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Compression of ultrashort UV pulses in a self-defocusing gas
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Compression of UV femtosecond laser pulses focused into a gas cell filled with Xe is reported numerically.
With a large negative Kerr index and normal dispersion, Xe promotes temporal modulational instability (MI),
which can be monitored to shorten ∼100 fs pulses to robust, singly peaked waveforms exhibiting a fourfold
compression factor. Combining standard MI theory with a variational approach allows us to predict the beam
parameters suitable for efficient compression. At powers �30 MW, nonlinear dispersion is shown to shift the
pulse temporal profile to the rear zone.
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Since the 1990s considerable progress was reported in
the field of optical pulse compression [1]. From the first
achievements of few-cycle pulses [2], the omnipresent idea
has been to control spectral broadening to reach shorter light
structures. This goal can be completed by postcompressing
pulses resulting from the interplay between self-phase modu-
lation (SPM) and group-velocity dispersion (GVD) in hollow
waveguides and soliton compression devices (e.g., fibers).
Other techniques were proposed using negative phase shifts
based on cascaded quadratic nonlinearities, which can preserve
most of the pulse energy [3–5]. Alternatively, few-cycle
filaments of light can be created from the balance between Kerr
self-focusing and plasma defocusing at higher peak powers
[6–8]. Frequency conversion processes that further enlarge the
spectrum were also exploited to generate ultrashort pulses at
UV wavelengths. Recently, Fuji et al. [9] produced 12 fs pulses
at 260 nm with ∼10 µJ energy through the four-wave mixing
of 400 and 800 nm pulses undergoing filamentary propagation
[10,11]. The same scheme was numerically optimized to
compress pulses below 2 fs in a low-pressure Ar cell [12].

Apart from the effective self-defocusing nonlinearity pro-
moted by cascaded quadratic interactions [3], little attention
has been paid to materials having a negative Kerr response.
These exist, however, such as He and Xe for laser wavelengths
in the range of ∼238–249 nm. In Ref. [13], KrF laser light
was used to measure the Kerr index n2 of Xe, which can attain
important negative values due to a two-photon resonance at
249.6 nm. In Ref. [14], numerical evidence was given to
the principle of pulse compression in (1 + 1)-dimensional
hollow fibers filled with Xe where pulses at 243 nm
can be drastically shortened with minimum energy losses. In
higher-dimensional systems, nonlinear defocusing can offer
a rich variety of dynamical patterns (e.g., ring dark solitons
and vortices [15]). For a medium supporting normal GVD,
modulational instability (MI) can moreover develop in time,
providing further potentiality for pulse compression.

In this rapid communication we investigate new propa-
gation regimes implying a defocusing nonlinearity without
any guiding device. In a cell of Xe at ambient pressure,
100 fs Gaussian pulses at 243 nm central wavelength can
be compressed to about 25 fs along a stage of MI. These
compressed structures support propagation ranges up to 1 m.
Because nonlinearity is highly dispersive in the UV region,

we take into account the full frequency dependency of the
third-order susceptibility χ (3)(−ω; ω′′′, ω′′, ω′), where ω =
ω′′′ + ω′′ + ω′. The results obtained from such a rigorous
approach are still compatible with those inferred from a
classical nonlinear Schrödinger (NLS) model. Qualitative
behaviors can be predicted by combining a variational method
[16] with the classical MI theory for plane waves [17,18].

We assume a linearly polarized electric field
∼Eeik0z−iω0t + c.c., where E(r, z, t) denotes its envelope
and I = |E |2 is the pulse intensity. The wave number
k0 = n0ω0/c involves the linear refractive index of the gas,
n0 � 1, at central frequency ω0. Because the maximum
intensity Imax never exceeds 0.5 TW/cm2 in the coming
simulations, the peak density of free electrons created by
ionization always remains below 1014 cm−3, rendering plasma
generation negligible. The physics can thus be described by
the following envelope equation in Fourier space

∂zÊ =
{

i

2k(ω)r
∂rr∂r + i

[
k(ω) − k0 − k(1)ω̃

]}
Ê

+ 3iω2

2c2k(ω)

∫ ∫
χ (3)(−ω; ω − ω′′ − ω′, ω′′, ω′)

× Ê∗(ω̃′ + ω̃′′ − ω̃)Ê(ω̃′′)Ê(ω̃′)dω′′dω′, (1)

where r =
√

x2 + y2 and ω̃ = ω − ω0 denotes the envelope
frequency. Here, z is the propagation variable and t a retarded
time. Linear dispersion for Xe is included via k(ω) [19] while
the expression for the nonlinear susceptibility χ (3) is that
given in Ref. [14] [see also Fig. 4(b)]. For sufficiently narrow
spectral bandwidths, nonlinear as well as high-order linear
dispersion, self-steepening and space-time focusing operators
are expected to have a minor influence on the qualitative pulse
dynamics. We will thus compare results obtained from Eq. (1)
with those from the classical NLS equation

∂zE = i

2k0
r−1∂rr∂rE − i

k(2)

2
∂2
t E + i

ω0

c
n2|E |2E, (2)

with k(2) = 13.12 fs2/cm [19] and n2 = −1.56 ×
10−17 cm2/W [14]. Both propagation models are integrated
numerically for Gaussian pulses with input power Pin, beam
waist w0, and 1/e2 pulse half-width τp. The delocalizing
action of the nonlinearity is balanced by linearly focusing the
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incident beam. For notational convenience, we will employ
the definition of the critical power for the self-focusing of
Gaussian beams, Pcr � λ2

0/2πn0|n2| � 6 MW. Key processes
should thus be transverse diffraction, normal GVD, and Kerr
defocusing. This allows us to capture the nonlinear dynamics
by means of two different, simple analytical techniques.

On the one hand, we perform a two-scale variational
analysis [16] resulting in the dynamical system

k2
0w

3wzz

4
= 1 + pτp√

2τ
;

τ 3τzz

4k(2)
= k(2) − pτpτ√

2k0w2
, (3)

where p = Pin/Pcr. This system governs the beam waist [w(z)]
and 1/e2 temporal radius [τ (z)] of Gaussian pulses, starting
from w(0) = w0 and τ (0) = τp. The normalized on-axis
intensity behaves as I/I0 = w2

0τp/[w2(z)τ (z)] and the lens
action can be modeled through suitable phase contributions
containing dzw(0) = −w0/f . Such an approximation method
cannot describe the fine spatiotemporal deformations of
the pulse. Nevertheless, it usually yields estimates of the
maximum intensity and of the pulse scales in space and
time which support the comparison with direct numerical
results. As seen from Eq. (3), the pulse dynamics differ
from standard self-focusing by the sign in front of the
nonlinear term ∼ p. When the pulse duration does not vary
too much (e.g., for weak nonlinearities) the equation for w(z)
can readily be integrated and yields a focus reached at the
distance zmin � f/[1 + (f/z0)2(1 + p/

√
2)], z0 ≡ πn0w

2
0/λ0

being the Rayleigh length of the input beam. At high
enough powers, the pulse can, in contrast, undergo significant
compression in time as the Kerr response competes with
normal GVD. This property will be exploited in the following.

On the other hand, the standard stability analysis for
plane waves can bring further insight into the pulse dy-
namics. We assume that the highest intensity zones of the
pulse serve as plane-wave distributions, as long as local
perturbations have typical wavelengths (periods) less than
the size (duration) of the background field with intensity
close to its maximum, Imax. We can thus linearize Eq. (2)
for perturbations oscillating with the transverse wave number
k⊥ and frequency ω [17] so that the MI growth rate expresses
as γ = Re (�

√
2ω0|n2|Imax/c − �2), where �2 = k(2)ω2/2 −

k2
⊥/2k0. MI develops for positive values of �2 only. Following

Ref. [18], a necessary condition for MI is that the optimum
perturbation wave number kmax

⊥ and frequency ωmax, linked to
each other by

ωmax �
√

2ω0|n2|Imax

k(2)c
+ (kmax

⊥ )2

k0k(2)
, (4)

must satisfy kmax
⊥ >

√
2π/w0 and ωmax >

√
2π/τp at given

Imax. MI fully takes place whenever perturbation frequencies
ω � ωmax exist. Fixing the value of kmax

⊥ ∼ √
2π/wmin, where

wmin is the smallest beam waist reached at focus, it is then
sufficient to evaluate whether the frequency range

√
2π/τp �

ω � ωup = √
2π/τmin fulfills the condition ωup > ωmax to

conclude if MI is efficiently seeded. Here, ωup includes the
minimum pulse duration τmin. We conjecture that reliable
estimates for Imax, wmin, and τmin are provided by the
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FIG. 1. (Color online) (a) Peak intensities of a Gaussian pulse
with Pin = 6 MW, w0 = 1 mm, and τp = 200 fs, focused in Xe at
atmospheric pressure (f = 1 m). The solid line corresponds to the
complete model Eq. (1), the dashed line to Eq. (2), and the dotted
line to the variational model Eq. (3). (b) Spatial and (c) temporal
dynamics of the full model. White dots reproduce the beam waist and
1/e2 temporal extent computed from Eq. (3). (d) Power profiles after
4 m of propagation for the full model (solid line) and the reduced
model Eq. (2) (dashed line). The blue line shows the initial pulse at
z = 0 m.

variational Eq. (3). In the following, these quantities will be
used to evaluate kmax

⊥ , ωup, and ωmax.
An example for a stable configuration is shown in

Fig. 1, where a Gaussian pulse with Pin = 6 MW, w0 = 1 mm,
and τp = 200 fs is simulated. From our variational model we
find Imax � 40 GW/cm2, wmin � 100 µm, and τmin � 100 fs,
resulting in kmax

⊥ � 444 cm−1, ωup � 0.044 fs−1, and ωmax �
0.29 fs−1. Since ωup < ωmax, we expect stability of the
temporal stripe designed by the pulse in the (t, z) plane.
The peak intensity [Fig. 1(a)], computed from direct simu-
lations (solid and dashed curves) and from Eq. (3) (dotted
curve), reaches a maximum near the focal distance z = 1 m.
Here, all three intensity curves are very similar. Figure 1(b)
shows the spatial profile computed from Eq. (1). The beam
focuses then diffracts with a divergence angle given by
tan θbeam ≈ λ0/πwmin. Figure 1(c) illustrates the evolution
of the on-axis temporal profile in the (t, z) plane, which
confirms the robustness of this profile against MI. The
white dots reproduce the functions w(z), τ (z) computed from
Eq. (3). In Fig. 1(d), the minimal pulse duration of about 100 fs
is reached after a propagation distance of 4 m for both
Eqs. (1) and (2), while the same extent in time is attained
from the variational model at z = 8 m.

Let us then inspect regions of temporal instability. When
we increase both the input power and focal length by a factor
five, the variational model predicts Imax � 6 GW/cm2, wmin �
640 µm, and τmin � 33 fs, resulting in kmax

⊥ � 69 cm−1,
ωup � 0.13 fs−1, and ωmax � 0.071 fs−1. Since ωup > ωmax,
nonlinearities should thus seed MI and compression in time.
This is actually confirmed by the simulations shown in Fig. 2.
Compression leads to a short peak of ∼25 fs duration at
z = 4 m before MI fully breaks up the pulse temporal dis-
tribution. The modulation period is about 2π/ωmax ∼ 150 fs,
which agrees with Figs. 2(d) and 2(e). Note that, again, the
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FIG. 2. (Color online) (a) Peak intensities of the same Gaussian
pulse as in Fig. 1, but with Pin = 30 MW and f = 5 m, using the
same plotstyle as in Fig. 1(a). (b) Temporal on-axis dynamics obtained
from Eq. (2); white dots correspond to the variational approximation.
(c) Same from the complete model Eq. (1). Spatiotemporal intensity
distribution at z = 8 m showing MI from (d) the reduced model and
(e) the complete model.

minimum duration predicted by Eq. (3) occurs beyond the
compression stage seen in the simulations. The numerical
pulse is subject to leaks of power, which the variational
approach cannot describe by preserving the input power within
a Gaussian ansatz [16]. However, Eq. (3) reproduces com-
pression rates agreeing well with the numerical data. While
nonlinear dispersion influences the pulse dynamics by slightly
moving some modulations toward positive times, we observe
qualitative agreement between results obtained from Eqs. (1)
and (2) [compare Figs. 2(b) with 2(c) and 2(d) with 2(e)].

Figure 3 concerns the main result of this rapid commu-
nication. By tuning the input parameters appropriately, MI
can be handled such that only one modulation mainly affects
the pulse temporal profile. Since a negative n2 may lead to
compression at distances z > zmin, the pulse can then not
only reach very short durations, but also keep them over
long distances. The condition for this regime of optimal pulse
compression is obviously ωup � ωmax. Let us examine the
evolution of a Gaussian pulse for which we reduce initial
waist, pulse duration, and power to w0 = 0.3 mm, τp = 100 fs,
and Pin = 24 MW, respectively, to obtain ωmax � 0.14 fs−1

and ωup � 0.17 fs−1. Figures 3(a) and 3(b) detail the pulse
evolution computed from Eqs. (2) and (1), respectively. MI
is weakly seeded and the 100 fs pulse undergoes three
modulations, among which only the central one is amplified
and compressed along further propagation down to ∼25 fs. The
resulting structure appears to behave in the same manner as
a one-dimensional sech-soliton in time, capable of preserving
high intensity and short durations over at least 50 cm. Again,
we observe a slight shift to the trailing part of the pulse
caused by the nonlinear dispersion. At such weak intensities
(<20 GW/cm2), we can also infer that two-photon absorption
remains of small influence. It is nevertheless important to
point out that, in contrast to filamentary compression in self-
focusing regime [6–8], short pulses obtained with the present

0 0.5 1 1.5 2
−200

−100

0

100

200

z [m]

t [
fs

]

−200 −100 0 100 200
7.5

7.6

7.7

7.8

7.9

8

t [fs]

ω
 [P

H
z]

z [m]

t [
fs

]

0 0.5 1 1.5 2
− 200

−100

0

100

200

−200 −100 0 100 200
0

20

40

60

80

t [fs]

P
ow

er
 [M

W
]

(a)

(c)

(b)

(d)

z=0 m

z=1.5 m

FIG. 3. (Color online) Dynamics of a Gaussian pulse with Pin =
24 MW, w0 = 0.3 mm, and τp = 100 fs focused in Xe with f = 1
m. (a) Temporal on-axis dynamics obtained from the reduced model;
white dots correspond to variational results. (b) Same from the full
model. (c) Power profiles after 1.5 m of propagation for the full model
(solid line) and the reduced model (dashed line). The blue line shows
the initial pulse at z = 0 m. (d) XFROG trace at z = 1.5 m using a 25 fs
reference pulse.

compression scheme are homogeneous in radial direction.
Hence, compression applies not only to the on-axis intensity
profiles, but also to the pulse power profiles. Moreover, the
XFROG trace shown in Fig. 3(d) indicates that the compressed
pulses are nearly transform limited.

A last point concerns spectral broadening, as SPM is
responsible for frequency variations 
ω � k0
z|n2|Imax/τmin

around the focus. Spectral variations should remain confined
within the narrow bandwidth of 238–249 nm (7.57–7.92 PHz)
to preserve a negative value of n2 ∼ χ (3)(ω; −ω,ω,ω) along
the optical path [see Fig. 4(b)]. Figure 4(a) confirms that
the spectrum has a small bandwidth of 
ω < 0.1 PHz at
half-maximum. For the simulation shown in Fig. 3, spectral
wings reach the range where n2 is not necessarily negative, but
the dominant peak always remains located around the central
frequency [solid line in Fig. 4(a)]. We can notice that the usual
broad low-intensity supercontinuum (
ωSC/ω0 > 1) routinely
observed from the propagation of plasma-induced filaments
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FIG. 4. (a) On-axis normalized spectra for the pulses obtained
from the complete model Eq. (1) and shown in Fig. 2(e) (dashed line)
and Fig. 3(c) (solid line) at z = 8 and 1.5 m, respectively. The dotted
line represents the spectrum of the 100 fs pulse at z = 0. (b) Real part
of the normalized nonlinear susceptibility χ (3) in the degenerated case
(see [14]).
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and caused by the mechanism of intensity clamping is missing.
We indeed find 
ωSC/ω0 < 0.1, where 
ωSC is measured at
10−5 times the maximum spectral intensity. Supercontinuum
generation is thus inhibited as the peak intensity stays at
moderate values.

The further increase of the input power above 60 MW can
lead to strong MI and multiple pulse splitting (ωup > ωmax,
not shown here). For such high powers, however, a major part
of the broadened spectrum falls into the range of multiphoton
resonances below 7.57 PHz and strong discrepancies between
the solutions of Eqs. (1) and (2) appear. Consequently, while
it is possible in the NLS model to produce even shorter pulses
<20 fs by simply increasing the initial peak power, dispersion
of the nonlinear susceptibility prevented us from achieving
shorter durations with Eq. (1). Such propagation regimes will
be addressed in a future publication.

In summary, numerical simulations have highlighted the
dynamics of UV pulses focused into a self-defocusing gas

cell. Ultrashort optical structures can naturally be formed in
(3 + 1)-dimensional media with negative n2 and normal
dispersion and propagate over long ranges without experienc-
ing a wide spectral broadening. By mixing simple analytical
procedures, we prove that this new compression mechanism
follows from modulational instability in time, which can be
controlled to optimize the self-compression process over long
distances. To end with, we find it worth emphasizing that
nonlinear dispersion yielding variations in the Kerr index
of at least one order of magnitude does not significantly
change results compared to propagation models assuming a
constant susceptibility. Here, we indeed show that at moderate
powers deviations associated with nonlinear dispersion remain
limited and their qualitative effect is similar to classical pulse
self-steepening in focusing media.

This work was performed using HPC resources from
GENCI-CCRT/CINES (Grant No. 2009-x2009106003).
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