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Perfect imaging with positive refraction in three dimensions
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Maxwell’s fish eye has been known to be a perfect lens within the validity range of ray optics since 1854.
Solving Maxwell’s equations, we show that the fish-eye lens in three dimensions has unlimited resolution for
electromagnetic waves.
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Perfect imaging with positive-index materials has been
discussed since 1854 [1], but only for light rays and not
for waves [2,3]. In fact, the defining property of such ideal
optical instruments [3] is the perfect focusing of rays: for
each point in a region of space, all emitted rays meet in a
corresponding point in the image space. Yet it is the wave
nature of light that sets the resolution of optical instruments.
Only very recently [4], one of us proved that the archetype
of all ideal optical instruments [2], Maxwell’s fish eye [1],
perfectly images light waves in two dimensions. Here we
show that the fish eye in three dimensions has infinite
resolution as well, provided its medium is impedance-matched.
Absorption does not appear to significantly reduce the image
quality, in contrast to imaging with negative refraction [5,6].
However, fish-eye lenses contain both the source and the image
inside the medium, and impedance-matched devices are still
difficult to make in practice. On the other hand, our case
supports the idea [4] that perfect imaging is not necessarily
caused by the amplification of evanescent waves [5] but rather
by the geometry of light [7–9]. Such conceptual insights may
be vital for the future direction of technical developments for
perfect imaging.

According to Fermat’s principle [3,7], light rays follow
extremal optical paths with a path length measured by the
refractive index n, i.e., geodesics. Optical materials thus
establish virtual spatial geometries for rays [7,10]. Whether
these geometries are also valid for waves depends on
the type of wave propagation. In two-dimensional (2D)
structures, typical of integrated optics, the polarization of light
decides whether the structures are perceived as geometries: for
materials with purely electrical response TE polarization [11]
is required [4]. In three dimensions, the material must be
impedance-matched for establishing a virtual geometry for
electromagnetic fields [7], with equal electric permittivity ε

and magnetic permeability µ,

ε = µ = n. (1)

This crucial condition has not been considered in the previous
treatment of Maxwell’s fish eye with Maxwell’s equations
[12,13]. Scalar waves [14] should not obey the Helmholtz
or Schrödinger equation either, for perfect imaging in three
dimensions, but rather a wave equation we consider here as
well, Eq. (19). In the previous wave theories of Maxwell’s fish
eye [12–15], perfect imaging was impossible. If, however, the
medium or polarization is chosen such that the geometry of
light is not restricted to rays but extends to waves, waves may
be as perfectly imaged as rays [4].

It has been found [2] that Maxwell’s fish eye establishes
a non-Euclidean geometry [16], the three-dimensional (3D)
surface of the four-dimensional (4D) hypersphere, by the
refractive-index profile

n = 2

1 + r2
, (2)

where r denotes the distance from the center measured in the
characteristic length scale of the device. As the index profile
(2) is radially symmetric, the trajectory of a light ray lies in
a plane, due to the conservation of angular momentum. So,
for light rays, the propagation in three dimensions is the same
as in two dimensions where Maxwell’s fish eye corresponds
to the surface of a 3D sphere. Here all the rays emitted from
one point travel along the great circles, meeting again at the
antipodal point, which proves that Maxwell’s fish eye fits the
definition of an ideal optical instrument [3]. In physical space,
the antipodal image of a point r0 was found [3] to appear at

r′
0 = −r0

r2
0

. (3)

In this paper, we show that electromagnetic waves are perfectly
imaged at r′

0, apart from a phase delay of

ϕ = πk, (4)

where k denotes the wave number in units of the inverse length
scale of the fish eye. As the phase (4) is uniform, objects are
not only faithfully but also coherently imaged. Furthermore,
the phase (4) is linear in wave number and so in frequency
if the refractive index is not frequency dependent. In this case,
the time delay between source and image is uniform as well: a
flash of light emitted at the source arrives as a flash at the image
after a time delay of π in our units. Note that the phase delay
is different in two dimensions [4]: πν with ν2 = k(k + 1),
which seems to be related to the fact that Huygens’ principle
is not valid in two dimensions; there, elementary light waves
do not propagate as sudden flashes (Green functions in
the time domain are not delta functions). In the following,
we prove perfect imaging in three dimensions and obtain the
quantitative results (3) and (4) by analyzing the electromag-
netic Green function.

Electric and magnetic fields. The Green function G

describes the electric field of a stationary wave with wave
number k emitted by an elementary dipole at position r0 that
may point in all three directions. The Green function is a
matrix also known, in electrical engineering, as a dyade or
a bitensor with the first index referring to the electric-field
strength at the spectator point r and the second describing the
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direction of the dipole source at r0. If not otherwise stated,
we use Cartesian coordinates. As any source is a weighted and
directed distribution of elementary point dipoles, it is sufficient
to consider the Green function G(r, r0) for perfect imaging.
The Green function obeys the wave equation

∇ × 1

n
∇ × G − n k2G = ι1, (5)

with the infinitely localized current density ι. In a stationary
regime, the wave emitted at the source must disappear
somewhere. Usually the wave ultimately disappears at ∞; but
in perfect imaging, the entire energy of the emitted wave is
focused at the image and does not reach ∞ at all. In practice,
the light will be absorbed at the image, for example, in a
lithographic photoresist or a detector. In any case, to maintain
a stationary regime we must supplement the source by a drain
at image (3) with phase delay (4) such that [4]

ι = δ(r − r0) − eiϕδ(r − r′
0). (6)

The minus indicates that the drain is a source run in reverse.
Finally, causality implies [4] that G is analytic in k on the
upper-half complex plane and vanishing for k → ∞ there. If
G meets all these requirements, our case is settled: Maxwell’s
fish eye makes a perfect lens in three dimensions.

To deduce the Green function, it is advantageous to
represent G in terms of its magnetic field, the tensor H , as

G = ∇ × H − ι1

n k2
, (7)

where we require H to obey the wave equation

∇ × 1

n
∇ × H − n k2H = ∇ × ι1

n
. (8)

From Eqs. (7) and (8) follows Faraday’s law of induction

∇ × G = nH (9)

and subsequently the defining wave Eq. (5) of the Green
function. Faraday’s law also reveals that H describes the
magnetic-field strength divided by icµ0k, where c denotes the
speed of light and µ0 the permeability of vacuum. Consider a
special case of wave propagation first.

Source at origin. Imagine the source is placed at the center
of the fish eye [and image (3) would be at ∞],

r0 = 0, ι = δ(r). (10)

Similar to the electromagnetic wave emitted by a point dipole
in free space [17], we represent H by the ansatz

H = ∇ × 2D(r) 1. (11)

In free space, 2D describes the scalar Green function [17]. In
Maxwell’s fish eye, D turns out to be the scalar Green function,
as we will show, where the factor of 2 represents the refractive
index (2) at the source. We apply the expression

∇f (r) = r
r

∂rf (12)

for the gradient of any radial function, where ∂r abbreviates
the derivative with respect to the radius, and obtain

H = r × 2 ∂rD

r
1 . (13)

We calculate the curl of H by expanding the double vector
product in ∇ × (∇ × 2D1), using the radial gradient (12) and
the standard expression of the Euclidean Laplacian in spherical
coordinates,

∇ × H = ∇ ⊗ r
r

∂r2D − 1

(
∂2
r + 2

r
∂r

)
2D

= r ⊗ r
r2

(
∂2
r − 1

r
∂r

)
2D − 1

(
∂2
r + 1

r
∂r

)
2D .

(14)

Then we turn to ∇ × n−1∇ × H that occurs in the wave Eq. (8)
of the magnetic field. For the first term in expression (14), the
only nonzero contribution to the curl originates from ∇ × a ⊗
r = −a × ∇ ⊗ r = −a × 1. For the curl of the second term
divided by n, we apply the radial gradient (12) as in formula
(13). Combining these terms, we obtain

∇ × 1

n
∇ × H = 2r

r2
× 1

(
2

n r
− ∂r

1

n
∂r r

)
∂rD

= 2 n r
r

× 1∂r

(
1

r2n3
∂r r2 n ∂rD − D

)
,

(15)

where in the last step we used the explicit formula (2) of
the fish-eye profile. All expressions in the wave equation (8),
including the curl of the delta functions on the right-hand side,
have the same matrix structure as the magnetic field (13). We
only need to require

1

r2n3
∂r r2 n ∂r D + (k2 − 1) D = −δ(r)

4 n
(16)

for finding the Green function G in the special case (10). But
before we write down the solution of the radially symmetric
scalar wave equation (16), we cast it in a geometric form and
transform it, for investigating perfect imaging of scalar waves
in three dimensions.

Scalar waves. The virtual geometry of the “fish-eye world”
is characterized by the line element

ds = n(r) dl . (17)

In this geometry, the Laplacian [7] appears in spherical
coordinates r , θ, and φ as

∑
a

∇a∇a = 1

r2n3
∂r r2 n ∂r + 1

r2
∂2
θ + 1

r2 sin2 θ
∂2
φ

= 1

n3
∇ · n∇ (18)

in Cartesian coordinates. Consequently, we can write the radial
wave equation (16) as(

1

n3
∇ · n∇ + k2 − 1

)
D = − ι

n3
. (19)

This is the wave equation of the scalar Green function (for
a conformally coupled scalar field on the hypersphere). The
equation is invariant under coordinate transformations that
preserve the geometry, the line element (17), because it is
entirely composed of geometrical constructions: the left-hand
side contains the Laplacian and k2 − 1, a scalar, while the
right-hand side consists of delta functions divided by the
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density n3, the measure of length (17) cubed. Such coordinate
transformations are the Möbius transformations

r′ = r
(
1 + r2

0

) − r0(1 + 2 r · r0 − r2)

1 + 2 r · r0 + r2r2
0

, (20)

because one verifies that

ds ′ = ds. (21)

In two dimensions, the Möbius transformations correspond to
the rotations on the surface of the 3D sphere in stereographic
projection on the plane [18]. In three dimensions, the Möbius
transformations (20) describe the rotations on the 3D surface
of the 4D hypersphere, the virtual geometry of Maxwell’s fish
eye [2]. As the relationship (3) between source and image is
also invariant under Möbius transformations, all scalar Green
functions are simply Möbius-transformed solutions of the
radial wave equation (16) with r replaced by the radius

r ′ = |r′| = |r − r0|√
1 + 2 r · r0 + r2r2

0

. (22)

A suitable solution is

D = 1

8π

(
r ′ + 1

r ′

)
exp(2ik arctan r ′)

= 1

8π

(
r ′ + 1

r ′

) (
1 + i r ′

1 − i r ′

)k

, (23)

a curious variation of the free-space scalar Green function [17].
The Green function (23) has two singularities, one at r ′ = 0
and the other at r ′ = ∞; one singularity is at the source point
r0 where expression (22) vanishes, and the other singularity is
at the image (3) where the transformed radius (22) diverges.
The phase 2k arctan r ′ is finite, because the fish-eye world is
closed, that is, the surface of the hypersphere is finite. At the
image, we obtain the phase delay (4). The prefactor of the
scalar Green function (23) was chosen to give delta functions
on the right-hand side of the wave equation (19). The Green
function (23) is analytic in k and decays exponentially on the
upper-half complex k plane: D is causal. It is instructive to
represent D in the time domain as

D(t) = 1

2π

∫ +∞

−∞
D exp(−ikt) dk = δ(2 arctan r ′ − t)

8π (r ′ + 1/r ′)

= δ(ζ + cos t)

4π
, ζ = r ′2 − 1

r ′2 + 1
. (24)

A light flash emitted at r0 and time t = 0 appears as a flash at
the image (3) at time π in our units. All our requirements are
met: scalar waves with the wave equation (19) and the fish-eye
profile (2) support perfect imaging.

Green tensor. Having established the scalar Green function
D, we follow a similar procedure to deduce the electromag-
netic Green tensor G. First, we write down the Green function
for the source at the origin in Möbius-primed coordinates. One
verifies that formula (7) with expression (14) appears as

G = ∇ × n(r ′)∇ ⊗ ∇0 D(r ′)×
←−
∇0

n(r) n(r0) k2
− ι1

n k2
(25)

evaluated at r0 = 0. Here, ∇0 denotes the gradient operator
with respect to the source point r0, and the arrow indicates

that all terms on the left of it are to be differentiated. Second,
all we need to do to establish the Green function for an arbitrary
source point r0 is to Möbius-boost the special case (25). We
know that r ′ is Möbius invariant, but we also need to transform
the bitensor components of G. For this, we write our result (25)
in geometric terms for the fish-eye world with line element
(17), which is most easily done in index notation. We use
the permutation symbol [abc] for the Cartesian curls [7] and
express them by two Levi-Civita tensors εabc [7] in the fish-eye
geometry, for spectator and source points separately. Finally,
we lower the first index of each Levi-Civita tensor by the
corresponding metric tensors n(r)21 and n(r0)21, respectively.
In formulas,

Gab =
∑
cdef

[acd] [bef ]

n(r) n(r0) k2

∂2n(r ′)
∂xc ∂xe

0

∂2D(r ′)

∂xd ∂x
f

0

− ιδab

n k2

=
∑
cdef

ε cd
a ε

ef

b

k2

∂2n(r ′)
∂xc ∂xe

0

∂2D(r ′)

∂xd ∂x
f

0

− ιδab

n k2
. (26)

Formula (26) describes a perfect bitensor in the fish-eye
geometry that remains invariant after Möbius transformation.
Consequently, we can simply drop the qualification r0 = 0:
our result (25) is valid for arbitrary source points. Note that
the delta currents (6) in expression (25) conveniently cancel
the delta functions arising in the derivatives of D; the Green
function G is singular at source r0 and image r′

0 but does not
develop delta peaks. As the scalar Green function D is analytic
and exponentially decaying on the upper-half complex k plane,
so is the Green tensor G. Source, image (3), and phase delay (4)
are the same as in the scalar case as well. In short, Maxwell’s
fish eye in three dimensions perfectly images electromagnetic
waves.

Mirror. In practice, the fish-eye profile (2) poses a
formidable challenge: it is infinitely extended across space
and the refractive index n < 1 for r > 1; the speed of
light exceeds c here and approaches infinity. Both problems
are related: Maxwell’s fish eye represents a finite virtual
space, the 3D surface of the 4D hypersphere, stretched out to
infinite physical space. Light can only reach infinity in a finite
time with infinite speed. But, one can solve both problems in
one stroke by placing a mirror at the unit sphere (r = 1) [4].
In this case, the device occupies a finite space, the interior of
the unit sphere, and the refractive index ranges from 1 at the
mirror to 2 in the center. The same trick has been applied in
non-Euclidean cloaking [16]. The mirror creates the illusion
that light propagates beyond the unit sphere, whereas in reality
it is reflected at the mirror. After another reflection, the light
focuses at the mirror image of the original focusing point (3).
To show this, we try employing the inversion in the unit sphere
as a mirror transformation of the spectator points,

r → r
r2

, (27)

or, in spherical coordinates, r → r−1. The mirror image of
image (3) would appear at

r′′
0 = −r0. (28)

The inversion (27) also preserves the line element (17) of
Maxwell’s fish eye, and hence the transformed scalar Green
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function remains a solution of the wave Eq. (19). We only need
to transform the spectator indices of the Green tensor by the
matrix P (but not the source indices). As reflection gives rise
to a phase shift of π [17], we subtract the reflected field from
the original one,

G′ = G(r) − P G(r−1) . (29)

In Cartesian coordinates,

P = r2 1 − 2 r ⊗ r, (30)

but in spherical coordinates,

P i
j = diag(−r2, 1, 1) . (31)

Consequently, at the unit sphere, the tangential components
of the Green function, representing the electric field, vanish,
which is the defining property of a perfect mirror. The Green
function (29) obeys not only the wave Eq. (5) but also the
correct boundary conditions at the spherical mirror, which
justifies formula (29).

Finally, we may also include absorption in our theory,
although in a simplified model. Absorption is described by
the imaginary part n′′ of the refractive index. Suppose n′′(r)
is proportional to the real part given by the fish-eye profile
(2). This case is equivalent to having a complex wave number
k in the definition (5) of the Green function. The singularities
of the Green function (23) describe source and image, but they
are not affected by the wave number that only reduces the
amplitude: the imaging quality is resistant to absorption, at
least in our simple model. In three dimensions, the fish-eye
mirror images with a resolution no longer limited by the wave
nature of light.
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