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Non-negative Wigner functions for orbital angular momentum states
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The Wigner function of a pure continuous-variable quantum state is non-negative if and only if the state
is Gaussian. Here we show that for the canonical pair angle and angular momentum, the only pure states with
non-negative Wigner functions are the eigenstates of the angular momentum. Some implications of this surprising
result are discussed.
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For continuous variables, the Wigner function [1] is a very
useful tool that establishes a one-to-one correspondence be-
tween quantum states and joint quasiprobability distributions
of canonically conjugate variables in phase space (position
and momentum, in the standard case). However, it can take
on negative values, a property that distinguishes it from a true
probability distribution [2–4]. Indeed, this negative character
is associated with the existence of quantum interference, which
itself may be identified as a signal of nonclassical behavior [5].

In consequence, the characterization of quantum states that
are classical, in the sense of giving rise to non-negative Wigner
functions, is a topic of undoubted interest. Among pure states,
it was proven in an article by Hudson [6] (later generalized
by Soto and Claverie [7] to multipartite systems) that the only
states that have non-negative Wigner functions are Gaussian
states [8,9]. This is one of the main reasons for the prominent
role these states play in modern quantum information [10].

The original definition of the Wigner function has also been
extended to discrete systems (see Ref. [11] for a comprehensive
review). Again, the classification of states with non-negative
Wigner functions is an amazing problem that has been solved
quite recently by Paz and coworkers [12,13] and Gross [14,15],
so that the role of Gaussian states is now taken on by stabilizer
states. Interestingly, these are the only states that can be
simulated efficiently in classical computers [16].

Between these two cases (whose proofs are otherwise com-
pletely different), we have the interesting situation of canonical
pairs, such as the angle and orbital angular momentum (OAM),
for which one variable is continuous while the other one
is discrete [17]. The associated phase space is the discrete
cylinder S1 × Z, where S1 stands for the unit circle (associated
to the angle) and the integers Z translate the discreteness
of the OAM. The physical example we have in mind is the
OAM of photons. This is an emerging field that has given
rise to many developments, ranging from optical tweezers
to high-dimensional quantum entanglement, or fundamental
processes in Bose-Einstein condensates, to cite only a few
relevant examples [18].

The article of Allen et al. [19] firmly established that
the Laguerre-Gauss modes carry a well-defined OAM. They
appear as annular rings with a zero on-axis intensity and an
azimuthal dependence exp(i�φ) that gives rise to spiral wave
fronts. The index � takes only integer values and can be seen
as the eigenvalue of the OAM operator. Since then, several

methods have been established to produce light beams with
the required azimuthal phase structure; among these spiral
phase plates, forked holograms, and spatial light modulators
are perhaps the most versatile. In this way, a variety of modes
with helical phase fronts but different transverse patterns (such
as Bessel, Mathieu, or hypergeometric beams) can be routinely
generated in the laboratory [20].

The goal of this work is precisely to determine the pure
states of these OAM-carrying systems for which the Wigner
function is non-negative, filling in this way a long overdue gap.

To be as self-contained as possible, we first introduce some
basic notions for the problem at hand of cylindrical symmetry.
We are concerned with the planar rotations by an angle φ

generated by the angular momentum along the z axis, which
for simplicity will be denoted henceforth as L̂. We do not want
to enter into a long discussion about the possible existence of
an angle operator [21]. For our purposes here, the simplest
solution is to adopt two periodic angular coordinates, e.g.,
cosine and sine, that we shall denote by Ĉ and Ŝ to make no
further assumptions about the angle itself. One can concisely
condense all this information using the complex exponential
of the angle Ê = Ĉ + iŜ, which satisfies the commutation
relation

[Ê, L̂] = Ê. (1)

In mathematical terms, this defines the Lie algebra of the
two-dimensional Euclidean group E(2), which is precisely the
canonical symmetry group for the cylinder.

The action of Ê on the basis of eigenstates of L̂ is Ê|�〉 =
|� − 1〉, and it possesses then a simple implementation by
means of a phase mask removing a charge +1 from a vortex
state [22,23]. Since the integer � runs from −∞ to +∞, Ê is
a unitary operator whose eigenvectors

|φ〉 = 1√
2π

∑
�∈Z

ei�φ|�〉 (2)

form a complete basis and describe states with well-defined
angle. In the representation generated by them, L̂ acts as −i∂φ

(in units of h̄ = 1).
Given the key role played by the displacement operators in

settling the Wigner function for the harmonic oscillator, we
introduce a unitary displacement operator

D̂(�, φ) = eiα(�,φ)Ê−�e−iφL̂, (3)
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where α(�, φ) is a phase required to avoid plugging in extra
factors when acting with D̂. The conditions of unitarity and
periodicity restrict the possible values of α, although a sensible
choice is α(�, φ) = −�φ/2. Note that here we cannot rewrite
Eq. (3) as an entangled exponential, since the action of the
operator to be exponentiated would not be well defined.

We use as a guide the analogy with the continuous case and
introduce the mapping [24]

W�̂(�, φ) = Tr[�̂ŵ(�, φ)], (4)

which maps the density operator into a Wigner function via
a kernel ŵ defined as a double Fourier transform of the
displacement operator [25]:

ŵ(�, φ) = 1

(2π )2

∑
�′∈Z

∫
2π

exp[−i(�′φ − �φ′)]D̂(�′, φ′)dφ′,

(5)

where the integral extends to the 2π interval within which
the angle is defined. This mapping is invertible, so one can
reconstruct the density operator as

�̂ = 2π
∑
�∈Z

∫
2π

ŵ(�, φ)W�̂(�, φ)dφ. (6)

The (Hermitian) Wigner kernels ŵ(�, φ) are a complete or-
thonormal basis (in the trace sense) for the operators acting on
the Hilbert space of the system. In addition, they are explicitly
covariant; i.e., they transform properly under displacements,
ŵ(�, φ) = D̂(�, φ)ŵ(0, 0)D̂†(�, φ). In fact, these properties
guarantee that the Wigner function defined in Eq. (4) bears
all the good properties required for a probabilistic description.
In particular, it reproduces the proper marginal distributions;
that is, ∑

�∈Z

W�̂(�, φ) = 〈φ|�̂|φ〉,
(7)∫

2π

W�̂(�, φ) dφ = 〈�|�̂|�〉.

Finally, the overlap of two density operators is proportional to
the integral of the associated Wigner functions:

Tr(�̂σ̂ ) ∝
∑
�∈Z

∫
2π

W�̂(�, φ)Wσ̂ (�, φ)dφ. (8)

This property (often called traciality) offers practical advan-
tages, since it allows one to predict the statistics of any
outcome, once the Wigner function of the measured state is
known.

We remark that this approach to the Wigner function is
grounded in the axiomatic method developed by Stratonovich
[26] and Berezin [24] (see also Ref. [27]). It is possible
to follow alternative routes, such as introducing a Wigner
function as the Fourier transform of some generalized charac-
teristic function [28]. This has been pursued also for the group
E(2) [29]. However, these apparently disjoint formulations turn
out to be equivalent for most practical purposes [30].

To give an explicit form of the Wigner function of Eq. (4),
we need to evaluate it in a basis. Using the OAM eigenstates,

we get

W�̂(�, φ) = 1

2π

∑
�′∈Z

e−2i�′φ〈� − �′|�̂|� + �′〉

+ 1

2π2

∑
�′,�′′∈Z

(−1)�
′′

�′′ + 1/2
e−(2�′+1)iφ

×〈� + �′′ − �′|�̂|� + �′′ + �′ + 1〉. (9)

This looks rather cumbersome due to the second sum in Eq. (9),
and sometimes is preferable to work in the angle representation
for which one easily finds

W�̂(�, φ) = 1

2π

∫ π

−π

〈φ − φ′/2|�̂|φ + φ′/2〉eiφ′�dφ′. (10)

This coincides with the result of Mukunda [31,32] (see also
Ref. [33]) and bears a resemblance with the standard Wigner
function for position and momentum that is more than evident.
Note that using this latter function in terms of transverse
coordinates, as is often done in classical optics [34], is not
appropriate for the geometry of the cylinder, which is the
natural domain in which the Wigner function should be
defined.

We have now all the ingredients needed to accomplish our
program. In what follows, the Fourier transform of 2π -periodic
functions (i.e., with domain in S1), defined as

(Fg)(k) = 1

2π

∫
2π

g(φ)eiφkdφ, (11)

with k ∈ Z, will play a relevant role. We first state our main
result, which can be viewed as analogous to the Hudson
theorem for the canonical pair angle and angular momentum.

Theorem of classical OAM states. The Wigner function of
a pure state |ψ〉 is non-negative if and only if |ψ〉 is an OAM
eigenstate |�0〉.

Proof of theorem. The sufficiency is obvious since the
Wigner function for the state |�0〉 is W|�0〉(�, φ) = δ��0/(2π ).
The delicate point is to prove the necessity. Before proceeding,
we sketch the idea behind the proof. The first step is to show
that the wave function [and thus, the integrand in Eq. (10)] must
be of constant modulus. The second step is then to corroborate
that the Wigner function can only be non-zero for a single
value of �. Traciality permits us to derive an equation that
shows that this value of � cannot vary over φ, and that indeed
the only states with non-negative Wigner functions are the
OAM eigenstates. We start with the following lemma.

Lemma 1. If the Fourier transform of a smooth, complex,
2π -periodic function g(φ) is non-negative, then the integration
kernel g(φ − φ′) is non-negative.

Proof of lemma 1. By a direct calculation we can check that∫
2π

g(φ − φ′)e−iφ′kdφ′ = 2π (Fg)(k)e−iφk, (12)

so for any smooth test function χ (φ) = ∑
k∈Z

χ (k)e−iφk it
holds that∫

2π

χ∗(φ)g(φ − φ′)χ (φ′)dφdφ′ = 4π2
∑
k∈Z

|χ (k)|2(Fg)(k).

(13)
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It is clear that the non-negative nature of the kernel g(φ − φ′)
follows from the non-negative nature of the Fourier transform
(Fg)(k).

We apply the lemma to

χ (φ) = 1
2 [δ2π (φ − c1) + δ2π (φ − c2)], (14)

where δ2π denotes the periodic delta function (or Dirac
comb) of period 2π and c1, c2 ∈ S1. For this function we
have |χ (k)|2 = {1 + cos[k(c1 − c2)]}/(8π2), so the sum on the
right-hand side of Eq. (13) reduces to

4π2
∑
k∈Z

|χ (k)|2(Fg)(k) = g(0)/2 + [g(c1 − c2)

+ g(c2 − c1)]/4. (15)

Consequently, for a function g(φ) whose Fourier transform is
non-negative, the kernel g(φ − φ′) must also be non-negative
on the test functions (14) for all the possible parameters
c1, c2 ∈ S1.

For a pure state |ψ〉, the Wigner function (10) is just the
Fourier transform of ψ∗(φ + φ′/2)ψ(φ − φ′/2), where we
have expressed the wave functions in the angle representation.
By Lemma 1, for the test functions (14) the non-negative nature
of W|ψ〉 leads to

|ψ(φ)|2 � |ψ(φ − a/2)||ψ(φ + a/2)|, (16)

with a = c1 − c2. This implies that |ψ(φ)| cannot have any
minima and the modulus of ψ must thus be flat over S1.

To proceed further we need a technical detail.
Lemma 2. If a function f (k) : Z → C has an inverse Fourier

transform of constant modulus over φ, then∑
k∈Z

f (k)f ∗(k + j ) = 0; ∀j �= 0. (17)

Proof of Lemma 2. Let us first introduce the operator

Â =
∑

m,k∈Z

f (m − k)|m〉〈k|. (18)

One can check that it can be expressed in a diagonal form in
the angle basis, namely

Â =
∫

2π

|φ〉〈φ|(F−1f )(−φ)dφ. (19)

If (F−1f )(φ) has constant modulus, it can be written as
(F−1f )(φ) = c eiλ(φ), where λ is a real function. Therefore,
we have Â Â† = |c|2 1̂. But according to the definition (18),
this is tantamount to the orthogonality relation∑
m,k∈Z

∑
m′,k′∈Z

〈n|m〉〈k|f (m − k)|k′〉〈m′|f ∗(m′ − k′)|n + j 〉 = 0.

The Plancherel formula allows one to cancel the diagonal parts,
so we are led to∑

k∈Z

f (n − k)f ∗(n + j − k) = 0, (20)

whence the result follows.
Next, for every φ, we consider the Wigner function of the

state as a function exclusively of the discrete index �; that is,
fφ(�) = W|ψ〉(�, φ) : Z → R (in fact, W is real valued), and
make use of the fact that the (inverse) Fourier transform of

fφ(�) has a constant modulus over φ. Then, by Lemma 2, the
orthogonality∑

�∈Z

fφ(�)f ∗
φ (� + �′) = 0; ∀�′ �= 0 (21)

must hold for all φ ∈ S1. But since f is non-negative on the
whole phase-space, this is only possible if f is equal to zero
for all but one �0. Note that, in principle, �0 may depend on φ.
Taking into account the marginal distribution (8), we see that
W (�, φ) = δ��0(φ)/(2π ).

We now make use of the fact that the state |ψ〉 is pure [that
is, Tr(�̂2) = 1]. From the traciality property, one can show that
the Wigner function representing the product of two density
operators �̂ and σ̂ can be expressed as

W�̂σ̂ (�, φ) = 1

2π

∑
�1,�2∈Z

∫
2π

W�̂(� + �1, φ + ψ1/2)

×Wσ̂ (� + �2, φ + ψ2/2)ei(�2ψ1−�1ψ2)dψ1dψ2.

(22)

We apply this to the pure state |ψ〉 whose Wigner function is
of the form δ��0(φ)/(2π ).

Without loss of generality, we can assume that �0(φ = 0) =
0 and may revert this choice later by the displacement |ψ〉 →
D̂(�0, 0)|ψ〉. Then, Eq. (22) becomes

W|ψ〉(0, 0) = 1

2π

= 1

(2π )3

∫
2π

ei[�0(ψ2/2)ψ1−�0(ψ1/2)ψ2]dψ1dψ2. (23)

This means that the integral of the imaginary part must vanish,
while the integral of the real part must be equal (2π )2. This
is only possible if the exponential is exactly one for all the
arguments (ψ1, ψ2); i.e., �0(ψ1/2)ψ2 = �0(ψ2/2)ψ1 mod 2π .
This is only possible when �0 ≡ 0.

We have shown that if the Wigner function of a pure state is
non-negative, then it is necessarily a Kronecker delta and thus
stems from an OAM eigenstate, which concludes the long yet
instructive proof of our theorem.

It is worth stressing that for the continuous case the notions
of coherent states, Gaussian wave packets, and states with non-
negative Wigner functions (often identified as nonclassical
states) are completely equivalent. However, special care must
be paid in extending these ideas to other physical systems like
OAM, since they lose their equivalence.

For example, OAM coherent states |�0, φ0〉 in the
cylinder [35] can be expressed in the angle representation by

〈φ|�0, φ0〉 = ei�0(φ−φ0)√
ϑ3

(
0
∣∣ 1
e

)ϑ3

(
φ − φ0

2

∣∣∣ 1

e2

)
,

where ϑ3 denotes the third Jacobi theta function. However,
despite the key role played by this function in angular
problems, a simple calculation [36] immediately reveals that
the Wigner function for them takes negative values.

In the same vein, the states


κ (φ) = 1√
2πI0(2κ)

exp(κ cos φ), (24)
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whose associated probability distribution is precisely the
von Mises distribution [21], are usually taken as Gaussians for
this problem. One can easily check that their Wigner function
also takes negative values.

Even with all these cautions, the characterization we
have presented of OAM eigenstates as the only states with
non-negative Wigner functions is interesting in its own right,
although unfortunately these states cannot be viewed as
Gaussian states.

A topic of interest is the characterization of unitaries that
preserve the non-negativity. Obviously, all the displacement
operators are of this kind. But the exponential of an arbitrary
real function f (L̂) also preserves its non-negative nature, and
this includes quadratic exponentials, which are essential for a
full quantum reconstruction of vortex states [36].

Finally, let us mention that a question that naturally
arises is whether our result can be extended to mixed states.
Although this question has been approached by using the
notion of the Wigner spectrum [37] and explored quite recently
for continuous variables [38], in our case a simple exten-
sion seems difficult and will be the object of our future
work.
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