motion; in Sec. III, we will provide
a timeline for a full MQM experiment with preparation,
evolution, and verification stages and use simple order-of-
magnitude estimates to show that this experimental proposal
is indeed plausible; in Sec. V, we will evaluate the verifica-
tion accuracy in the presence of Markovian noises (largely
confirming the order-of-magnitude estimates, but with precise
numerical factors); in Sec. VI, we will consider verifications
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II. MODEL AND EQUATIONS OF MOTION

In this section, we will present a mathematical description
of the system model, as shown schematically in the upper
left panel of Fig. 5. The oscillator position is linearly
coupled to coherent optical fields through radiation pressure.
Meanwhile, information of the oscillator position flows into
the outgoing optical fields continuously. This models a
measurement process in an optomechanical system without
a cavity or with a large-bandwidth cavity. The corresponding
Heisenberg equations, valid for both preparation and verifica-
tion stages, are formally identical to classical equations of mo-
tion except for that all quantities are Heisenberg operators. The
oscillator position £ and momentum p satisfy the following
equations:

x(t) = p(t)/m,
(1) = =29 p(t) — mwpn,2(t) + ady(t) + Ep(t).

12)
13)

Here «d; corresponds to the quantum-radiation-pressure
noise or so-called back-action noise; « = (im})"* =
(8Ipwol/c?)!/? is the coupling constant between the oscillator
and optical fields with Iy denoting the optical power and

of macroscopic quantum entanglement between test masses
in GW detectors as a test of gravity decoherece; in Sec. VII,
we will summarize our main results. In the Appendix, we will
present mathematical details for solving integral equations that
we encounter in obtaining the optimal verification scheme.

2, quantifying the characteristic frequency of measure-
ment strength. We have included the fluctuation-dissipation
mechanism of the mechanical oscillator by introducing the
mechanical damping rate y,, and classical-force noise &g
(i.e., the Brownian thermal noise). In the Markovian limit,
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FIG. 5. (Color online) A schematic plot of the system (upper left panel) and the corresponding space-time diagram (right panel) showing
the timeline of the proposed MQM experiment (see Sec. III A for detailed explanations). In this schematic plot, the oscillator position is denoted
by £, which is coupled to the optical fields through radiation pressure. The ingoing and outgoing optical fields are denoted by a; , and b, »
with subscripts 1, 2 for the amplitude and phase quadratures, respectively. In the space-time diagram, the world line of the oscillator is shown
by the middle vertical line. For clarity, ingoing and outgoing optical fields are represented by the left and right regions on the different sides
of the oscillator world line, even though, in reality, optical fields escape from the same side as where they enter. We show light rays during
preparation and verification stages in red and blue. In between, the yellow shaded region describes the evolution stage with the light turned off
for a duration of 7. The conditional variance of the oscillator motion is represented by the shaded region alongside the central vertical line
(not drawn to the same scale as the light propagation). At the beginning of the preparation, the conditional variance is dominated by that of the
initial state (orange). After a transient, it is determined by incoming radiations and measurements. Right after state preparation, we show the
expected growth of the conditional variance due to thermal noise alone, and ignoring the effect of back-action noise, which is evaded during
the verification process. The verification stage lasts for a duration of 7y, and it is shorter than tr, after which the oscillator will be dominated
by thermalization.
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the correlation function for £ is given by

ErOERE))sym = SES(t —1)/2, (14)

where ST = dmy, kgTy = 2imQ% and we have defined a
characteristic frequency Q2 for the thermal noise.

The amplitude and phase quadratures of ingoing optical
fields @;, and of outgoing optical fields by, satisfy the
following input-output relations:

bie) = @) + V1 = nay o), (15)
ba(t) = o) + YT =1 @) + 50 + 260 . (16)

Here 71, , originate from nonunity quantum efficiency of the
photodetector for n > 0. In the paraxial and narrow-band
approximation, d; » are related to the electrical-field strength
at the central frequency wq by [52-54]

. dxhwo\"? .
E(t)z( S ) {la + a,(t)] cos wot + a,(t) sin wpt }

(I7)
with a denoting the classical amplitude and S standing for
the effective cross-section area of the laser beam. A similar
relation also holds for the outgoing fields 131,2. In addition,
they satisfy [a,(r), d>(t")] = [b1(r), by(t')] = i8(t — t'). Their
correlation functions read

(i (102 (1))sym = 8,218t —11)/2, (i, j = 1,2), (18)

where g denotes the squeezing factor (¢ = 0 for a vacuum-
state input) with “4” for the amplitude quadrature and “—”
for the phase quadrature. Correspondingly, the correlation
function for the back-action noise «d; is simply

(@l (el (1)) ym = SE*8(t — 1)/2 19)

with SEA = ¢¥hm Q;. In Eq. (16), é‘x is the sensing noise. One
example is the internal thermal noise, and it is defined as the
difference between the center-of-mass motion and the surface
motion of the oscillator which is actually being measured. In
the Markovian approximation, it has the following correlation
function:

EDE()) ym = ST8(t — 1)/2, (20)

where S;h =h/ (in) and we introduce a characteristic
frequency €2, for the sensing noise.

Note that the ©,, Qr, and 2, that we have introduced are
also the frequencies at which the back-action noise, thermal
noise, and sensing noise intersect the SQL [cf. Eq. (1)],
respectively. They are identical to what were introduced in
Ref. [35]. For conveniences of later discussions, we introduce
the following dimensionless ratios:

{r = QF/QCI’ = Qq/Qx~ 21

In addition, we define two characteristic time scales for the
measurement and thermal-noise strength as

1, =1/Q, 17r=1/Q. (22)

"Here ( )ym stands for a symmetrized ensemble average. For a
system characterized by a density matrix g, it is defined as

(01(102(1")) ym = Tr {[01(1)02(t") + 62(1)01 (1)1} /2.
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III. OUTLINE OF THE EXPERIMENT WITH
ORDER-OF-MAGNITUDE ESTIMATE

In this section, we will describe in details the timeline
of a plausible MQM experiment (Sec. IITA) and provide
order-of-magnitude estimates of the conditional variance of the
prepared quantum state, the evolution of the prepared quantum
state, and the verification accuracy in the free-mass regime
(Secs. III B, I C, and I D). This will provide qualitatively
the requirements on the noise level for the success of an MQM
experiment. We will give more rigorous treatments in the next
section.

A. Timeline of proposed experiment

We have sketched a space-time diagram for the proposed
MOQM experiment in the right panel of Fig. 5—with time going
upward; therefore we start from the bottom of the figure.

(i) Lock Acquisition. At the beginning, the mechanical
oscillator is in a highly mixed state, so are the optical
fields. Therefore, the first step is to “acquire lock” of the
measurement device and reach a steady-state operation
mode, during which several 7, will have elapsed. From
this time and on, initial-state information will have been
forgotten (propagating outward within the green strip),
and the state of the oscillator will be determined by the
driving fields, including the classical-force noise and
sensing noise, as well as the quantum noise. This will
be the start of the state-preparation stage (region above
the 45° green strip).

(ii) State Preparation. This stage is a steady-state opera-

tion of the measurement device. The quantum state of
the oscillator is collapsed continuously due to homo-
dyne readouts of the photocurrent. At any instant during
state preparation, based on the measured history of the
photocurrent (mostly on data within several times t, to
the past of ¢), the conditional expectation (x°°d, peond)
for the oscillator position X and momentum p can be
constructed. The second moments, describable by the
covariance matrix between position and momentum,
which consists of Ve, Veord and Veord, can be
calculated from the noise model of the measurement
device—they, together with x°°"¢ and p°", fully de-
termine the quantum state, that is, the Wigner function
of the oscillator at any instant [cf. Eq. (2)]. For a
Gaussian steady state, the construction of (xccond, pc"“d)
and conditional covariance matrix from the history of
the photocurrent can be accomplished most easily using
Wiener filtering, as shown in Ref. [35].
The preparation stage terminates at ¢t =0, when
(x¢ond | peondy and the covariance matrix will be deter-
mined by data from several —z, up to 0 as shown by
the red strip.

(iii) State Evolution. If we want to investigate the quan-
tum dynamics of the oscillator and study various
decoherence effects, we can delay the verification
process and allow the oscillator to freely evolve with
the interaction light turned off (represented by the
yellow strip). During this period, the thermal noise
will induce diffusions of the oscillator position and
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momentum, thus increasing the conditional variance
as shown schematically by broadening of the shaded
region alongside the oscillator world line. If there were
any additional decoherence effect, the variance would
grow faster than the case with the thermal decoherence
alone. A follow-up verification allows us to check
whether additional decoherence mechanisms, such as
the gravity decoherence conjectured by Didsi [48] and
Penrose [49], exist or not.

(iv) State Verification. After the evolution stage, the
verification stage starts (represented by blue strip). We
intentionally use different colors to label the preparation
light and verification light—symbolizing the fact that in
principle, a different observer (verifier) could perform
the verification process and verify the quantum state
by himself or herself. The only knowledge from the
preparer would be the conditional expectation x¢°"
and p®™ if all noise sources are Markovian. The
verifier uses a time-dependent homodyne detection and
collects the data from measuring the photocurrents.
The verification process lasts for a time scale of Ty
between the characteristic measurement time scale 7,
and the thermal decoherence time scale 7, after which
diffusions of ¥ and p in the phase space become
much larger than the Heisenberg limit. Based upon the
measurement data, the verifier can construct an integral
estimator for one particular mechanical quadrature
[cf. Eq. (6)].

These three stages—preparation, evolution, and verification—
have to be repeated for many times before enough data are
collected to build up statistics. After finishing the experiment,
the verifier will obtain a reconstructed quantum state of the
mechanical oscillator, and then can proceed to compare with
the preparer and interpret the results.

B. Order-of-magnitude estimate of the conditional variance

In this and the following two sections, we will provide
order-of-magnitude estimates for a three-staged MQM ex-
periment including preparation, evolution, and verification
stages. This gives us physical insights into different time
scales involved in an MQM experiment and also the qualitative
requirements for an experimental realization. We will justify
those estimates based upon more careful treatments in the next
several sections.

Based upon the measurement data from several —t,
to 0, one can construct a conditional quantum state for the
mechanical oscillator. Suppose that the phase quadrature of
the outgoing fields is being measured and the photodetection
is ideal with n = 0. Given a measurement time scale of 7
(measuring from —7 to 0), variances for the oscillator position
and momentum at ¢ = 0 in the free-mass regime with w,, — 0
are approximately equal to [cf. Eqs. (12), (13), (15), and (16)]

3 1

8x*(0) ~ S/ + TSP /m* ~ NiNjdx,,  (23)
3

3p*(0) ~ m*S /T’ + TSR ~ NiNjsp,. (24

Here S = SBA 4+ S [cf. Egs. (14) and (19)] and S =
S$h 4+ St with S denoting the shot noise due to @
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[cf. Egs. (16) and (20)]; we have defined

Ne=1+222, Np=1+222, (25)

while

Sx; =h/2mQy,), p; =hmQ/2. (26)

The optimal measurement time scale is given by 7 ~ 7,.
Purity of the prepared conditional quantum state at t = 0 is
approximately equal to [cf. Eq. (3)]

U(Q0) ~ %Sx(O)Sp(O) ~ N;Np. (27)

If classical noises are low, namely, N, ~ Ny ~ 1, the condi-
tional quantum state will be pure with U(0) ~ 1. For future
GW detectors such as the Advanced LIGO, both ¢, and ¢p
will be around 0.1, and such a low classical-noise budget
clearly allows us to prepare nearly pure quantum states of
the macroscopic test masses.

C. Order-of-magnitude estimate of state evolution

During the evolution stage, the uncertainty ellipse of
the conditional quantum state will rotate at the mechanical
frequency in phase space, and meanwhile there is a growth
in the uncertainty due to thermal decoherence as shown
schematically in Fig. 6. Given a strong measurement, the
variance of the resulting conditional quantum state in position
5x2(0) will be approximately equal to Sx,f as shown explicitly
in Eq. (23) with N,, N ~ 1. It is much smaller than the
zero-point uncertainty of an w,, oscillator, which is given
by h/(2mw,,). Therefore, the conditional quantum state of
the oscillator is highly squeezed in position. The position
uncertainty contributed by the initial momentum will be
comparable to that of the initial-position uncertainty after a
evolution duration of 7,. This can be directly seen from an
order-of-magnitude estimate. In the free-mass regime,

x(t) ~x(0) + %t. (28)

p/(Mmwy,)

t=0—x
TEN’Tq

il .

FIG. 6. (Color online) Rotation and diffusion of a highly position-
squeezed conditional quantum state prepared by a strong mea-
surement with €, > w,,. The initial-momentum uncertainty will
contribute an uncertainty in the position comparable to the initial
position uncertainty when the evolution duration 7z ~ T,.
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For an evolution duration of tg, the corresponding variance in
position is

8p*(0)
m2

8x*(tg) ~ 8x*(0) + T3 ~ Sx*O)[1 + (,7£)*].

(29)
The contribution from the initial-momentum uncertainty (the
second term) will become important when Q7 ~ 1 or
equivalently Tz ~ 1,.

Apart from a rotation, the uncertainty ellipse will also
grow due to thermal decoherence. Variances in the position
and momentum contributed by thermal decoherence are
approximately given by [cf. Egs. (12) and (13)]

Sxg(te) ~ TpSP /m* = £7(QTe) dx, (30)
Spn(Te) ~ TeSE = L3 (QTE)SP, - 31)
The growth in the uncertainty ellipse will simply be

th 2 2 2 2
U™ (tg) ~ }Tl(sxth(rE)(Spth(TE) ~ {p(QtE)” = (Te/TF)".
(32
When tg > 1, UMN(7g) > 1 and the conditional quantum state
will be dominated by thermalization.
If there were any additional decoherence effect, the growth
in the uncertainty would be much larger than what has been

estimated here. A subsequent verification stage can serve as a
check.

D. Order-of-magnitude estimate of the verification accuracy

To verify the prepared conditional quantum state, the
oscillator position needs to be measured for a finite duration
to obtain information about £(0) and p(0) [cf. Eq. (5) and (6)]
or about X(tg) and p(rg) if the evolution stage is inserted.
In order for an entire state characterization to be possible,
one might then expect that an oscillation period must pass,
and during this period, the thermal noise should cause an
insignificant diffusion of the oscillator momentum compared
with its zero-point uncertainty, which requires [40]

kpTy

howp,

< Qn (33)

with Q,, = w, /(2y,,) denoting the mechanical quality factor.
This requirement is unnecessary if the initial quantum state is
prepared by a strong measurement. As we have mentioned in
the previous section, the resulting condition quantum state is
highly squeezed in position and the initial-momentum uncer-
tainty will make a significant contribution to the uncertainty in
position after T > 7,. This means, depending on the particular
strategy, one can extract X and p below the levels of dx,
and 6p,, respectively, as long as one is able to measure
oscillator position with an accuracy better than 6x,, within
a time scale of several 7,. This is certainly possible if the
measurement-induced back action is evaded.

To evade the measurement-induced back action, one no-
tices the fact that the amplitude quadrature b, contains a;,
which is responsible for the back action, and meanwhile the
phase quadrature b, contains the information of oscillator
position, part of which is contributed by the back action
[cf. Eqs. (12)-(16)]. Therefore, if we measure particular
combinations of 131 and 52 at different times, by summing
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up those measurements, we will be able to cancel the back
action and obtain a back-action-evading (BAE) estimator for a
given mechanical quadrature. Such a cancelation mechanism
is only limited by the readout loss (1 # 0), which introduces
uncorrelated vacuum fluctuations.

We can make an order-of-magnitude estimate to show that
a sub-Heisenberg accuracy can be indeed achieved. With the
BAE technique, the force noise that limits the verification
accuracy will only contain the thermal-noise part. Similar to
Eqs. (23) and (24) but with S'' replaced by S, the variances
in position and momentum during the verification stage are
simply

Sxp ~ ST+ TS0 m? ~ NV P (34)
8pY ~ m2 ST} + TSR ~ NV Pep2. (35)

Here the optimal verification time scale would be ty ~
-1/2 . .
¢p "1y and T, < Ty < Tp. A summarizing figure of merit

for the verification accuracy is approximately given by
2
U pap ~ 55XV5PV ~ NY¢p. (36)

A sub-Heisenberg accuracy can be achieved when ¢ < 1.
Note that this error can be arbitrarily small by lowering
¢ indefinitely (i.e., a very strong measurement). If phase-
squeezed light is injected during the verification stage, we
would have

02 202
Upag ~ (e +202) P = [ £ 4 Z5E 0 (37)
V@2 T @

Increasing the squeezing factor always improves our verifica-
tion sensitivity, with a limit of

Ul?gnd|BAE ~ QF/Q = §:LF, (38)

which can be much lower than unity in the case of future GW
detectors or any low-noise measurement device.

Had we not evaded the back-action noise, we would have
+/Nr in the place of {r, which means 8xy8py would be
Heisenberg-limited—unless different squeezing factors are
assumed. For low squeezing (i.e., 27 larger than both ¢,
and ¢f), we need phase squeezing for the * observation and
amplitude squeezing for the p observation, with

dd —
Ua |withoutBAE ~e q’ (39)

which is a significant factor (1/¢F) worse than the BAE
scheme. Even though there exists an optimal squeezing factor
that this scheme can apply and yields

add
U;pt |without BAE ™~ x5 (40)

it is still worse than the limiting situation of the BAE scheme
[cf. Eq. (38)] by a factor of 1/{p(>> 1).

IV. THE CONDITIONAL QUANTUM STATE AND ITS
EVOLUTION

The previous order-of-magnitude estimates provide us a
qualitative picture of an MQM experiment, especially in the
free-mass regime where future GW detectors are operating. As
long as ¢ and ¢, are smaller than unity, namely, the classical
noise goes below the SQL around the most sensitive frequency

012114-7



HAIXING MIAO et al.

band (2 ~ €,) of the measurement device, not only can we
prepare a nearly pure quantum state but we can also make a
sub-Heisenberg tomography of the prepared state. In this and
following sections, we will provide more rigorous treatments
directly by analyzing the detailed dynamics of the system.

A. The conditional quantum state obtained from
Wiener filtering

The rigorous mathematical treatment of state preparation
has been given in Ref. [35]. The main idea is to treat the
conditional quantum state preparation as a classical filtering
problem, which is justified by the fact that the outgoing optical
quadratures 51,2 at different times commute with each other,
the same as a classical random process. For such a Gaussian
linear system, the Wiener filter, satisfying the minimum mean-
square error criterion, allows us to obtain an optimal estimate
for the quantum state of the oscillator (i.e., the conditional
quantum state). Based upon the measurement data y(¢)
(t <0), conditional means for oscillator position and
momentum at ¢ = 0 can be constructed as [cf. Eq. (14) of
Ref. [35]]

0

x€M(0) = (£(0))°™ = / dtK.(—t)y(t),  (41)

o0

0
PE0) = (H(0)*™ = f QK (=YD, (42)

Here K, and K, are causal Wiener filters. The covariance
matrix is given by [cf. Eq. (15) of Ref. [35]]
Voror (0) = (0:(0)0,;(0) ' —

sym

(6:(0)°"(5;(0))M,  (43)

where i, j = 1,2 and 01,0, denote X, p, respectively. In
the free-mass regime, we showed that [cf. Eq. (52)-(54) in
Ref. [35]]

1 3 1 1
NiNFIJ26x2  NENZR/2
Vcond(o) — F L q }F ) / . (44)
NENZR/2  NENEN28p?

With conditional means and variances, the Wigner function,
or equivalently the conditional quantum state, is uniquely
defined [cf. Eq. (2)]. Correspondingly, purity of the conditional
quantum state is quantified by

2
5 Vdet Veond(0) =

This simply justifies the order-of-magnitude result presented
in Eq. (27).

U@ = N;Np. (45)

B. Evolution of the conditional quantum state

In the following discussions, we will analyze how such a
conditional quantum state evolves during the evolution stage.
On the one hand, this confirms the qualitative results presented
in the Sec. III C. On the other hand, it provides a quantitative
understanding of the time scale for the later verification stage.

The equations of motion for the oscillator during the
evolution stage are given by Eqs. (12) and (13) except that
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there is no radiation pressure, for the light is turned off.> For
simplicity and also a consideration of the case in a realistic
experiment, we will assume an oscillator with a high quality
factor (i.e., @, > y). Within a time scale much shorter
than 1/y,,, the oscillator can be well approximated as a free
oscillator. Correspondingly, the analytical solution to oscillator
position reads

o
2(1) = £,() + / dt' G (t — tHEr(t). (46)
0
Here the free quantum oscillation £,(¢) of the oscillator is
given by Eq. (5). We have defined the Green’s function as
sin(w,y,t)
G.(1) = O@)————, 47)
mawy,

with ©(¢) denoting the Heaviside function.

Given an evolution duration of 7z, from Eq. (14) and
Eq. (46) the corresponding covariance matrix evolves as

V(tg) = RE Vr9(0) Ry

st [2<1>—sin2<1> 2ma,, sin® ® }

8m2w3 | 2mw,, sin> @  m2w? (2P + sin 20)
(43)
where ® = w,, 7¢ and the rotation matrix Ry is given by
cos & —maw,, sin ®
Ry = - . (49)
(mw,,)”'sin ® cos @

The first term in Eq. (48) represents a rotation of the
covariance matrix V°°"(0) due to the free quantum oscillation
of the oscillator; the second term is contributed by thermal
decoherence, which causes an increase in the uncertainty.

In the free-mass regime and for the case of w,, 7z K 1,
elements of the covariance matrix can be expanded as series
of @. Up to the leading order in ®, we obtain
2

48x2 ox
— V)(C;nd‘i‘ chonqu TE +

Ver(TE) - 5 2v;;""(sz )’
+ 2520 T ae)’ (50)

Vip(Tp) = Vi 2577 JTE + cp<sz )’ (51)
Vpp(te) = Vit + 25pqg§sz g (52)

o denoting the elements of V<°"4(0). Up to the
leading order in ¢ TE» the uncertainty product of the resulting
quantum state is

cond
with V .

cond

U(tg) = vdetV(fE ~UO)+ — (TE/TF)2 (53)

2Were the light turned on, the back action can still be evaded
as long as one measures the amplitude quadrature @, during this
period and takes them into account during data processing. Since
no information of the oscillator position (contained in the phase
quadrature of outgoing light) is collected, this is equivalent to the
case with the light turned off.
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with 7r defined in Eq. (22). The second term is contributed
by the thermal decoherence and can be viewed as U h(zg).
Those formulas recover the results in Egs. (29)—(32) but with
precise numerical factors. As we can conclude from Eq. (53),
in order for a sub-Heisenberg tomography to be possible, the
later verification stage should finish within a time scale of
Tp, after which the contribution from the thermal noise gives
U (tp) ~ 1.

V. STATE VERIFICATION IN THE PRESENCE OF
MARKOVIAN NOISES

In this section, we will treat the followup state verification
stage with Markovian noises in detail. This can justify the
order-of-magnitude estimate we have done in the Sec. I[II D. In
addition, we will show explicitly how to construct the optimal
verification scheme that gives a sub-Heisenberg accuracy.

A. A time-dependent homodyne detection and
back-action-evading

In this section, we will analyze the time-dependent ho-
modyne detection which enables us to probe mechanical
quadratures. We will further show how the BAE scheme can be
constructed. The BAE scheme is optimal only when there is no
readout loss (n = 0). We will consider more general situations
and derive the corresponding optimal verification scheme in
the next section.

The equations of motion for the oscillator during the
verification stage (f > t¢) are given by Egs. (12) and (13).
The corresponding solution to oscillator position is different
from Eq. (46) due to the presence of the back-action noise,
which starts to act on the oscillator at r = tg. Specifically, it
reads

X)) =%,0) —i—/ dt'G . (t — H[aa () +Ep(t)].  (54)
TE

Here the free quantum oscillation x,(¢) is the signal that
we seek to probe during the verification stage. For optical
quadratures, the equations of motion are given by Egs. (15)
and (16). From those equations, we notice that, among the
outgoing fields, b; is pure noise, while b, contains both signal
X,4(t) and noise. In order to highlight this, we rewrite 51,2 as

bi(t) = /1 — ni1(t) + /na(t) = 8b1 (1), (55)
by(t) = 8by(t) + /1 — n(a/R)z,(1) (56)
with [cf. Eq. (54)]

8h(t) = /nia(t) + 1 — ﬁ{flz(t) + %&(r)

oo
+ / A G (t — ledn (1) + épa’)]}. (57)
TE
In this way, we can directly see that d;, which causes the back
action, is contained in both the amplitude quadrature b, and the
phase quadrature b,. Therefore, by measuring an appropriate
combination of the two output quadratures, we will be able
to remove effects of the back-action noise that is imposed
onto the oscillator during the verification process at t > 7g.
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[Taser | 4]
[} 4B

PM: Phase Modulation DAQ: Data Acquisition ' DAQ

FIG. 7. (Color online) A schematic plot of time-dependent
homodyne detection. The phase modulation of the local oscillator
light varies in time.

Searching for such an optimal combination is the main issue
to be addressed in this section.

As mentioned in the introduction, to probe mechanical
quadratures and their distributions, a time-dependent homo-
dyne detection needs to be applied [cf. Eq. (6)]. Specifically,
the outgoing optical field

Bow(t) = by(1) cos wot + by (t) sin wot (58)

at t > tg is mixed with a strong local-oscillator light L(z)
whose phase angle ¢, is time-dependent as shown schemati-
cally in Fig. 7, namely,

L(t) = Lo cos[wpt — Pos(2)] (59)

with Ly a time-independent constant. Through a low-pass
filtering (with a bandwidth much smaller than wj) of the
beating signal, the resulting photocurrent is

i(t) o« 2Bow()L(1)
= Loby(t) cos dos (1) + Loby(t) sing,s(t),  (60)

where the overline means averaging over many optical-
oscillation periods. Note that Heisenberg operators for the
photocurrent at different time commute with each other; that
is,

[i(1), i(t)] = 0, (61)

and they are therefore simultaneously measurable, as obvi-
ously expected. Based on the measurement results of i (7) from
T to Tiy, we can construct the following weighted quantity ¥
with a weight function W(¢):

Tine
y:/o O — ) Wit = (g11b1) + (g2162). (62)

Here the Heaviside function ®(t — tg) manifests the fact that
the verification stage starts at t = 7y and we have introduced
the scalar product of two vectors |A) and | B) in the L0, Tinel
space as the following:

7}“\
(A|B) = / A(t)B(t)dt. (63)
0
Besides, we have defined filtering functions g; and g, as
81(1) = Ot — 1) W (1) cos s (1), (64)
82(1) = O — tp)W(t) sin ¢y (2). (65)

Since all the data can in principle be digitalized and stored in
hardware, the weight function W(¢) can be realized digitally
during data processing. In addition, an overall rescaling of
81.2(t) = Cogi.2(t) with Cy a time-independent constant does
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not affect the verification performance, and there are multiple
ways of achieving a particular set of g; »(¢), by adjusting the
phase ¢,,(¢) of the local oscillator and the weight function
W().

In light of Egs. (55)-(57), we decompose the weighted
quantity ¥ [cf. Eq. (62)] as a signal ¥ and a noise part 8,
namely,

Y =Y, +4Y. (66)
They are given by
¥y = V1 —n@/m)gl%,).
87 = (g118b1) + (821862

Since an overall normalization of g; » will not affect the signal-
to-noise ratio as mentioned, we can impose, mathematically,
that

(67)

(&21f1) =cosg, (glf2) =sing (68)

with

i) =coswnt, folt) = (Qy/wn) sinwy,t (69)

in the coordinate representation. The signal part can then be
rewritten as

Yy = V1 — n(a/m)dx, [gcos ¢ + posin¢],  (70)

where we have introduced the normalized oscillator position
and momentum as %o = £(1g)/0x, and po = p(tg)/dp,. In
such a way, a mechanical quadrature of X ¢ will be probed
[cf. Eq. (4)]. For the noise part, more explicitly, we have
[cf. Egs. (55)-(57)]

8Y = (g1ly/nh1 + /1 — nay) + (g21v/mia2 + /1 — naz)
+/1 = n(a?/ h)(g:2|G.lar)
+ V1 = n(e/M(g21G€r) + (g21€0)], (71)

where the integration with G,(¢ — t') has been augmented
into applying a linear operator G, in £2[0, Tiy] space. In this
equation, terms on the first line comprise the shot noise, and the
term on the second line is the back-action noise, while terms
on the third line are the classical-force and sensing noises.

The optimal g;(t) and g,(¢) that give a sub-Heisenberg
accuracy for each quadrature will be rigorously derived for
general situations in the next section. If a; and a, are
uncorrelated and there is no readout loss with = 0, an optimal
choice for g; would be obvious to cancel the entire contribution
from the back-action noise term (proportional to a;). This is
equivalent to imposing, mathematically, that

(g1lan) + (@*/h)(g21G.lar) = 0 (72)
or

lg1) + (&*/ )G |gy) = 0, (73)

where G is the adjoint of G,. Physically, this corresponds
to bringing in a piece of shot noise (gi|a;) to cancel
the back-action noise (a?/h)(g2|G|d;), therefore achieving
a only shot-noise-limited measurement. In the coordinate
representation, Eq. (73) can be written out more explicitly
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as

Tint

g1(l)+(0t2/h)/ dt'Gi(t' = gx(t) =0,  (74)

which agrees exactly with the variational-type BAE measure-
ment scheme first investigated by Vyatchanin and co-workers
[50]. Itis suitable for detecting signals with known arrival time.
For stationary signals, one would prefer the frequency-domain
variational techniques proposed by Kimble et al. [52], which
evades the back-action noise for all possible signals as long as
they are Gaussian and stationary.

As realized by Kimble et al. [52] in their frequency-domain
treatment, when the readout loss is significant (large ) and
when the back-action noise is strong (large «), the variational
approach becomes less effective, because in such a case, the
magnitude of g, required to bring enough a; to cancel the
back-action noise would also introduce significant noise 7
[cf. Eq. (71)]. This reasoning apparently leads to a trade-off
between the need to evade back action and the need to minimize
loss-induced shot noise; such an optimization will be made in
the next section.

B. Optimal verification scheme and covariance matrix for the
added noise: Formal derivation

Imposing the BAE condition [cf. Eq. (74)] does not specify
the shape of g, nor does Eq. (68), and we have further
freedom in choosing g, that minimizes the noise in measuring
a particular quadrature of X ¢ In addition, in the presence of
readout loss with n # 0, totally evading back action is not the
obvious optimum as mentioned. Therefore we need to optimize
g1 and g, simultaneously. In this section, we first carry out this
procedure formally; we then apply it to the Markovian-noise
budget in the next section.

The total £,-referred noise in the weighted estimator Y can
be written as [cf. Egs. (70) and (71)]

h2

o’lg12] =

) 2
=—— Z(gi|cij|gj)» (75)

(=% o=,

where correlation functions C;; among the noises are the
following:

Cij(t, 1) = (8bi()8b;(t Nsym (i, j =1,2).  (76)

The optimal g; »(¢) that minimize o> can be obtained through
the standard constraint variational method. For this, we define
an effective functional as

Tett = (1 — n)(y /D% [g12] — m1(filg2) — 1a(f2lg2)

1
=5 Z(gi|cij|gj) — (u1 f1+ n2 f2182), a7
ij

where p; and p, are Lagrange multipliers due to the
normalization constraints in Eq. (68). Requiring the functional
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derivative of J.g with respect to g; and g, equal to zero, we
obtain

Ciilg1) + Ci2lg2) =0, (78)
Cailg1) + Cnlg2) = w1 fi + pa fo). (79)

Here C;; should be viewed as operators in L£2[0, Tine space.
This leads to formal solutions to g », namely,

lg1) = —Cj{ Ci2lg2), (80)
lg2) = M|u1 fi1 + na2 f2), (81)
where we have defined
_ -1
M =[Cy — C2Cy'Cro] . (82)

By reimposing Eqgs. (68), those unknown Lagrange multipliers
W12 can be solved, which are related to ¢ by

(ilMIfD) (fiMIf2) | | ma _ | cos¢ (83)
(LIMIfD) (LIMIf) || ke sing |-
Correspondingly, the minimum o2;,

quadratic form:

has the following

Omin [COS C sin C]Vfl((j)fm [Z?j; i| : (84)

Here normalized V24 is a 2 x 2 covariance matrix, and it is
given by

add 2 GIMIf) (M)
(2IM1f1)  (f2IM] f2)

norm ~_ (1 _ n)Qq
It relates to the initial definition of the covariance matrix for
the added verification noise [cf. Eq. (8)] simply by

V4 = Diag[6x,, 8p, V2 Diag[sx,, 3p,].  (86)

norm

(85)

Due to the linearity in Eqs. (79) and (83), the optimal g; »
for a given quadrature ¢ can also be rewritten formally as

gfyz =g{,cos¢ + gl ,sing, (87)

with g, = i ,(0)and g¥, = gf ,(r/2). Sucha ¢ dependence
of g1» manifests the fact that aysub-Heisenberg tomography
requires different filtering functions, or equivalently different
measurement setups, for different quadratures.

C. Optimal verification scheme with Markovian noise

Given Makovian noises, the corresponding correlation
functions for the output noise §b; can be written out explicitly
as [cf. Egs. (14), (19), (20), and (76)]

n+ 1 —ne*

Cut,t)y= 5

8t —1t), (88)

2q2

Ci(t, 1) =Cu(t',t) = (1 - 77) G.(t'—1), (89)

/ 2 ’ 054 62‘7 5
Cu(t, 1) = Ta(t )+ (1 - N3 <7 +§F>

x/ dnG.(t — )G (' — 1), (90)
0

PHYSICAL REVIEW A 81, 012114 (2010)

with A = /2[n + (1 — n)(e~24 + 2¢2)]. Plugging these C;;
into Eq. (80) and (81), we can obtain the equations for the
optimal filtering functions g; and g,. Specifically, for g;, we
have [cf. Eq. (80)]

(1—me o (T ,
o)+ n / di'G(f' — gt = 0

N+ —meX n ),
1)

For g,, by writing out M explicitly, it gives [cf. Eq. (81)]

A2 int
e+ ef / f d'dnG (1 — )G (' — 1)gat)
= 1 f1(t) + p2 (1), 92)

where we have introduced ¢, which is given by

+a- n)cé}l/z (242"

(93)
and is equal to ¢r for no readout loss. Although here g; is
still defined from g,, the optimal verification strategy does
not totally evade the back action, as is manifested in the term
proportional to n inside the brackets of Eq. (93). In the limit
of no readout loss with n =0, it is identical to the BAE
condition in Eq. (74). Typically, we have 1% readout loss
(n = 0.01), squeezing e* =10, and ¢r = 0.2, so this readout
loss will only shift ¢ by 6%, which is negligible. However, if
the thermal noise further decreases and/or the measurement
strength increases, the effect of readout loss will become
significant, entering in a similar way as the frequency-domain
variational measurement proposed by Kimble et al. [52].

These integral equations for optimal g; and g, can be solved
analytically as elaborated in Appendix C, which in turn gives
M and the corresponding V24 [cf. Eqgs. (82) and (85)]. In the
free-mass regime with 2, >> w,,, closed forms for optimal g,

and g, can be obtained, which, in terms of gff’zp [cf. Eq. (87)],
are given by

/o |: '7(1 - 77)62‘1
F= | 20+ (1 = e

g = gile—o = (R, /x)e" %" sinQ, xt, (94)

81 = 8il=3 = —v2Qe™ %" sin (qut+ ) (95)
and

85( = @li=0 = Zque_Q"X’ cos Q, xt, (96)

b
gZP = g2|§:% = 2\/5961)(26_9")(' sin (Qq)(t — Z) , 97

with x = [§}2 /A]'?. The corresponding verification time
scale is set by Ty = (x Qq)’1 and 7, < 1y < tF. To illustrate
the behavior of the optimal filtering functions, we show gf‘zp
in Fig. 8. As we can see, the verification process finishes after
several 7, (i.e., in a time scale of Ty ).

The corresponding covariance matrix V3¢ for the added
verification noise is given by

3 1
§ 1 | A2g28x2  —ACW/2
V= | TR 08)
T —AGR/2 20287 8p]

A more summarizing measure of the verification accuracy is
the uncertainty product of the added noise ellipse with respect
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FIG. 8. (Color online) Optimal filtering functions g; (solid curve)
and g, (dashed curve) in the presence of Markovian noises. We have
assumed 2,/27 = 100 Hz, {, = ¢ = 0.2, n = 0.01, and vacuum
input (¢ = 0). For clarity, the origin of the time axis has been shifted
from ¢ to 0.

to the Heisenberg limit, namely,

2 Ag;
UM = ﬁ«/detVadd =T —CFn' (99)

In the ideal case with n = 0, this simply recovers the order-of-
magnitude estimate given in the Sec. III D. In Fig. 9, we show
the uncertainty ellipse for the added noise in the case of ¢, =
¢r = 0.2, readout loss n = 1%, and with (Green dotted curve)
or without (red long-dashed curve) 10-dB input squeezing. In
comparison, we also plot the Heisenberg limit (unit circle)
and the conditional state obtained through an ideally noiseless
state preparation (blue solid ellipse). As the figure shows, the
least challenging scenario already begins to characterize the
conditional quantum state down to the Heisenberg uncertainty.
In these two cases, we have A = 1.48 and 0.62, respectively,
leading to

U4 = 0.30 (vacuum), 0.12 (10dB squeezing).  (100)

plop,
(=)
()

15 b —
-1.5-1.0-05 00 05 1.0 1.5
x/ox,

FIG. 9. (Color online) The uncertainty ellipse for the added
verification noise in the presence of Markovian noises. We assume
¢y = ¢r = 0.2, vacuum input (dashed curve), ¢, = ¢ = 0.2, and
10dB squeezing (dotted curve). For contrast, we also show the
Heisenberg limit as a unit circle and the ideal conditional quantum
state as a solid ellipse.
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FIG. 10. (Color online) A schematic plot of advanced interfer-
ometric GW detectors for macroscopic entanglement between test
masses as a test for gravity decoherence. For simplicity, we have not
shown the setup at the bright port, which is identical to the dark port.

VI. VERIFICATION OF MACROSCOPIC QUANTUM
ENTANGLEMENT

In this section, we will apply our protocol to verify
macroscopic entanglement between test masses in future
GW detectors, which was proposed in Refs. [34,35]. In the
experiment, as shown schematically in Fig. 10, measurements
at the bright and dark ports of the interferometer continuously
collapse the quantum state of the corresponding common and
differential modes of the test-mass motion. This creates two
highly squeezed Gaussian states in both modes. Since the
common and differential modes are linear combinations of the
center-of-mass motion of test masses in the two arms, namely
#¢ = F 4+ 2N and £¢ = £F — &N, this will naturally generate
quantum entanglement between the two test masses, which
is similar to creating entanglement by mixing two optical
squeezed states at the beam splitter [55,56].

A. Entanglement survival time

To quantify the entanglement strength, we follow Refs. [34,
35] by evaluating the entanglement monotone—Ilogarithmic
negativity defined in Refs. [57,58]. It can be derived from
the covariance matrix for the Gaussian-continuous-variable
system considered here. The bipartite covariances among
(%E, ﬁE, N ﬁN) form the following covariance matrix:

A\
v | Ve Ven ’ (101)
Ve VN
where
ve +vd)/4 (ve +vi)/2
Vie = Van = [( o )‘d)‘)/ ( o’ ”’Z/ ] (102)
(VXP + pr)/2 (Vpp + V,,,,)
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0.5\ B |
0.0 : SR

0 1 2 3 4

Q(CITE

FIG. 11. (Color online) Logarithmic negative E - as a function of
the evolution duration 7z, which indicates how long the entanglement
survives. The solid curve corresponds to the case where Qp /27 =
20Hz and the dashed curve is for Qr /2w = 10Hz. To maximize the
entanglement, the common mode is 10 dB phase squeezed at t > tg
and ¢ < O while the differential mode is 10 dB amplitude squeezed
att < 0 and switching to 10 dB phase squeezed at t > 7.

c _ yd c _ yd
(V,\;:x dex)/4 (prc pr3/2:| . (103)
(VXP o VXP)/Z (Vpp o Vpp)

The logarithmic negativity E s can then be written as

Vne = Ven = |:

Ey = max[0, —log, 20_/h], (104)

where o_ = \/(2 — /X2 —4detV)/2 and ¥ = detVnN +
det Vgg — 2det Vng. In contrast to Refs. [34,35], now the
covariance matrix V corresponds to the total covariance matrix
V' after the entire preparation-evolution-verification process.
For Gaussian quantum states, we have [cf. Egs. (10), (48),
and (98)]

VO = V(1p) + V4, (105)

B. Entanglement survival as a test of gravity decoherece

When 1 increases, the thermal decoherence will increase
the uncertainty [cf. Egs. (48) and (105)] and eventually
the entanglement vanishes, which indicates how long the
quantum entanglement can survive. Survival of such quantum
entanglement can help us to understand whether there is any
additional decoherence effect, such as the gravity decoherence
suggested by Di6si and Penrose [48,49]. According to their
models, quantum superpositions vanish within a time scale of
h/E¢.Here E¢ can be (a) self-energy of the mass-distribution
difference, namely,

ES = [dxdy Glp(x) — p'®)loy) — o'W/ r

with p denoting the mass density distribution and r = |x — y]|,
or, alternatively, (b) a spread of mutual gravitational energy
among components of the quantum superposition, namely,

(106)

ED = / dxdy Gp(x)p'(y)sr/r*" (107)

with 67 denoting the uncertainty in location. For the prepared

test-mass quantum states with width of éx,, we have
)~ Q/(Gp), TG ARVPLPQYP (G, (108)

where L is the distance between two test masses. Plugging
in the typical values of LIGO mirrors with p = 2.2 g/cm’,
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separation between two input test masses of L &~ 10 m, and
m = 10 kg, we have

e =43x10"s, 1L =12x107s. (109)

It is therefore quite implausible to test model (a), whereas for
model (b), 2,7 is less than 0.01 with €, /27 = 100 Hz. In
Fig. 11, we show the entanglement survival as a function of
evolution duration. As we can see, the model (b) of gravity
decoherence can easily be tested, for the entanglement can
survive for several times the measurement time scale 7,,, which

is much longer than the predicted r(Gb ),

VII. CONCLUSIONS

We have investigated in great detail of a follow-up verifi-
cation stage after the state preparation and evolution. We have
showed the necessity of a sub-Heisenberg verification accuracy
in probing the prepared conditional quantum state and how to
achieve it with an optimal time-domain homodyne detection.
Including this essential building block—a sub-Heisenberg
verification, we are able to outline a complete procedure of
a three-staged experiment for testing macroscopic quantum
mechanics. In particular, we have been focusing on the relevant
free-mass regime and have applied the techniques to discuss
MQM experiments with future GW detectors. However, the
system dynamics that have been considered describe general
cases with a high- Q mechanical oscillator coupled to coherent
optical fields. In this respect, we note that our results for
Markovian systems only depend on the ratio between various
noises and the SQL and therefore carry over directly to systems
with other scales. In addition, the Markovian assumption
applies more accurately to smaller scale systems, which
operate in higher frequencies.
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APPENDIX A: NECESSITY OF SUB-HEISENBERG
ACCURACY FOR REVEALING NONCLASSICALITY

As we have mentioned in the introduction, sub-Heisenberg
accuracy is a necessary condition to probe the nonclassicality
if the Wigner function of the prepared quantum state has some
negative regions, which do not have any classical counterpart.

To prove the necessity, we use the relation between the Q
function and the Wigner function as pointed out by Khalili [59].
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Given density matrix p, the Q function in the coherent state
basis |«) is equal to [31,60,61]

1
Q = —(a|pla), (AL)
T

which is always positive defined. It is the Fourier transform of

the following characteristic function:
J(B, B") = Tr[e e p). (A2)

Here a is the annihilation operator and is related to the
normalized oscillator position £/5x, and momentum p/Sp,
[cf. Eq. (26)] by the standard relation

a = [(&/xy) +i(p/py)]/2.

If we introduce the real and imaginary parts of 8, namely,
B = B + iBi, characteristic function J can be rewritten as

(A3)

J(Be, Bi) = e*(ﬂ?+5i2)/2Tr[eiﬁr(ﬁ/5Xq)+iﬂi(ﬁ/5pq)p\]’ (A4)

where we have used the fact that edef = ¢A+BlA.B1/2 44
[A, B] commutes with A and B. Inside the brackets of
Eq. (A4), it is the characteristic function for the Wigner
function W(x, p), and thus

l / /] — y
J(Br, Bi) = m/d}c dp'e= B2

X g*iﬂr(x’/ﬁxq)*iﬂa(P'/tSPq)W(x/’ p,). (A5)

By integrating over f; and S, the resulting Q function is given
by

=2 (p=p)?

1 _1
ox, p) =5~ / dx'dp'e 2[ ]W(x’,pb. (A6)

This will be the same as Eq. (7), if we identify Wiecon(x, p)

with Q(x, p) and
2
yadd _ dxg 0
0 (Spg '

which is a Heisenberg-limited error. Since squeezing and
a rotation of £ and p axes will not change the positivity
of the Q function, Eq. (A6) basically dictates that the
reconstructed Wigner function will always be positive if a
Heisenberg-limited error is introduced during the verification
stage. Therefore, only if sub-Heisenberg accuracy is achieved
will we be able to reveal the nonclassicality of the prepared
quantum state.

(AT)

APPENDIX B: WIENER-HOPF METHOD FOR SOLVING
INTEGRAL EQUATIONS

In this Appendix, we will introduce the mathematical
method invented by N. Wiener and E. Hopf for solving a
special type of integral equation. For more details, one can
refer to a comprehensive presentation of this method and its
applications by Noble [62]. Here we will focus on integral
equations that can be brought into the following form as
encountered in obtaining the optimal verification scheme:

+00
/ dr'Ct,thg(ty=h(t), t>0, B1)
0
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with

Ct,t)= At —1) +Z/
« 0

min[z,t']

di"Bi(t—t")By(t'—1"),

(B2)

whereo =1,2,...and B,(t) =0ifr < O.

Assuming the solution to g(#) be a square-integrable
function in £?(—o0, 00), one can split it into causal and
anticausal parts as

8(t) = g4(1) +g-(1), (B3)
where g_(¢) is the causal part:
0, t>0,
g-(1) = { <(t). 1<0. (B4)
and g (¢) is the anticausal part of g(¢):
g = { ot (B3)

This definition enables us to expand the limits of integration
in (B1) and (B2) to —oco < (¢, ', t") < oo:

+00
/ dt'Ct, gt =h@), t>0, (B6)

oo

where

C(t,t)y= At —1)
+00
+ Z/ dt"[BE (t — ") By +(t' — ")
o —00

(B7)

and index (+, #”) stands for taking causal part of a multidi-
mensional function in the argument ¢”.

Let us first exercise the method in a simple special case
when B,(t) = 0; Ve, this gives a conventional Wiener-Hopf
integral equation

+00
/ dt'A(t —thg(t) = h(t), t>0, (BY)
0
which can be rewritten as

~+00
[/ dt'A(t —tg, (1)) — h(t)] =0. (B9)
—o0 +.0

Applying the Fourier transform in ¢ and the convolution
theorem, one gets

+cmdQ[A(Qy Q) — h(Q)]pe ™ =0 B10
o 8+(Q2) — h(Q)]1e " = 0. (B10)

o0

The spectrum of the causal (anticausal) function is simply

Fr(Q) = / dtg(y(t)e'. (B11)

o0
However, this evident relation is not operational for us, as it
provides no intuition on how to directly get g..(2) given g(2)
in disposal. The surprisingly simple answer gives complex
analysis. Without loss of generality, we can assume that g(z)
asymptotically goes to zero at infinity as V¢ : |g(¢)| < e~ 7!,
where y, is some arbitrary positive number, that guarantees
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regularity of g(2) at —oo < Q < o0o. In terms of analytic
continuation g(s) of g(2) to the complex plane s = Q + iy,
this assumption means that all the poles of g(s) are located
outside its band of analyticity, —yp < Im(s) < yp. Thus, the
partition into causal and anticausal parts for g(s) is now
evident:

§(s) =g+(s) + 8-(s), (B12)

where g, (s)[&_(s)] stands for the function equal to g(s) for
y > yo(< —ypp) and analytic in the half-plane above (below)
the line ¥ = yy(—yp).> According to the properties of analytic
continuation, this decomposition is unique and completely
determined by values of g(£2) on the real axis. Moreover, as a
Fourier transform of a valid £ function, it has to approach zero
when |s| — oo. For more general cases, this requirement could
be relaxed to demand that oo should be a regular point of g(s)
so that lims—. o, g(s) = const. This allows us to include the &
function and other integrable distributions, though it makes us
add the constant g(oo) to formula (B12) as an additional term.
For example, for g(r) = e~ o > 0, one has the following
fourier transform:

) = o > (B13)
S) = = .

§ a? 452 (s+ia)s—ia)

which has one pole s, = —i« in the lower half complex plane

(LHP) and one pole s = +i« in the upper half complex plane
(UHP). To split f(£2) in accordance with (B12) one can use
well-known formula

Za(s) = Z Res[g(s)vs:t,k]’

B14
(s — s1.0)% (B14)

{sex)

where summation goes over all poles {sy x} (with o} the order
of pole sy ) of g(s) that belong to the LHP for g,(s) and
over all poles {s_ ;} of g(s) that belong to the UHP for g_(s)
otherwise, and Res[g(s), s] stands for residue of g(s) at pole
s. For our example function this formula gives

)= ——— (B15)

s —ia

5 (s) = ,
g+(s) Stia

Using the residue theorem, one can easily show that
gr(t)y=e¥, fort >0,
g-(t) =",

Returning to Eq. (B10), we assume that function A(Q) can
be factorized in the following way:

A(Q) = a_(Q)a+(Q),

(B16)

fort < 0. B17)

(B18)

where d4(—(€2) is a function analytic in the UHP (LHP) with
its inverse, that is, both its poles and zeroes, being located in
the LHP (UHP). One gets the following equation:

[a-()a(2)§+(R) — h(2)]4 = 0. (B19)

To solve this equation, one realizes the following fact: For any
function f, [ f(€2)]+ = O means that f has no poles in the LHP.
Multiplication of f by any function g_ which also has no poles

3Functions g, (s) and g_(s) are, in essence, Laplace transforms of
g (1) for positive and negative time, respectively, with only substitution
of variable s — ip.
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in the LHP will evidently not change the equality; namely,
[8-(2) f(2)]+ = 0. By multiplying Eq. (B19) by 1/a_(2),

the solution reads
1 [ﬁ(sz)}
a(@) Lla(@],

By performing the inverse Fourier transform of g, (2), the
time-domain solution g, (¢) can be obtained.

Now we are ready to solve Eq. (B6) with the general kernel
in Eq. (B7). Performing similar manipulations, one obtains the
following equation for g (€2) in the Fourier domain:

[(A +> BaB:;) 81— Y Bu(Bjg)- — h} =0,
o o +
(B21)
where we have omitted arguments €2 of all functions for
brevity. Since B, is a causal function, B} is anticausal, and
84 is causal, (B;;g)_ only depends on the value of § on the
poles of B. Performing a similar factorization

G = A+ Y BB

§+() = (B20)

(B22)

with 1/7+ (J_) and 1/ 1Z+ 1/ v_) analytic in the UHP (LHP),
Y (—Q) = ¥ () = ¢¥_(R), we get the solution in the form

- 1 fl 1 Eot(g:g+)—
& I/f-&- [1”—]-&- ¢+ |:2a: w— :|+ ( )

Although g also enters the right-hand side of this equation,
(B}g+)— can be written out explicitly as

3 §r(Q-OReSIB(D. Q] b))
Q_k

(Bigs)- =
{
Here {2_;} are poles of B*(Q) that belong to UHP, and
therefore g, (€2_ ;) are just constants that can be obtained by
solving a set of linear algebraic equations evaluating Eq. (B23)
at those poles {Q2_ ;}.

@

APPENDIX C: SOLVING INTEGRAL
EQUATIONS IN SEC. V

Here we will use the technique introduced in the
Appendix B to obtain analytical solutions to the integral
equations we encountered in the Secs. VB and V C.

In the coordinate representation, the integral equations for
g1, are the following [cf. Egs. (78) and (79)]:

/T““ ar’ Cu,t) Cp@. ) || &) _ 0 @
0 Co(t, 1) Cxn(t,1) || g@) h(t)

where C;;(i, j = 1,2) are given by Eq. (88) and we have
defined A(t) = ) f1(t) + p2 fo(¢). Since the optimal g »(7)
will automatically cut off when ¢ > tr, we can extend the
integration upper bound T, to co. This brings those equations

into the right shape considered in Appendix B. In the frequency
domain, they can be written as

[S1181]+ + [S12&2]s =0, (C2)
(518114 + [S082] — T =h, (C3)
F=1—n(Q/2)( +262)[G(Grg2)-1s. (CH
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Here S; ; are the Fourier transformation of the correlation
functions C;;. Specifically, they are

. + (1 — e

§y =10 (C5)
2

- 1 — n)exQ?

S = — Aowe™ e
2(9 + w, — l]/m)(Q - Wy — lym)
S =S5}, (CTh
- A2 (1 —n)(e* +2:2)0

Sp="—+ ( P (C8)

4 22+ o)+ 12][(Q - on)?+ 2]

Since S is only a number, the solution to g; is
simply

g1 =-S5, [S12821+- (C9)

PHYSICAL REVIEW A 81, 012114 (2010)

In the time domain, this recovers the resultin Eq. (91). Through
a spectral factorization

Ui = Sn — 881280, (C10)
we obtain the solution for 2;:
&= {5 [h =5 818ng)- +T]},. (€1
By plugging I into this equation, g, becomes
I P
S=— 15[ +xG(Gg)-] (C12)
¢+ I/f— +

with k = m*QJ¢7. A simple inverse Fourier transformation
gives gi(¢) and g»(¢). The unknown Lagrange multipliers can
be solved using Eq. (83). We can then derive the covariance
matrix V3¢ for the added verification noise with Eq. (85). In
the free-mass regime, a closed form for Vadd can be obtained
as shown explicitly in Eq. (98).
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