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We propose a class of probabilistic reversing operations on the state of a system that was disturbed by a weak
measurement. It can approximately recover the original state from the disturbed state especially with an additional
information gain using the Hermitian conjugate of the measurement operator. We illustrate the general scheme
by considering a quantum measurement consisting of spin systems with an experimentally feasible interaction
and show that the reversing operation simultaneously increases both the fidelity to the original state and the
information gain with such a high probability of success that their average values increase simultaneously.
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I. INTRODUCTION

Quantum measurement not only provides information about
a physical system but also changes the state of the system
because of its back-action. Although such a change in state
was widely believed to be intrinsically irreversible [1], it has
been shown that quantum measurement is not necessarily
irreversible [2], because a certain class of measurements
preserves all the information about the system during the
measurement process. In recent work [2–14] on reversibility
in quantum measurements, probabilistic reversing operations
based on the inverse operator of M̂ [4,5,8–13] have been
discussed, where M̂ is an operator describing the state change
due to the measurement. That is, a second measurement
is performed on the system so that it applies M̂−1 to the
system state to cancel the effect of M̂ , when a preferred
outcome is obtained. However, if the premeasurement state
is completely recovered using M̂−1, the information obtained
by the first measurement is completely erased or neutralized by
the information gain from the reversing operation (see Erratum
of Ref. [4]). Recently, this type of reversing operation has been
experimentally demonstrated using a superconducting phase
qubit [15].

In this article, we consider a probabilistic reversing op-
eration that can accomplish both approximate recovery of
the premeasurement state and additional information gain.
The operation is carried out with the Hermitian conjugate
operator of M̂ rather than M̂−1. Note that M̂† and M̂−1 are
different because M̂ is not unitary. However, the difference
can be small if the interaction between the system and the
measuring apparatus is sufficiently weak. In this case, M̂†

could approximately cancel the state change caused by the
measurement. Moreover, a reversing operation using M̂† has
an advantage over that using M̂−1 with respect to information
gain. On observing the recovery by M̂−1, one might think that if
the premeasurement state is approximately recovered, most of
the information obtained is lost during the reversing operation.
However, we show that if it is approximately recovered using
M̂†, the reversing operation increases rather than decreases
information gain.

The additional information gain can be understood by polar
decomposition of M̂ , i.e., M̂ = Û N̂ , where Û is a unitary
operator and N̂ is a nonunitary positive operator. As shown

below, N̂ carries information about the system, while Û

does not. The reversing operation by M̂† can thus increase
information gain, because M̂† cancels the unitary part Û

but enhances the information-carrying nonunitary part N̂ as
M̂†M̂ = N̂2. This is in contrast with the reversing operation by
M̂−1, where M̂−1 cancels not only Û but also N̂ as M̂−1M̂ =
Î . Of course, the premeasurement state cannot perfectly be
recovered by M̂†, because N̂ disturbs the state of the system.
Nevertheless, the premeasurement state can approximately be
recovered by M̂† as long as the state disturbance by N̂ is much
smaller than that by Û . We shall show such a physical example
using spin systems with Ising-type interaction.

An approximate recovery with additional information gain
was first discussed in Ref. [12]. However, the article did not
identify the reason for the information gain because it focused
on a reversing operation by M̂−1. Similarly, an approximate
recovery with purity gain (instead of information gain) was
discussed in Ref. [14] for a system weakly interacting with the
environment by regarding the interaction with the environment
as a measurement. However, the reversing operation in that
case requires the average over the outcome of the “measure-
ment,” because the environment does not refer to the outcome.
This obscures the nature of the operator that contributes to
the purity gain. Therefore, here we clarify the reason for the
information gain, together with the property of the operator
that is required to achieve the information gain.

This article is organized as follows: Section II describes the
general formulation of quantum measurement and introduces
fidelity loss and information gain due to measurement. Sec-
tion III defines a Hermitian conjugate measurement together
with the reversing measurement scheme. Section IV shows
that in the case of weak measurement, the Hermitian conjugate
measurement achieves both approximate recovery of the pre-
measurement state and additional information gain. Section V
considers a quantum measurement of a spin-s system using
a spin-j probe as an example. Section VI summarizes our
results.

II. QUANTUM MEASUREMENT, FIDELITY, AND
INFORMATION GAIN

A quantum measurement is generally described [16,17] by
a set of linear operators {M̂m}, called measurement operators,
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that satisfy the completeness condition∑
m

M̂†
mM̂m = Î , (1)

where Î is the identity operator. If the system to be measured
is in a state ρ̂, the measurement yields outcome m with
probability

pm = Tr(ρ̂ M̂†
mM̂m), (2)

and for each outcome m the state of the system is changed into

ρ̂m = 1

pm

M̂m ρ̂M̂†
m. (3)

We can always construct a quantum measurement described
by a given set of operators {M̂m}, using a measuring apparatus
whose initial state, interaction, and observable are appropri-
ately chosen [17].

Provided that the dimension of the support is finite, any
linear operator M̂m can uniquely be decomposed by left polar
decomposition into

M̂m = ÛmN̂m, (4)

where Ûm is a unitary operator and N̂m ≡
√
M̂

†
mM̂m is a

positive operator. The operators {N̂m} also describe a quantum
measurement because they are linear and satisfy

∑
m N̂

†
mN̂m =

Î . The measurement described by {N̂m} gives the same amount
of information gain as the measurement {M̂m} but changes
the state as little as possible. This is because the probability
pm = Tr(ρ̂N̂2

m) does not depend on Ûm. The unitary part, Ûm,
is thus irrelevant to the information gain and contributes only
to the state change. Unfortunately, we cannot always perform
this optimal measurement {N̂m} because available interactions
between the system and the measuring apparatus are subject
to experimental constraints.

In making the polar decomposition (4) of the measurement
operator, we have assumed that the system’s Hilbert space is
finite dimensional, because a linear operator on an infinite-
dimensional Hilbert space cannot always be decomposed by
polar decomposition [18]. This assumption is not particularly
restrictive, owing to the existence of a physical cutoff. For
example, in photon counting [19], the measurement process
that detects one photon with a photodetector is described by
the annihilation operator, â, of the photon; however, it has
been shown that such an annihilation operator does not have
polar decomposition [20]. Note that the Hilbert space of the
photon field is infinite-dimensional, because it is spanned by
the eigenstates |n〉 of the photon-number operator â†â with
n = 0, 1, 2, . . .. Even in this case, an effective upper bound on
the photon number nmax can be introduced by considering an
actual experimental setup. Truncating the Hilbert space {|n〉}
to finite dimensions n = 0, 1, 2, . . . , nmax, we can consider an
approximate polar decomposition as in Eq. (4).

To evaluate the amount of information obtained by a single
measurement outcome, suppose that the premeasurement state
ρ̂ is known to be one of the predefined states {ρ̂(a)} with
equal probability, p(a) = 1/N , where a = 1, . . . , N . Because
the premeasurement state is usually an arbitrary unknown
state in quantum measurement, {ρ̂(a)} is essentially an infinite
set (N → ∞). This contrasts with the case of quantum state

discrimination [21,22], in which N cannot be greater than the
dimension of the Hilbert space due to the linear independence
of {ρ̂(a)}. The Shannon entropy associated with the system is
initially

H0 = −
∑

a

p(a) log2 p(a) = log2 N, (5)

which is a measure of the lack of information about the system.
The measurement {M̂m} is then performed to obtain

information about the system. If the premeasurement state is
ρ̂(a), the measurement yields an outcome m with probability

p(m|a) = 〈M̂†
mM̂m〉a = 〈

N̂2
m

〉
a
, (6)

where the bracket with subscript a denotes

〈Ô〉a ≡ Tr[ρ̂(a)Ô]. (7)

The total probability for outcome m is thus

p(m) =
∑

a

p(m|a)p(a) = 1

N

∑
a

〈
N̂2

m

〉
a

= 〈
N̂2

m

〉
, (8)

where the overline denotes the average over a,

f ≡ 1

N

∑
a

f (a). (9)

Conversely, given outcome m, we can find the probability that
the premeasurement state is ρ̂(a) by

p(a|m) = p(m|a)p(a)

p(m)
(10)

from Bayes’s rule. This indicates that the Shannon entropy
after measurement with outcome m is

H (m) = −
∑

a

p(a|m) log2 p(a|m). (11)

Therefore, the amount of information obtained from outcome
m is evaluated by

I (m) = H0 − H (m) =
〈
N̂2

m

〉
log2

〈
N̂2

m

〉 − 〈
N̂2

m

〉
log2

〈
N̂2

m

〉
〈
N̂2

m

〉 ,

(12)

due to the assumption that p(a) = 1/N does not depend on a.
The mean information gain after the measurement is given by

I =
∑
m

p(m)I (m). (13)

On the other hand, the state change caused by the mea-
surement can be evaluated in terms of the fidelity [17,23]
between the premeasurement and postmeasurement states.
If the premeasurement state is ρ̂(a) and the measurement
outcome is m, the postmeasurement state is given by

ρ̂(m, a) = 1

p(m|a)
M̂m ρ̂(a)M̂†

m. (14)

The fidelity between the premeasurement and postmeasure-
ment states then becomes

F (m, a) = Tr
√√

ρ̂(a) ρ̂(m, a)
√

ρ̂(a), (15)

with 0 � F (m, a) � 1. The more drastically the measurement
changes the state of the system, the smaller the fidelity
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becomes. Because a is unknown to us, the fidelity after
the measurement with outcome m is evaluated using the
probability in Eq. (10) by

F (m) =
∑

a

p(a|m)F (m, a). (16)

The mean fidelity after measurement is given by

F =
∑
m

p(m)F (m). (17)

III. HERMITIAN CONJUGATE MEASUREMENT

To undo the state change caused by measurement, a
reversing measurement scheme was proposed in Ref. [5] based
on the inverse of the measurement operator. In this scheme,
depending on the outcome m of the measurement, another
measurement, called a reversing measurement, is performed
on the postmeasurement state (3) of the system. The reversing
measurement is described by a set of measurement operators
{R̂(m)

ν } that satisfy [5]∑
ν

R̂(m)†
ν R̂(m)

ν = Î (18)

and

R̂(m)
ν0

= λm M̂−1
m , 0 < |λm|2 � inf

ρ̂
pm (19)

for a particular ν0, where ν denotes the outcome of the
reversing measurement and λm is a complex number. The upper
bound for λm is determined by the condition (18), namely
〈R̂(m)†

ν0
R̂(m)

ν0
〉 � 1 for any ρ̂ [9]. Thus, the reversing measure-

ment restores the premeasurement state if the measurement
outcome is ν0.

In our situation with the predefined states {ρ̂(a)}, when an
outcome ν is obtained from the reversing measurement on the
state (14), the state of the system becomes

ρ̂(m, ν, a) = 1

p(m, ν|a)
R̂(m)

ν M̂m ρ̂(a) M̂†
mR̂(m)†

ν , (20)

where

p(m, ν|a) ≡ 〈
M̂†

mR̂(m)†
ν R̂(m)

ν M̂m

〉
a

(21)

is the joint probability for obtaining the set of outcomes
(m, ν) for the two successive measurements {M̂m} and {R̂(m)

ν }.
Conversely, given outcomes (m, ν), we can find the probability
that the premeasurement state is ρ̂(a), with

p(a|m, ν) = p(m, ν|a)p(a)

p(m, ν)
, (22)

where p(m, ν) is the total probability for the set of outcomes
(m, ν):

p(m, ν) =
∑

a

p(m, ν|a)p(a). (23)

The information gain then becomes

I (m, ν) = H0 − H (m, ν), (24)

with H (m, ν) being the Shannon entropy after the reversing
measurement:

H (m, ν) = −
∑

a

p(a|m, ν) log2 p(a|m, ν). (25)

On the other hand, the fidelity after the reversing measurement
is expressed as

F (m, ν) =
∑

a

p(a|m, ν)F (m, ν, a), (26)

where p(a|m, ν) is given in Eq. (22) and F (m, ν, a) is the
fidelity defined by

F (m, ν, a) ≡ Tr
√√

ρ̂(a) ρ̂(m, ν, a)
√

ρ̂(a). (27)

If outcome ν is that ν0 for which the premeasurement state
is recovered, fidelity (26) and information gain (24) reduce to

F (m, ν0) = 1, (28)

I (m, ν0) = 0, (29)

because R̂(m)
ν0

is proportional to the inverse operator of M̂m,

R̂(m)
ν0

M̂m ∝ Î . (30)

That is, if the particular outcome ν0 is obtained by the
reversing measurement, the unknown original state ρ̂(a) is
perfectly recovered because the inverse operator of M̂m is
applied to the system’s state. However, when perfect recovery
is achieved, the information obtained by the first measurement
is completely lost by the reversing measurement, p(a|m, ν0) =
p(a), because the information concerning the premeasurement
state is not reflected in the joint probability distribution for the
perfect recovery [5]; i.e., p(m, ν0|a) = |λm|2 does not depend
on ρ̂(a).

Now, we consider a reversing operation that is based on
the Hermitian conjugate of the measurement operator. That is,
instead of the reversing measurement {R̂(m)

ν }, we perform a
measurement {Ĉ(m)

µ } satisfying∑
µ

Ĉ(m)†
µ Ĉ(m)

µ = Î (31)

and

Ĉ(m)
µ0

= κm M̂†
m, 0 < |κm|2 �

(
sup

ρ̂

pm

)−1
(32)

with a complex number κm for a particular outcome µ0.
The upper bound for κm is determined by the condition
〈Ĉ(m)†

µ0
Ĉ(m)

µ0
〉 � 1 for any ρ̂, which is equivalent to the condition

〈Ĉ(m)
µ0

Ĉ(m)†
µ0

〉 � 1 for any ρ̂ because of polar decomposition (4).
We shall refer to {Ĉ(m)

µ } as a Hermitian conjugate measurement.
In our situation with {ρ̂(a)}, when outcome µ is obtained by

the Hermitian conjugate measurement on state (14), the state
of the system becomes

ρ̂(m,µ, a) = 1

p(m,µ|a)
Ĉ(m)

µ M̂m ρ̂(a) M̂†
mĈ(m)†

µ , (33)

where

p(m,µ|a) ≡ 〈
M̂†

mĈ(m)†
µ Ĉ(m)

µ M̂m

〉
a

(34)

is the joint probability for the set of outcomes (m,µ). We
define fidelity F (m,µ) and information gain I (m,µ) as in the
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case of reversing measurement, replacing R̂(m)
ν with Ĉ(m)

µ . If the
outcome µ is the preferred one µ0, the fidelity and information
gain reduce to

F (m,µ0) = 1〈
N̂4

m

〉√〈
N̂4

m

〉 〈
N̂2

m

〉
, (35)

I (m,µ0) =
〈
N̂4

m

〉
log2

〈
N̂4

m

〉 − 〈
N̂4

m

〉
log2

〈
N̂4

m

〉
〈
N̂4

m

〉 , (36)

because from Eqs. (32) and (4) we have

Ĉ(m)
µ0

M̂m ∝ N̂2
m. (37)

In the next section, we show that if the preferred outcome
µ0 is obtained by the Hermitian conjugate measurement, the
unknown original state ρ̂(a) is approximately recovered with
additional information gain for a weak measurement.

IV. SIMULTANEOUS STATE RECOVERY AND
INFORMATION GAIN FOR A WEAK MEASUREMENT

We consider the case of a measurement {M̂m} that provides
only a small amount of information, e.g., measurement by an
apparatus having a weak interaction with the system. In this
case, N̂m in Eq. (4) can be expressed as

N̂m ≡ qm(Î + ε̂m), (38)

where qm is a positive number and ε̂m is a small Hermitian
operator. It follows from Eq. (1) that {qm} and {ε̂m} satisfy∑

m

q2
m = 1, (39)

∑
m

q2
m

(
2ε̂m + ε̂2

m

) = 0. (40)

Then, up to the order of ε̂2
m, the information gain in Eq. (12)

and its mean in Eq. (13) are calculated to be

I (m) � 2VI (ε̂m) , (41)

I � 2
∑
m

q2
mVI (ε̂m) , (42)

where VI (ε̂m) is a variance defined by

VI (ε̂m) ≡ 〈ε̂m〉2 − (〈ε̂m〉)2 = (〈ε̂m〉 − 〈ε̂m〉)2 � 0. (43)

This is a classical variance with respect to a of the quantum
average 〈ε̂m〉a .

On the other hand, a weak measurement does not necessar-
ily imply a small change in the system state, because the state
change depends not only on N̂m but also on Ûm in Eq. (4). In
general, Ûm can be written as

Ûm ≡ eiγmei�̂m , (44)

where γm is a real number and �̂m is a Hermitian operator.
Note that, even if the interaction between the system and the
measuring apparatus is weak, �̂m can be large if the degrees
of freedom of the system or those of the measuring apparatus
are large [14], as shown below. When all ρ̂(a)’s are pure,
ρ̂(a) = |ψ(a)〉〈ψ(a)|, we obtain the fidelity from Eq. (16) and

its mean from Eq. (17) as

F (m) � |〈ψ |ei�̂m |ψ〉|[1 + O(ε̂m)], (45)

F �
∑
m

q2
m|〈ψ |ei�̂m |ψ〉|[1 + O(ε̂m)]. (46)

Equations (45) and (46) show that the fidelity can almost vanish
if �̂m is large enough, even though large �̂m does not always
imply small F (m). Below, we consider a measurement that
provides a small amount of information through Eq. (38),
despite the fact that it drastically changes the state of the
system, such that

1 − F (m)

1 − Fopt(m)
> 4, (47)

where Fopt(m) would be the fidelity if the measurement were
optimal, i.e., �̂m = 0. The explicit form of Fopt(m) is

Fopt(m) = 1〈
N̂2

m

〉√〈
N̂2

m

〉 〈N̂m〉 � 1 − 1

2
VF (ε̂m) , (48)

with VF (ε̂m) being a variance defined by

VF (ε̂m) ≡ 〈
ε̂2
m

〉 − 〈ε̂m〉2 = 〈(ε̂m − 〈ε̂m〉)2〉 � 0. (49)

This is a classical average over a of the quantum variance
〈(ε̂m − 〈ε̂m〉a)2〉a .

From Eqs. (35) and (36), the fidelity and information gain
after the Hermitian conjugate measurement with the preferred
outcome µ0 can be calculated up to the order of ε̂2

m to be

F (m,µ0) � 1 − 2VF (ε̂m) , (50)

I (m,µ0) � 8VI (ε̂m) . (51)

Note that as long as higher-order terms can be ignored,

F (m,µ0) > F (m) (52)

by the assumption made in Eq. (47). This means that the
Hermitian conjugate measurement approximately recovers
the original state ρ̂(a). Moreover, it follows from Eqs. (41)
and (51) that the Hermitian conjugate measurement simulta-
neously enhances the information gain by a factor of 4, because

I (m,µ0) � 4I (m). (53)

Such an approximate recovery occurs because Û
†
m in Ĉ(m)

µ0

cancels the large disturbance caused by the unitary part Ûm

in M̂m, while the additional information gain is obtained
because the composition of M̂m and Ĉ(m)

µ0
results in the

optimal measurement N̂m being applied twice, as shown
in Eq. (37). The state recovery of Hermitian conjugate
measurement presents a sharp contrast to that of the reversing
measurement shown in Eqs. (28) and (29), in which the
reversing measurement perfectly recovers the original state
ρ̂(a) but completely obliterates the information I (m). The
recovery with information loss occurs because R̂(m)

ν0
contains

not only Û
†
m, which cancels Ûm, but also N̂−1

m , which cancels
the nonunitary part N̂m in M̂m, as in Eq. (30).

One might think that the probability for an approximate
recovery is very low, and if an average over the outcome µ

is taken, the fidelity increases with a decrease in information
gain. However, the preferred outcome µ0 is more probable
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when the outcome m of the measurement {M̂m} occurs with
high probability. In fact, given outcome m, the conditional
probability for outcome µ of the Hermitian conjugate mea-
surement {Ĉ(m)

µ } is given by p(µ|m) = p(m,µ)/p(m), which,
for the preferred outcome µ0, reduces to

p(µ0|m) � |κm|2{ p(m) + 4q2
m [VF (ε̂m) + VI (ε̂m)]}. (54)

This indicates that, when p(m) is large, p(µ0|m) is also large.
Discussing the mean fidelity and information gain conditioned
by outcome m,

F ′(m) ≡
∑

µ

p(µ|m) F (m,µ), (55)

I ′(m) ≡
∑

µ

p(µ|m) I (m,µ), (56)

we must specify Ĉ(m)
µ ’s other than µ = µ0. Here, we consider a

minimal model, where the only two possible outcomes of the
Hermitian conjugate measurement are µ = µ0 and µ = µ1.
Then, the measurement operator for µ = µ1 is chosen as

Ĉ(m)
µ1

=
√

1 − a2
m

[
Î − a2

m

1 − a2
m

ε̂m − a2
m

2
(
1 − a2

m

)2 ε̂2
m

]
Û †

m,

(57)

where a2
m ≡ |κm|2q2

m, and we assume that a2
mε̂m/(1 − a2

m) is
small, so that condition (31) is satisfied up to the order of ε̂2

m.
When the outcome of the Hermitian conjugate measurement
{Ĉ(m)

µ } is µ1, the fidelity and the information gain become

F (m,µ1) � 1 − 1

2

(
1 − a2

m

1 − a2
m

)2

VF (ε̂m) , (58)

I (m,µ1) � 2

(
1 − a2

m

1 − a2
m

)2

VI (ε̂m) . (59)

In this case, the Hermitian conjugate measurement decreases
the information gain I (m,µ1) < I (m) from Eq. (41). The
mean fidelity (55) and information gain (56) after the Her-
mitian conjugate measurement are then given by

F ′(m) � 1 − 1

2
(
1 − a2

m

) VF (ε̂m) , (60)

I ′(m) � 2

1 − a2
m

VI (ε̂m) , (61)

which imply I ′(m) > I (m) and F ′(m) > F (m) if a2
m < 3/4

from Eq. (47). Therefore, the Hermitian conjugate measure-
ment, on average, increases both the fidelity and information
gain. We can obtain the same conclusion even after the
averages over m are taken:

F ′ ≡
∑
m

p(m)F ′(m) > F, (62)

I ′ ≡
∑
m

p(m)I ′(m) > I. (63)

V. EXAMPLE: ISING-TYPE INTERACTION

As an example, we consider a quantum measurement on
a spin-s system described by spin operators {Ŝx, Ŝy, Ŝz}. We

assume that we have no a priori information about the state
of the system except that it is a pure state. This means that
the set of predefined states, {ρ̂(a)}, consists of all possible pure
states. That is, ρ̂(a) can be written as ρ̂(a) = |ψ(a)〉〈ψ(a)| by
a state vector

|ψ(a)〉 =
∑

σ

cσ (a)|σ 〉, (64)

where |σ 〉 is the eigenstate of Ŝz with eigenvalue σ (= −s,

−s + 1, . . . , s − 1, s) and cσ (a)’s obey the normalization
condition

∑
σ |cσ (a)|2 = 1.

To obtain information about the system’s state, we perform
a measurement using a spin-j probe (measuring apparatus)
described by spin operators {Ĵx, Ĵy, Ĵz}. The measurement
proceeds as follows. The probe is first prepared in a coherent
spin state |θ, π/2〉 [24], which is the eigenstate of the spin
component Ĵy sin θ + Ĵz cos θ with eigenvalue j . The probe
then interacts with the system via an interaction Hamiltonian

Hint = αĴzŜz, (65)

where α is a real constant. This ĴzŜz-type interaction has direct
relevance to the experimental situations in Refs. [25–29]. After
interaction during time t , a unitary operator

Ûp = e−iπĴy/2 (66)

is applied to the probe. Finally, we obtain outcome m

(= −j,−j + 1, . . . , j − 1, j ) by performing a projective
measurement on the probe observable Ĵz. The outcome m

then provides some information about the state ρ̂(a). The
measurement process is described by the set of measurement
operators [12]

M̂m = T̂m(θ ) ≡
∑

σ

a(j )
mσ (θ ) |σ 〉〈σ |, (67)

where

a(j )
mσ (θ ) = e−ijπ/2

2j

√
(2j )!

(j + m)!(j − m)!

×
(

e−igσ cos
θ

2
+ ieigσ sin

θ

2

)j−m

×
(

e−igσ cos
θ

2
− ieigσ sin

θ

2

)j+m

(68)

with g ≡ αt/2 being the effective strength of the interaction.
When the interaction is weak, N̂m in the decomposition of M̂m

in Eq. (4) can be written as in Eq. (38), with

qm = 1

2j

√
(2j )!

(j + m)!(j − m)!
, (69)

ε̂m � 2gm sin θ Ŝz + O(g2), (70)

and Ûm can be written as in Eq. (44), with

γm = −jπ

2
− mθ, (71)

�̂m � −2gj cos θ Ŝz + O(g2). (72)

Because the probability for outcome m is p(m) � q2
m + O(g)

from Eq. (8), the expectation value and variance of the outcome
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are given by

m̄ ≡
∑
m

p(m) m � 0 + O(g), (73)

(δm)2 ≡
∑
m

p(m)(m − m̄)2 � j

2
+ O(g), (74)

respectively. Comparing Eqs. (73) and (74) with Eq. (70),
we find that ε̂m ∼ O(g

√
j ). In contrast, Eq. (72) shows that

�̂m ∼ O(gj ). Therefore, even if ε̂m is small, �̂m can be large
for large values of j . In the following discussion, we shall
consider such a situation by assuming that g is so small that

2
3g2s(s + 1)j sin2 θ � 1, (75)

but j is so large that Ûm differs greatly from the identity
operator,

|2gj cos θ | ∼ π. (76)

Substituting Eq. (70) into Eqs. (41) and (42), we obtain the
information gain and its mean to the order of g2 as

I (m) � 4
3g2s m2 sin2 θ, (77)

I � 2
3g2sj sin2 θ, (78)

where we have used

VI (Ŝz) = 1
6 s (79)

(see Appendix). On the other hand, we cannot expand the
fidelity in Eq. (16) and its mean in Eq. (17) in terms of g when
�̂m is large. If we formally expand them, they are given by

F (m) � 1 − 1

3
g2s(2s + 1)(j 2 cos2 θ + m2 sin2 θ ), (80)

F � 1 − 1

3
g2s(2s + 1)

(
j 2 cos2 θ + j

2
sin2 θ

)
, (81)

respectively, because the variance VF (Ŝz) is calculated to be

VF (Ŝz) = 1
6 s(2s + 1) (82)

(see Appendix). Compared to Eq. (80), the optimal fidelity (48)
can be expanded in terms of g as

Fopt(m) � 1 − 1
3g2s(2s + 1)m2 sin2 θ, (83)

without the term of order g2j 2 originating from �̂m.
Figures 1, 2, and 3 show p(m), F (m), and I (m), respec-

tively, as functions of m for s = 1/2, j = 7, g = 0.25, and
θ = π/6, where the assumptions in Eqs. (75) and (76) are
satisfied. In Fig. 3, I (m) deviates from Eq. (77) for large |m|,
because higher-order terms in g are not negligible there. Note
that ε̂m for |m| � j is not necessarily small even if Eq. (75)
is assumed, though the probability for such m is very small,
as shown in Fig. 1. The mean fidelity and information gain
are F = 0.535 and I = 0.045, respectively. In this example,
Eq. (47) is satisfied when −5 � m � 5.

To recover the original state ρ̂(a), we next perform a
Hermitian conjugate measurement on the state ρ̂(m, a) after
measurement {M̂m}. It is chosen independently of m as

Ĉ(m)
µ = T̂µ(π − θ ) =

∑
σ

a(j )
µσ (π − θ ) |σ 〉〈σ |, (84)

which can be achieved in the same way as the measurement
{M̂m}, by replacing the initial probe state |θ, π/2〉 with

 0

 0.05

 0.1

 0.15

 0.2

-6 -4 -2  0  2  4  6

m

p(m)
p(µ0|m)

FIG. 1. Probability p(m) of obtaining outcome m for measure-
ment {M̂m} and probability p(µ0|m) of obtaining the preferred
outcome µ0 = m for the Hermitian conjugate measurement {Ĉ(m)

µ }
conditioned by the first outcome m, with s = 1/2, j = 7, g = 0.25,
and θ = π/6.

|π − θ, π/2〉. The preferred outcome µ0 is equal to m, because

T̂m(π − θ ) = (−1)j+m T̂ †
m(θ ). (85)

Note that this measurement {Ĉ(m)
µ } can also be regarded as a

reversing measurement with the preferred outcome ν0 = −m

if s = 1/2 [12], because

T̂−m(π − θ ) ∝ T̂ −1
m (θ ); (86)

this relation holds only approximately if s > 1/2. In fact,
an approximate recovery with additional information gain
was first reported [12] regarding the reversing measurement
without identifying the origin of the information gain. The
origin is now clarified in terms of the Hermitian conjugate
measurement. If the initial probe state for M̂m is the
more general |θ, φ〉 [12], that for the Hermitian conjugate
measurement is |π − θ, φ〉 with µ0 = m or |π − θ, φ + π〉
with µ0 = −m, while that for the reversing measurement of
s = 1/2 is |π − θ, π − φ〉 with ν0 = −m or |π − θ,−φ〉 with
ν0 = m.

If the Hermitian conjugate measurement {Ĉ(m)
µ } yields an

outcome µ (= −j,−j + 1, . . . , j − 1, j ), the fidelity and

0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2 0 2 4 6
m

F(m)

F′(m)

FIG. 2. Fidelity F (m) after measurement {M̂m} and mean fidelity
F ′(m) after the Hermitian conjugate measurement {Ĉ(m)

µ } as functions
of the first outcome m, with s = 1/2, j = 7, g = 0.25, and θ = π/6.
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0

 0.05

 0.1

 0.15

 0.2

 0.25

-6 -4 -2 0 2 4 6

m

I(m)

I′(m)

FIG. 3. Information I (m) after measurement {M̂m} and mean
information I ′(m) after the Hermitian conjugate measurement {Ĉ(m)

µ }
as functions of the first outcome m, with s = 1/2, j = 7, g = 0.25,
and θ = π/6.

information gain become

F (m,µ) � 1 − 1
3g2s(2s + 1)(µ + m)2 sin2 θ, (87)

I (m,µ) � 4
3g2s(µ + m)2 sin2 θ. (88)

Figure 4 plots the sets of outcomes (m,µ) for which
F (m,µ) > F (m) and I (m,µ) > I (m) with s = 1/2, j = 7,
g = 0.25, and θ = π/6. The conditional probability for the
preferred outcome µ0 = m in Eq. (54) is shown in Fig. 1.
Taking the average over outcome µ, we obtain the mean
fidelity and mean information defined in Eqs. (55) and (56),
respectively, as

F ′(m) � 1 − 1

3
g2s(2s + 1)

(
m2 + j

2

)
sin2 θ, (89)

I ′(m) � 4

3
g2s

(
m2 + j

2

)
sin2 θ. (90)

Figures 2 and 3 also show F ′(m) and I ′(m), respectively, as
functions of m. Note that, in this example, F ′(m) > F (m) and
I ′(m) > I (m) for any value of m. If the average over outcome
m is taken, the total mean fidelity in Eq. (62) and total mean

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6
m

µ

FIG. 4. Sets of outcomes (m,µ) for which F (m, µ) > F (m) and
I (m,µ) > I (m), with s = 1/2, j = 7, g = 0.25, and θ = π/6. The
solid line (µ = m) denotes the Hermitian conjugate measurement
with the preferred outcome, while the dashed line (µ = −m) cor-
responds to the reversing measurement with the preferred outcome,
F (m,−m) = 1 and I (m,−m) = 0.

information in Eq. (63) are given by

F ′ � 1 − 1
3g2s(2s + 1)j sin2 θ, (91)

I ′ � 4
3g2sj sin2 θ. (92)

Assumption (75) ensures that F ′ is close to 1. Unlike Eq. (81),
no term of order g2j 2 appears in the fidelity expression in
Eq. (91), because the effect of large �̂m is canceled out by
the Hermitian conjugate measurement. When s = 1/2, j = 7,
g = 0.25, and θ = π/6, F ′ = 0.966 > F and I ′ = 0.081 > I .
Thus, the Hermitian conjugate measurement increases both
fidelity and information gain when the particular outcomes
are obtained, as well as when averages over the outcomes are
taken.

VI. CONCLUSION AND DISCUSSION

We have discussed a probabilistic reversing operation on
a system subjected to a state change caused by a weak
measurement. The reversing operation can increase not only
the fidelity to its original state but also the information
gain. The essential feature of the operation is to utilize
the Hermitian conjugate of the measurement operator rather
than its inverse. The Hermitian conjugate operator cancels
the unitary part of the measurement operator, which does
not carry information, and enhances the information-carrying
nonunitary part because the composition of M̂m and Ĉ(m)

µ0

results in the optimal measurement N̂m being applied twice,
as shown in Eq. (37). In contrast, the inverse operator cancels
both unitary and nonunitary parts. As an explicit example,
we considered a quantum measurement of a spin-s system
using a spin-j probe and demonstrated that the reversing
operation can increase not only the fidelity and information
gain with a high probability but also their average values. The
measurement and its reversing operation described in Sec. V
can be implemented [12] using an ensemble of 2s two-level
atoms as a system and a collection of 2j photons with two
polarizations (horizontal or vertical) as a probe. The interaction
in Eq. (65) is then realized via a Faraday rotation [25–28].

The Hermitian conjugate measurement {Ĉ(m)
µ } is more

feasible than the reversing measurement {R̂(m)
ν }. Consider a

quantum measurement in which a probe with initial state
|i〉 interacts with the system via an interaction Ûint and
then it is measured with respect to a certain observable.
The measurement operator for this measurement is written
as M̂m = 〈m|Ûint|i〉, where |m〉 is the final state of the
probe corresponding to outcome m. Because its Hermitian
conjugate operator is given by M̂

†
m = 〈i|Û †

int|m〉, the Hermitian
conjugate measurement can be performed by a probe with
initial state |m〉 together with the time-reversed interaction
Û

†
int. The preferred outcome is the one that corresponds to

the probe state |i〉. The implementation of the Hermitian
conjugate measurement can be complicated in more general
situations. Nevertheless, in photon counting [19], the stan-
dard photon counter implements the annihilation operator
â of the photon, while the quantum counter [2,5,30–32]
implements its Hermitian conjugate operator, i.e., the creation
operator â†.

Note that, while the Hermitian conjugate of an operator
always exists, unlike the inverse, it does not always increase
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the fidelity and information gain. For example, a projection
operator P̂ does not have an inverse P̂ −1, but it does have
the Hermitian conjugate P̂ † = P̂ . However, when the mea-
surement operator M̂m is a projection operator, the Hermitian
conjugate measurement leaves the fidelity and information
gain unchanged. Moreover, in the case of an optimal measure-
ment {N̂m}, its Hermitian conjugate measurement increases
the information gain but decreases the fidelity. Thus, our
approximate recovery with additional information gain relies
on assumptions in Eqs. (38) and (47), which mean that
the measurement provides little information but drastically
changes the state of the system because ε̂m is small and �̂m is
large.

It might appear that our conclusion is due to the choice
of information measure in Eq. (12). However, the same
conclusion could be drawn from another appropriate measure
of information, such as the measure proposed in Ref. [33]. This
is because Eq. (37) states that the combined effect of operations
of M̂m and Ĉ(m)

µ0
amounts to applying the optimal measurement

N̂m twice. If we perform a measurement twice and obtain
the same outcome, our knowledge about the state of the
system becomes more accurate than for a single measurement
outcome.

In quantum cryptography [34–37], our scheme could
benefit eavesdroppers. If the available interactions are limited,
the information obtained by eavesdropping would be lowered
with respect to the disturbance of the state transferred between
the sender and the receiver. However, the Hermitian conju-
gate measurement could make eavesdropping more efficient,
because it approximately recovers the state with additional
information gain. On the other hand, in quantum error
correction [38–40], the Hermitian conjugate measurement
scheme has less advantage than the reversing measurement
scheme [9], because no information gain is required, and the
emphasis is on perfect state recovery.
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APPENDIX: CALCULATION OF VARIANCES

We here prove Eqs. (79) and (82). The variances are defined
by

VI (Ŝz) = 〈Ŝz〉2 − ( 〈Ŝz〉
)2

, (A1)

VF (Ŝz) = 〈Ŝ2
z 〉 − 〈Ŝz〉2, (A2)

where the expectation values are given from Eqs. (9) and (64)
by

〈Ŝz〉 = 1

N

∑
a

∑
σ

|cσ (a)|2σ, (A3)

〈Ŝ2
z 〉 = 1

N

∑
a

∑
σ

|cσ (a)|2σ 2, (A4)

〈Ŝz〉2 = 1

N

∑
a

∑
σ,σ ′

|cσ (a)|2|cσ ′(a)|2σσ ′. (A5)

Because index a runs over all pure states, there is no preferred
σ . From this symmetry, we can set

1

N

∑
a

|cσ (a)|2 ≡ C (A6)

and

1

N

∑
a

|cσ (a)|2|cσ ′(a)|2 ≡
{

D (if σ = σ ′);

E (if σ �= σ ′),
(A7)

where C, D, and E are constants that do not depend on σ and
σ ′. Using these constants with the summations

∑
σ σ = 0 and

∑
σ

σ 2 = −
∑
σ �=σ ′

σσ ′ = 1

3
s(s + 1)(2s + 1), (A8)

it can be shown that

〈Ŝz〉 = 0, (A9)

〈Ŝ2
z 〉 = 1

3 s(s + 1)(2s + 1)C, (A10)

〈Ŝz〉2 = 1
3 s(s + 1)(2s + 1)(D − E). (A11)

To calculate C, D, and E, we introduce a parametrization
of coefficients {cσ (a)}. Let ασ (a) and βσ (a) be the real and
imaginary parts of cσ (a), respectively. The normalization
condition then becomes∑

σ

|cσ (a)|2 =
∑

σ

[ασ (a)2 + βσ (a)2] = 1, (A12)

which is the condition for a point to be on the unit sphere in
2(2s + 1) dimensions. Therefore, we parametrize ασ (a) and
βσ (a) using hyperspherical coordinates as

αs(a) = sin θ4s sin θ4s−1 · · · sin θ3 sin θ2 sin θ1 cos φ,

βs(a) = sin θ4s sin θ4s−1 · · · sin θ3 sin θ2 sin θ1 sin φ,

αs−1(a) = sin θ4s sin θ4s−1 · · · sin θ3 sin θ2 cos θ1,

βs−1(a) = sin θ4s sin θ4s−1 · · · sin θ3 cos θ2, (A13)

...

α−s(a) = sin θ4s cos θ4s−1,

β−s(a) = cos θ4s ,

with 0 � φ < 2π and 0 � θp � π (p = 1, 2, . . . , 4s). By
replacing the summation over a with an integral,

1

N

∑
a

−→ (2s)!

2π2s+1

∫ 2π

0
dφ

4s∏
p=1

∫ π

0
dθp sinp θp, (A14)

and setting σ = s and σ ′ = −s, we find that

C = 1

N

∑
a

|cs(a)|2 = (2s)!

π2s

4s∏
p=1

∫ π

0
dθp sinp+2 θp, (A15)

D = 1

N

∑
a

|cs(a)|4 = (2s)!

π2s

4s∏
p=1

∫ π

0
dθp sinp+4 θp, (A16)
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E = 1

N

∑
a

|cs(a)|2|c−s(a)|2

= C − (2s)!

π2s

4s∏
p=4s−1

∫ π

0
dθp sinp+4 θp

×
4s−2∏
p=1

∫ π

0
dθp sinp+2 θp. (A17)

Using the integral formula∫ π

0
dθ sinn θ = √

π
�

(
n+1

2

)
�

(
n+2

2

) (A18)

for n > −1 with the Gamma function �(n), the constants are
calculated to be

C = 1

2s + 1
, D = 1

(s + 1)(2s + 1)
,

E = 1

2(s + 1)(2s + 1)
. (A19)

Substituting these results into Eqs. (A9)– (A11), we finally
obtain

〈Ŝz〉 = 0, 〈Ŝ2
z 〉 = 1

3 s(s + 1), 〈Ŝz〉2 = 1
6 s, (A20)

which prove Eqs. (79) and (82) through definitions (A1)
and (A2).
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