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Entangling two unequal atoms through a common bath
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The evolution of two, noninteracting, two-level atoms immersed in a weakly coupled bath can be described by a
refined, time-coarse-grained Markovian evolution, still preserving complete positivity. We find that this improved,
reduced dynamics is able to entangle the two atoms even when their internal frequencies are unequal, an effect
that appears impossible in the standard weak-coupling-limit approach. We study in detail this phenomenon for

an environment made of quantum fields.
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I. INTRODUCTION

Independent, non-interacting atoms immersed in a common
bath represent an example of an open quantum system (i.e., a
subsystem that interacts with a large environment) [ 1-6]. Their
time evolution can be given as a reduced dynamics, obtained
by eliminating the degrees of freedom of the environment
and by subsequently performing a Markovian, memoryless
approximation, justified by the very rapid decay of correlations
in the bath. The resulting atom evolution is irreversible and
incorporates dissipative and noisy effects induced by the
environment.

In many physical instances, the atoms can be treated within
a nonrelativistic approximation as independent finite-level
systems with negligibly small size. On the other hand, the
environment can be modeled by a set of weakly coupled
quantum fields (typically the electromagnetic field) in a given
temperature state, interacting with the atoms through a dipole-
type coupling [7]. Although this simplified setting ignores the
internal atom dynamics and the full vectorial structure of the
electromagnetic field, it is nevertheless perfectly adequate for
studying the behavior of physical systems like ions in traps,
atoms in optical cavities and fibers, and impurities in phonon
fields [7-9].

The derivation of an acceptable subdynamics for the atoms
is notoriously tricky, [1-3,10] and time evolutions that are
not even positive have been adopted in the literature in order
to describe their physical properties [5,11,12]. Instead, a
physically consistent time evolution for the atom subsystem
can be obtained through a suitable coarse-grained procedure
within the weak coupling approximation [1,3,13-15]. The
resulting subdynamics are described by a one parameter
(=time) family of completely positive maps that form a
quantum dynamical semigroup.

Below, we shall explicitly discuss such a derivation for
a subsystem composed of two, unequal, mutually non-
interacting atoms. For simplicity, we shall restrict our at-
tention to two-level atoms weakly coupled to a collection
of independent, free, massless scalar fields in 3 4+ 1 space-
time dimensions, assumed to be in a state at temperature
T=1/B.

As is well known, interaction with an environment usually
leads to decoherence and noise, typical mixing enhancing
phenomena. Therefore, one generally expects that quantum
correlations between the two atoms that might have been
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present at the beginning be destroyed when they are immersed
in the bath.

However, an external environment can also mediate indirect
interactions between otherwise totally decoupled subsystems
and therefore constitute a means to correlate them. This
phenomenon is generic on a short, microscopic time scale
where the dynamics are unitary and reversible; however,
its persistence is not expected in general on longer time
scales where irreversible, dissipative, and decohering effects
described by Markovian master equations appear.

Nevertheless, there are instances where purely dissipative,
non-Hamiltonian contributions to the master equation can
lead to entanglement generation [8,16-23]. This is due to the
particular form of the (Kraus) operators appearing there, which
couple indirectly (i.e., not dynamically) the two subsystems.
This phenomenon has been established in the case of subsys-
tems formed by two, identical two-level systems [24-27] or
harmonic oscillators [28,29] evolving with reduced dynamics
obtained via the weak-coupling limit [30]. This technique is
applicable when the time scale over which the dissipative
effects become visible is so large that the free dynamics of the
subsystems can be effectively averaged out, thus eliminating
very rapid oscillations. This phenomenon typically occurs
for environments with very fast-decaying correlations [2,3,5].
Nevertheless, it turns out that, in the case of atoms with
unequal frequencies, this procedure of averaging out fast
oscillations prevents the generation of entanglement; i.e., the
environments for which the weak-coupling-limit procedure
is justified are unable to correlate two atoms with different
internal frequencies, while they are able to correlate two atoms
when the atoms are identical.

In the following, we shall study in detail the conditions that
allow the two otherwise independent, unequal atoms to become
initially entangled through the action of the environment,
when the weak-coupling-limit procedure is not applicable.'
Following [15], we shall instead derive a time evolution for
the two atoms that allows a finite, coarse-grained time interval.
Remarkably, the results are still expressible in terms of a
completely positive quantum dynamical semigroup, which re-
duces to the standard one obtained through the weak-coupling

! A preliminary investigation on these topics in the case of two qubits
weakly coupled to an Ohmic bath has been reported in [31].
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limit in the limit of an infinitely large coarse-grained time
interval. We shall see that in this refined framework the sharp
dependence on the atom frequencies of the entanglement
capability of the environment mentioned above looks more
like a mathematical artifact than a real physical effect.

II. TWO-ATOM REDUCED DYNAMICS

As explained above, we shall study the behavior of a
system composed of two, unequal, two-level atoms that starts
interacting at time r = 0 with an environment made of a
collection of independent, massless, scalar quantum fields at
temperature 1/8.> We are interested in the evolution of the
atoms as open quantum systems and not in the details of
their internal dynamics, so we model them in a nonrelativistic
way as simple qubits described in terms of a two-dimensional
Hilbert space.

In the absence of any interaction with the external fields,
the single atom internal dynamics can be taken to be driven by
a generic 2 x 2 Hamiltonian matrix. As a result, the total atom
Hamiltonian Hg can be expressed as

Hg = H{" + H{”

3
Wy 5 - ,
=050 = Y el e=1.2. ()

i=1

where ai(l) =o0; ®1and ai(z) = 1 ® o; are the basis operators
pertaining to the two different atoms with o;, i = 1,2,3
denoting the Pauli matrices, n; are the components of a unit
vector, and w, represent the gaps between the two energy
eigenvalues of the two atoms.

As mentioned in the introductory remarks, the coupling of
the atoms with the external fields is assumed to be weak, so
that the dipole approximation results appropriate [7]. In our
simplified settings that ignore spinorial indices, the interaction
term can then be described by a Hamiltonian H’ that is linear
in both atom and field variables:

3
H =Y [o/"® 0:(f")+ 02 @ &:(f?)). 2)
i=1
The operators ®; (¢, X) represent the set of external quantum
fields, taken to be spinless and massless for simplicity. They
evolve in time as free relativistic fields with a standard
Hamiltonian Hg [32]. The atoms are assumed to have a spatial
extension described by the two functions @ (X), @ = 1, 2. To
be more specific, we shall choose for the atoms a common
profile f(X) of spherically symmetric shape, with size &:

1 (/2)
w2 [IX17 + (e/2)*1
and position the first atom at the origin of the reference frame
so that f(V(X¥) = f(¥), while the second is displaced by an

f&) = 3)

2As we shall see in the following, the choice of modeling
the environment in terms of relativistic quantum fields (at finite
temperature) allows an analytic treatment of the reduced two-atom
dynamics, without additional approximations besides the Born and
Markov approximations (see below).
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amount ¢ with respect to the first atom, f@(X) = f(& + £).
Since the atom-field interaction takes place over the whole
region occupied by the atoms, the field operators entering
the interaction Hamiltonian above are smeared over spatial
extension of the atoms:

@i (f) = / PrfORDD0,%), a=1,2. )

The total Hamiltonian H describing the complete system (i.e.,
the two atoms together with the external fields ®;) can thus be
written as

H=H¢+ Hy+ ) H = Hy+ \H', 5)

where A is a small coupling constant.> Through the standard
Liouville-von Neumann equation, ; oy (t) = —i[H, pror(?)], it
generates the evolution in time of the state of the total system,
described in general by a density matrix py, starting at = 0
from the initial configuration of p(0).

We shall assume the atom and the fields to be initially
prepared in an uncorrelated state, with the fields in the
temperature state pg and the atoms in a generic initial state
p(0), so that pi,(0) = p(0) ® pg. The reduced time evolution
of the two atoms is then obtained by integrating over the
unobserved field degrees of freedom and is formally given
by the transformation map p(0) — p(f) = Tro[pwi(t)]. This
map is in general very complicated because of nonlinearities
and memory effects; nevertheless, it can be approximated
by a linear, memoryless map when the coupling with the
environment is small and its own internal dynamics are
sufficiently fast [1-5]. Indeed, in such cases the details of the
result of the internal environmental dynamics are irrelevant,
because the time scale of the subsystem evolution is typically
very long compared with the decay time of the correlations in
the bath.*

In order to derive the equation obeyed by the reduced
density matrix p(f) in the case at hand, it is convenient to
work in the interaction representation:

Pror(t) = et Prot (1) e~ (6)
so that
0 Dot (t | |
p;);( ) = —iA[H'(t), ()], H'(t) = eitHo ' p—itHo

)

3For simplicity, we have assumed that the environment couples
with the same strength to the two atoms, which makes the following
analytic derivation of the master equation more transparent, without
compromising its generality.

“A discussion on the validity of this so-called Markovian approx-
imation is reported in [13]. There, a non-Markovian, weak coupling
approximation of the reduced dynamics is also introduced; it leads to
a two-parameter family of dynamical maps, with a time-dependent
generator [3]. We stress that this approach is completely different from
the one discussed below, which instead describes the reduced two-
atom dynamics in terms of a Markovian, one-parameter semigroup.
In particular, whereas in [13] the standard weak-coupling limit can
be reached only in the asymptotic, long-time regime, in the treatment
presented below it can always be obtained for any time by letting the
coarse-graining parameter become large.
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One then focuses on the changes of the reduced state p(¢) =
Tro[pwi(?)] over a time interval Ar. By taking the trace over
the field variables of the integrated version of Eq. (7) one gets
(to lowest order in 1)

A+ AN -5 1 /’*A’ L 07)
pl+AN—pB) _ 1 )
At At J, as
)»2 t+At 1
= / At Trol[H (1), [H'(12), O]}
t t

+ 0. ®)

One notices that the variation of §(¢) starts to become relevant
at order AZ; i.e., on time scales of order 7 = A%¢. Then, one
can equivalently write:

ot + Ar) — p(t) _ i /‘1+A2At s dp(s/22)
At At s

so that in the limit of small A (and finite Af) one can readily
approximate the right-hand side of Eq. (9) with 9,5(¢). At this
point, one further observes that the environment, containing
an infinite number of degrees of freedom, is much larger than
the subsystem immersed in it, so that its dynamics are hardly
affected by its presence. We are therefore justified in replacing
in the double integral of Eq. (8) the evolved total state py(t)
with the product state 5(t) ® pg, taking the initial state pg as
a reference state for the bath [1-3].

Returning to the Schrodinger representation, one finally
gets the following linear, Markovian master equation for the
two-atom state po(t):

) _
ot

where the bath-dependent contribution D[p(¢)] contains both
a Hamiltonian and a dissipative term

€))

—i[Hs, p] + Dlp(1)], (10)

Dlp(t)] = —ilHiz, p(1)] + LLp@)], (11)
with
a2 A At
H, = E/o dSl/() ds,0(s; — $2)
x Tro(pplH'(s1), H'(s2)]), (12)

)\'2
Llp@)] = —=Tro[L(p(1) ® pp)L — L2, p(t) @ pp}].

At
L:/ dsH'(s), (13)
0

where the curly brackets represent the anticommutator, and
0(s) is the step function.

Itis important to observe that, for any interval A¢, the master
equation (10)—(13) generates a quantum dynamical semigroup
of completely positive maps. Indeed, the generator on the
right-hand side of Eq. (11) (other than the Hamiltonian piece)
contains a dissipative term that turns out to be completely
positive because it is the composition of two completely
positive maps, the trace over the environment’s degrees of
freedom, and a linear operator on the total system, written
in canonical Stinespring form [6,33,34]. Notice that, on
the contrary, in the usual weak-coupling-limit approach to
the derivation of a Markovian master equation, complete
positivity is ensured by an ergodic average prescription, that, as
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mentioned in Sec. I, eliminates fast oscillating terms [10,30].
In the present formalism, this corresponds to letting the time
coarse-graining parameter Af go to infinity, and therefore
it is applicable only to environments with sharply decaying
correlations. In the following, we shall instead keep At finite
and consider therefore more general situations.

III. MASTER EQUATION

For the case at hand, a more explicit expression for the
generator in (11) can be obtained by recalling (2) and (4). In-
deed, after straightforward manipulations, the master equation
driving the dissipative dynamics of the two-atom state takes
the following Kossakowski-Lindblad form [35,36]:

dp(t) .
L2 = —ilHar, o)) + LIp(O)) (14)
with
Hyr = Hg — — Z Z H(Ofﬁ) l(“) (ﬁ) (15)
0(/3 1i,j=1
and
Lip] = Z Z CP (0P pol® — Haa P, p}).

a,Bf=1i,j=1
(16)

The coefficients of the Kossakowski matrix Ci(;‘ﬁ ) and of
the effective Hamiltonian H.s are determined by the field
correlation functions in the thermal state pg:

Gt —1) = / Ixd’yfOE) fPFN @i, D1, ),

(17)

through their Fourier transform

0 .
G(2) = / dre™ GP(0), (18)
—o0
and Hilbert transform
. 00 ) . P [® gi(‘flﬂ)(w)
ngﬁ)(z)zf dr sgn(ne'™ GP(1) = —i/ dw;—_z,
-0 —0oQ0

(19)

respectively (P indicates the principle value).
More specifically, one finds that the Kossakowski matrix
reads

Z Z iCwaté wﬂ)At/Qw(é)w(é)

£,6'={+,—,0) k,I=1

X_/ dw G (

sin[(§'w + wp)At/2]
(E'w+ wg)At/2

sm[(éa) — wy)At/2]
(v — wo)AL/2

, (20)

where

wi(j(')) =nnj, %(ji) = (511 nin; + iéi.fknk) (21)
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are the components of auxiliary three-dimensional tensors,
giving the free evolution of the atom operators:

Z Z léw&tiﬁi(f)aj('a)'

+,—.,0} j=1

(a) _ itHg (o) —itHg __
o, (t)=¢e""0;"e S =

The 6 x 6 matrix C [(‘?‘ﬂ ' turns out to be non-negative, since,
as already mentioned, the evolution generated by (9) is
completely positive.> An expression similar to the one in
Eq. (20) also holds for H,” in Eq. (15), with G () replaced

by K& (w).

For simplicity, the fields giving rise to the environment are
taken to be independent and are further assumed to obey a free
evolution. In this case, one finds

(P;(x)P;(y)) = Tr[P;(x)P;(y)ppl = 6;;G(x —y), (22)

where G(x — y) is the standard four-dimensional Wightmann
function for a single relativistic scalar field in a state at the
inverse temperature 8 [32] that, with the usual i e prescription,
can be written as

4
G(x) = / dk Ok")S (P {[1 + N (k°)]e >
2m)3

_I_N'(kO)eikX}efEkO’ (23)

where

0
NK&) = T (24)
Although the ie prescription, assuring the convergence of
the integral in (23), originates from causality requirements,
in the present setting it can be related to the finite size of
the two atoms. Indeed, the correlations in Eq. (17) actually
involve the Fourier transform f (k) f dqxe””‘f (X) of the
shape function f gx) in Eq. (3); it can be easily computed
to be f(k)=e /2, Inserting it back in Eq. (17), this
contribution can be conveniently attached to the definition of
the Wightmann function G (x), so that the integrand in Eq. (23)
gets an extra e~ overall factor.

Using Eqgs. (23) and (24), the Fourier transform in Eq. (18)
can now be explicitly evaluated. By taking for simplicity the
limit of point-like atoms (the size ¢ can be taken to vanish
since it does not play any more the role of a regularization
parameter), one gets

G () = 8, GV (w), (25)
with
G"w) = 6P (@) = 50
71 —e b’ (26)
w sin(fw)

)

(12) 21
G w)=¢ ()—2711 o i

50n the other hand, let us remark that direct use of the standard
second order perturbative approximation (e.g., see [8,9]) often leads to
physically inconsistent results [5,11,12], giving a finite time evolution
for p(¢) thatin general does not preserve the positivity of probabilities.
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where ¢ denotes the modulus of the displacement vector ‘.
Then, recalling Eq. (19), for the Hilbert transform one similarly
finds

P e (apB)
’C,(';tﬂ)(z) =§;K"P(z), K*P(z)= _f dwu_
Tl

oo w—z

27)

With these results, and by taking into account that

T w,f)w(é ) wi(jfg)b‘(é + &), the Kossakowski matrix takes
the more exp11c1t form

3
CiP =P8 —iCYP N emi + [CFP — CEPNnin;.,
k=0
(28)
where
CEP = I9P) cos(wap A1/2) + i 1P sin(wes AL /2),
Wop = Wy — Wg, 29)
with
@p _ AL [T @) @)
19 = = | do[g“@) £GP (o)
sinf(w — w,) At /2] sinf(w — wp) At /2] -
(0 — we)AL)2 (w0 —wp)At/2
while

« « At
=1 = / do[G () + G (~w)]
54
At/2
x M . (31)
wAt /2
Only the combinations G (w) = G (w) + G@P)(—w) ac-
tually occur in the previous integrals, and from the explicit
expressions in Eq. (26) one obtains

w [14e P
ill) g(22) |: :| ,

21 | 1 — e Po
2 _gen_ o [1+ e P 7 sin(wl) 32)
* AT [ 72 wl
g(ll)zg(ZZ) _ w g(12) g(21) w sin(a)ﬁ). 33)
- - 2 21 wl

they contain the dependence on the bath temperature 1/
and on the separation ¢ between the two atoms. Because of
the presence of the Boltzmann factors, the integrals Ifg) in
Egs. (30) and (31) cannot in general be expressed in terms
of elementary functions. However, in the case of a bath at
high temperature (i.e., for small B), the factor in square
brackets in (32) behaves as 2/ and the above integrals can
be explicitly evaluated (see the Appendix). In the physical
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situation for which £ < At.° one finds

I(aﬁ) _ 1 sin(Zwa/Z)
T T mBwap At Lwy/2
. At
X sin {[a)a(l —L/At) — wﬂ]?}
sin(fwg/2) . B 3 ﬂ
tws/2 Sm{[wa opl = E/A015 }) 34
1P _ in [waﬂ(At - Z)] sin [E(wa + wﬂ)i| ’
T lwp At 2 2
(35)
@ _ 1 (,
= 2 (2 At)' (36)

Inserting these results back in Eqs. (29) and (31), one finally
obtains the explicit expression for the Kossakowski matrix
C fjaﬂ ) in the large-temperature limit.”

Coming now to the Hamiltonian contribution to the master
equation, one sees that the effective Hamiltonian Heg in
Eq. (15) can be split into two parts, Heg = Hg + He(flfz).
The first term is just a renormalization of the starting
system Hamiltonian, while the second term represents an
environment-induced direct coupling term for the two atoms.
The term Hg has the same form as the Hamiltonian in Eq. (1)
but with the frequencies redefined as

A [e.¢]
Py = Wy — il do[K*(w) — K*(-w)]

2 J_
. 2
8 { sinf[(w — wy) At /2] } - 37)
(0 — wy)AL/2

Recalling the definition of X@® () in Eq. (27), one sees that
it can be split into a vacuum- and a temperature-dependent

piece:
l oo
- P[ dz <
272 0 Ii—w

+P/wd < (L] (38)
0 T \ivo z1-0)]

Although not expressible in terms of simple functions, the
temperature-dependent second term is a finite, odd function
of w; on the contrary, the remaining vacuum contribution
in Eq. (38) is divergent, and therefore so are the shifted
frequencies @,. As a consequence, the definition of the
effective Hamiltonian H. requires the introduction of a
suitable cutoff and a renormalization procedure. This is not
a surprise because the appearance of the divergences is due

Ke(w) =

®This condition assures that the two atoms actually feel the presence
of the quantum fields. Because of relativistic causality [32], the fields
would not be able to interact with the atoms in the time interval At if
they were too far apart.

"Since this is an approximate result, positivity of the matrix is not
a priori guaranteed and should be formally imposed in order to
preserve the properties of the exact expression (20). In particular,
positivity of the two diagonal submatrices Cf;’w requires Bw, /2 < 1,
which is satisfied by the requirement of small S.
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to the nonrelativistic treatment of the two-level atoms, while
any sensible calculation of energy shifts would have required
the use of quantum field theory techniques [7]. In order to
make H.g well defined we follow the simple prescription of
performing a suitable temperature independent subtraction, so
that the expressions in Eq. (37) reproduce the correct quantum
field theory result obtained by considering the external fields
in the vacuum state.

The induced two-atom interaction term He(flfz) can instead
be expressed as

3

B = WP 0o
ij=1
where
3
wr At . [ wp At
HE}Z) = |:COS ( 122 ) (S,'j -+ sin <%> kX:(; sijknk:| J+
At

+ |:Jo — cos (60122 ) J+] ninj, (40)
with

AL [ (12) (a2
Jp = —i— da)[IC (w)+ K (—a))]

47 J_o

sin[(w — w)At /2] sin[(w — wy)At /2] @1

(w — w)At /2 (0 — w)At/2

At [ sin(wAr/2) 7

Jo=—i— do[K1? KD (- — .
0= T8y /_oo o[ K@) + K (o) wAi)2
(42)

In addition, KX!?(w) can be split as in Eq. (38) into a
temperature-dependent term, odd in w, and a vacuum term.
Clearly, only this second contribution enters the above integrals
J+ 0. It is finite (for nonvanishing atom separation) and, with
the help of Eq. (32), can be explicitly computed to be

P /‘ ° z sindz
- dz
27% ) o ztw Lz
. 1 coslw 3)
om0
Inserting this result into Egs. (41) and (42), one finally obtains,
again for £ < At (see Appendix):

K(w) + K1 (~w) =

1 (01 +w)l| . [wp(At—1£)
Jp=— cos sin ,
2mlwyy At 2 2
Jo = ! ! ! (44)
"Tox\ar )

We are now ready to discuss the entanglement properties of
the time evolution generated by the master equation (14)—(16).

IV. ENVIRONMENT ENTANGLEMENT GENERATION

In order to study the entanglement power of the thermal bath
made of free quantum fields, we shall focus on the small-¢
behavior of the dynamics generated by Eq. (14). Our aim
is to investigate whether the two independent atoms can get
entangled by the action of the environment in which they are
immersed at the beginning of their dissipative evolution. Then,
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without loss of generality, one can limit the considerations to
pure, separable initial states and therefore take

p(0) = lp) (el @ [¥) (Y| (45)

with |¢) and [y) given single-atom states. Indeed, if the
environment is unable to create entanglement out of pure
states, it will certainly not correlate their mixtures.

Since we are dealing with a couple of two-level systems,
one can use partial transposition as a criterion for entanglement
creation [37,38]. More precisely, the environment is able to
create quantum correlations between the two atoms if and only
if the operation of partial transposition spoils the positivity of
the state p(z).

The presence of negative eigenvalues in the partially
transposed reduced density matrix p(¢) can be ascertained by
looking at the sign of the average

At) = (x1p®)1x) (40)

with |x) a four-dimensional vector. Indeed, choose |x) to be
orthogonal to |¢) ® |), so that the above average initially
vanishes [LA(0) = 0]. Then the two atoms, initially prepared in
astate p(0) = p(0) asin Eq. (45), will surely become entangled
if |x) can be further chosen so that 9;.4(0) < 0. From this
condition, a simple test for entanglement creation involving the
elements of the Kossakowski matrix (28) and of the effective
interaction Hamiltonian (39) can then be extracted [24,39].
Explicitly, it reads

2

bl

47)

@|C0lu) (0] ()" v) < [(uIRe(C? + i HE)lv)

where T means matrix transposition. The three-dimensional
vectors |u) and |v) contain information about the starting
factorized state (45). In fact, their components can be expressed
as

v = (Y1loi|y), (48)

where |¢,;) and |y, ) are the orthonormal complement to
the initial atom states |¢) and |v¢), respectively. Therefore,
the external quantum fields will be able to initially entangle the
two atoms evolving with the Markovian dynamics generated
by Eq. (14) if there exists an initial state of the form (45) for
which the inequality (47) is satisfied.

In order to obtain a manageable expression for it, we first
note that, without loss of generality, the unit vector 7 that
defines the atom Hamiltonian in Eq. (1) can be oriented along
the third axis. Furthermore, as the initial atom state we shall
choose p(0) = |—)(—| ® |+){+], which is constructed from
the eigenstates of the single atom Hamiltonian o3 |+) = £|+).
As a consequence, recalling Eq. (48), one finds that the three-
dimensional vector |u) has components u; = {1, —i, 0}, and
furthermore that v; = u;. Then, using the explicit expressions
for the elements of the Kossakowski matrix Ci(;w > and of the

ui = {ploilgL),

induced interaction Hamiltonian Héﬁf’ , the inequality (47)
reduces to

(1 - ﬁ7w> (1 " ﬁTw) < B(117) + 4] (49
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Notice that the left-hand side of this expression is positive
since, as discussed in the previous section, complete positivity
requires Bwy /2 < 1.

As remarked at the end of Sec. II, the parameter At
identifies the time scale over which the presence of the
environment is felt by the two-atom system. Clearly, the
weaker the coupling is with the environment, the longer one
needs to wait for the bath-induced effects to become apparent.

Let us first discuss the standard weak-coupling-limit
approximation. In this case, one actually lets the coupling
constant A approach zero, so that changes in the two-atom
density matrix become visible only for infinitely large At.
In this limit, however, the two integrals on the right-hand
side of Eq. (49) become vanishingly small.® Thus, for atoms
with unequal frequencies, the inequality can never be satisfied,
and thus no entanglement is generated. Conversely, when the
two frequencies coincide, w; = w» = w, the condition (49)
becomes

Bo\> [sin0)* B2 [cos(wl) ]
1_(7> <[—w£ }+7[—K } (50)

This result generalizes the one discussed in [26], where
the contribution of the environment-induced interaction
Hamiltonian [the second term in the right-hand side of
Eq. (49)] was neglected. In particular, one sees that, in this
case, for any given (small) inverse temperature S, there is
always an atom separation £ below which the inequality (50)
is satisfied, and therefore entanglement is created between the
two atoms. This phenomenon is forbidden only for infinitely
large separation or infinitely large temperature, in which
case the environment-induced decoherence and noisy effects
dominate.

However, the sharp dependence of the entanglement ca-
pability of the environment on the atom frequencies in the
weak-coupling-limit approach is striking because it originates
in the elimination of fast oscillating terms in the reduced
two-atom dynamics through an ergodic average—a procedure
that is justified only in the limit of a vanishing A and very fast
decay correlations in the environment.

Instead, if the coupling of the atoms to the bath is weak but
not infinitesimally small, environment-induced changes in the
atom density matrix p(¢) can be seen for finite time intervals
At. In this case, it is the full condition (49) that regulates the
entanglement capability of the thermal bath. One can check
that indeed this inequality can be satisfied even for w; # w»,
and therefore that a bath made of thermal quantum fields can
correlate two unequal atoms.

In order to show this, we first note that the Hamiltonian
contribution in Eq. (49), being positive, can only enhance
entanglement generation, which is the result of the hermiticity
of the induced coupling term He(flfz) in Eq. (39).” One can

8Indeed, in the limit Az — oo both integrals vanish since, for
w| # ws, the two functions sin[(w — w)At/2]/[(w — w;)At/2] and
sin[(w — wp)At/2]/[(w — w,)At /2] have disjoint supports.

°In general, the dissipative and Hamiltonian contributions in the
right-hand side of Eq. (47) can destructively interfere, making the
inequality more difficult to satisfy and thus reducing the entanglement
power of the environment.
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therefore limit the considerations to a simpler inequality, in
which the term (J,)? is neglected. When this reduced condition
is satisfied the full condition in Eq. (49) will also clearly be
satisfied. Recalling Eq. (34), and keeping only first order terms
in ¢ for simplicity, the condition for environment-assisted
entanglement generation reduces to

<1 B @) <1 N @) B |:sin(a)12At/2)]2
2 2 w12At/2

_ <£> sin(a)let)- (51
At w1 At

For a given bath temperature and atom frequencies, this condi-
tion is satisfied provided a sufficiently small time interval Az
results from the coupling with the environment. Furthermore,
the smaller the atom separation is, the easier it will be to satisfy
the condition of Eq. (51).

Finally, note that, in contrast to situation encountered in
the weak-coupling limit-approximation, here there is no sharp
change between the regime of entanglement generation and
the region of solely decoherence. The transition is smoothly
regulated by the coarse-graining parameter At, i.e., ultimately
by the strength of the coupling of the atoms to the environment.

V. DISCUSSION

We have seen that two atoms, prepared initially in a sepa-
rable state, can get entangled as a result of their independent
interaction with a common bath made of thermal quantum
fields, even when their internal frequencies are not equal. This
result is based on a refined Markovian approximation of the
reduced atom dynamics that allows an explicit dependence on
the time scale A¢, measuring the interval over which the atoms
feel the presence of the environment.

This conclusion contrasts with the conclusion obtained
through the usual weak-coupling-limit approach to the atom
reduced dynamics. In that case, the entanglement power of
the external environment is reduced to zero for atoms with
unequal frequencies as a consequence of the procedure of
taking the ergodic average. In light of the results presented
in the previous section, this conclusion appears to be a
mathematical artifact that originates from letting A go to zero
and At go to infinity!°—conditions that are hardly met in
actual physical situations. Instead, for weakly coupled baths
with finite At, environment-assisted entanglement generation
is always allowed, and can be controlled through the external
parameters, the bath inverse temperature 8, and the atom
spatial separation £.

In the high temperature case (i.e., small 8) and for arbitrary
At, we have shown explicitly that this conclusion holds
because of the condition (51). Similarly, in situations allowing
a large but finite Az, a different approximation of the full
entanglement condition (47) can be given, which can be
obtained using techniques and procedures analogous to the
ones discussed in the previous sections. Neglecting again the

0Because of the Riemann-Lebesgue lemma, the ergodic average,
on which the so-called “rotating wave approximation” is based, is
strictly justified only in the limit A — 0 and At — oo.
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Hamiltonian contribution, one finds

. 2
(1= R+ R < [—S“‘(‘”‘ZA” 2)}

4 wlet/2
o1 Ry\'"? w R\ ’
" [(;R—) s (27 52} ’
(52)
where
1 — P sin(wy £)
= e = =12 ()

It is a further generalization of the condition discussed in [26]
in the case of identical atoms, to which it reduces for v = w,
and Ar infinite. Although valid only for large (but finite) Af,
it can always be satisfied with suitably chosen § and €. In
particular, Eq. (52) is always true in the zero-temperature case
(i.e., in the limit 8 — 00). In other words, a bath made of
quantum fields in the vacuum state is always able to generate
entanglement, for any finite spatial separation of the two atoms.

All the above considerations are based on the condition (47)
for entanglement enhancement, which when satisfied assures
that quantum correlations among the two atoms are generated
as soon as ¢t > 0. However, it is unable to determine the fate of
these quantum correlations as time increases and, in particular,
in the asymptotically long time regime. On general grounds,
one expects that the effects of decoherence and dissipation
that counteract entanglement production be dominant at large
times, so that no entanglement is left in the end. There are
however instances in which the entanglement generated at
the beginning of the evolution persists also for asymptotically
long times [5,27,28]. In order to fully clarify this situation, a
complete study and classification of the set of the equilibrium
states of the refined master equation (10)—(13) is necessary.”
Work on this topic is presently in progress and will be reported
elsewhere.

APPENDIX

We indicate here how to compute the integrals that appear
in the expressions of the Kossakowski matrix C l(;xﬁ ) [Egs. (30)
and (31)] and in the effective Hamiltonian interaction term
He(flfz) [Egs. (41) and (42)]. In the high-temperature case, the
explicit evaluation of Eq. (30) involves the computation of
integrals of the following two types:

+oo L . _

I - / dx sin(cx)sm(x a) sin(x )7 (A1)
oo X —a x—=>b

I = /*“’ i sin(cx) sin(x — a) sin(x — b)’ (A2)
oo X X —a x—>b

with a, b, ¢ positive constants. By decomposing the products
of the trigonometric functions in terms of linear combinations
of sines and cosines, one can split, for example, /; into the

"'To date, only partial results of the classification the equilibrium
states of completely positive quantum dynamical semigroups have
been obtained [2,40].

012105-7



F. BENATTI, R. FLOREANINI, AND U. MARZOLINO

sum of three simpler integrals:

I =1y+ I(c) — I(—c), (A3)
with
Io = cos(a — b) [+°° i sin(cx) 7
2 o (x—a)x —b)
1 sin[(2 - ¢)x —a —b]
I(c) = 7 /_oo dx GG —b) . (A4)

By first changing the integration variable to y = (2 — ¢)x —
a — bin I(c), with ¢ < 2, and then reducing the denominators
in the partial fractions in both integrands, one can express
Iy and I(c) as combinations of the following integral (see ,
e.g., [41]):

+00 :
/ dx sin(ex) =mcos(xz), o > 0. (AS5)
PSS X +z
Explicitly, one finds
—-b b —-b
fo= —x @B g [atDe) g @bl a)
a—>b 2 2

T
(c) = m{cos[a(e — 1)+ b] — cos[a + b(c — 1)]},
(A7)
so that, recalling (A3), one finally obtains
I — 7 sin [(a + b)c] sin[(a — b)(1 — ¢/2)] (A8)
2 (a —b)

This result holds for ¢ < 2. When ¢ > 2, one is forced to use
a different integration variable in the expression of I(c) in
Eq. (A4), yY = (¢ — 2)x + a + b and as a result end up with a
vanishing value for /;. However, as a function of the parameter
¢, the integral /; is continuous, since the expression in Eq. (A8)
also vanishes at the boundary point ¢ = 2.

From the result (A8), one further obtains

11 +00
lim (—) =/ dx
c—0 c —00 X —da

(a—i—b) sin(a — b)
=TT .
2 a—>b

sin(x — a) sin(x — b)
X
x—>b

(A9)
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The integral I, in Eq. (A2) can be evaluated using similar
manipulations. When ¢ < 2, one explicitly finds

T sin(ac/2)
|

L= ——
2T 4—b

sinfa(1 — ¢/2) — b]

in(bc/2
+ %C/) sinfa — b(1 — c/2)]}, (A10)
whereas for ¢ > 2, a simpler expression holds:
sina sinb
h=m—"—mr:. (A11)
a b

Here again we see that I, is a continuous function of ¢, since the
expression in Eq. (A10) reduces to the expression in Eq. (A11)
at the boundary value ¢ = 2. Further, from the expression in
Eq. (A10), one easily obtains the following limiting results:

lim (2) -/ 0 S — @) sinGx — b)

=0\ ¢ o X —a x—b
sin(a — b)

— e Al2
o — (A12)

and, similarly,

lim I, = /m LG (Sinx)z = e (1 - 2) . (A13)

a,b—0 —00 X X

The integrals appearing in the evaluation of the Hamiltonian

contribution He(flfz) can instead all be reduced to expressions of
the form

sin(x — a) sin(x — b)
x—>b

With the help of manipulations similar to those used above, J
can be reduced to combinations of the following integral [41]:

+00
/ dx cos(ax) = msin(wz) o > 0.
o xX+z

+00
J= / dx cos(cx) (A14)

00 xX—a

(A15)

When ¢ < 2, the integral in Eq. (A14) can be cast in the
following form:

2 (a—b) » (AlS)

whereas it vanishes for ¢ > 2. In the limit of vanishing a
and b, itreduces to J = (1 — ¢/2).

J =mcos |:(a +b)ci| sin [(a —bd - C/2)]
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